
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 49, No. 1 (2014) 41-64 

DOI: http://dx.doi.org/10.12989/sem.2014.49.1.041                                            41 

Copyright ©  2014 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8        ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Stochastic analysis of elastic wave and second sound 
propagation in media with Gaussian uncertainty in mechanical 

properties using a stochastic hybrid mesh-free method 
 

Seyed Mahmoud Hosseini
1 and Farzad Shahabian2 
 

1
Industrial Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, 

PO Box: 91775-1111, Mashhad, Iran 
2
Civil Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, 

PO Box: 91775-1111, Mashhad, Iran 

 
(Received October 22, 2012, Revised October 15, 2013, Accepted December 9, 2013) 

 
Abstract.  The main objective of this article is the exploitation of a stochastic hybrid mesh-free method 
based on stochastic generalized finite difference (SGFD), Newmark finite difference (NFD) methods and 
Monte Carlo simulation for thermoelastic wave propagation and coupled thermoelasticity analysis based on 
GN theory (without energy dissipation). A thick hollow cylinder with Gaussian uncertainty in mechanical 
properties is considered as an analyzed domain for the problem. The effects of uncertainty in mechanical 
properties with various coefficients of variations on thermo-elastic wave propagation are studied in details. 
Also, the time histories and distribution on thickness of cylinder of maximum, mean and variance values of 
temperature and radial displacement are studied for various coefficients of variations (COVs). 
 

Keywords:  second sound; stochastic generalized finite difference (SGFD) method; thermal shock; coupled 
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1. Introduction 

 

Uncertainty in some thermo-elasticity parameters such as mechanical properties has a 

significant effect on transient behavior of displacement and temperature fields and also on thermo-

elastic stresses in structures subjected to transient or thermal shock loadings. The reliability and 

safety evaluations of displacement and temperature fields in structures should be stochastically 

studied considering uncertainty in some parameters such as mechanical properties. To assess the 

thermo-elastic wave propagation and transient behaviors of displacement and temperature fields in 

structures from engineering perspective, the coupled thermo-elasticity governing equations should 

be analyzed using mechanical properties with Gaussian or other distributions.  

Recently, some works were presented in this field. The statistics (i.e., mean and variance) of 

temperature and thermal stress were analytically obtained in functionally graded material (FGM) 

plates with uncertainties in the thermal conductivity and coefficient of linear thermal expansion 
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(Chiba et al. 2008). They assumed the FG plate to have arbitrary nonhomogeneous thermal and 

mechanical properties through the entire thickness of plate and were subjected to deterministic 

convective heating. In another work, the second-order statistics (i.e., mean and standard deviation) 

of the temperature and thermal stresses were evaluated in an axisymmetrically heated functionally 

graded annular disc of variable thickness with spatially random heat transfer coefficients (HTCs) 

on the major surfaces of the disc (Chiba 2009). This annular disc was assumed to have arbitrary 

variations in the HTCs and material composition along the radial direction only. Stochastic 

analysis of generalized coupled thermoelasticity with one relaxation time in a half space was 

carried out considering stochastic boundary conditions, which were white noise (Sherief et al. 

2013). 

The uncoupled theory of thermo-elasticity is not a realistic approach for thermo-elasticity 

analysis, especially for structures under shock loading. To simulate the finite speed thermal wave 

propagation and also the real physical behaviors in high strain rate and highly varying thermal 

boundary conditions, some theories have been presented to simulate the mutual dependency 

between temperature and displacements. In thermo-elasticity, these approaches are usually 

indicated as coupled thermo-elasticity theories. Green and Naghdi presented a theory in which the 

finite speed of thermal wave was simulated and the propagation of thermo-elastic waves was 

modeled in a domain with high rate excitation (Green et al. 1993, Chandrasekharaiah 1998). Their 

theory has been called as GN theory in coupled thermo-elasticity. 

There are some literatures in which the coupled thermo-elasticity analysis has been carried out 

by researchers. Melnik studied on the properties of discrete approximations for mathematical 

models of coupled thermoelasticity in the stress-temperature formulation (Melnik 2001). The 

locally transversal linearization (LTL) technique with the numerical inverse Laplace transform 

method were successfully used to solve GN coupled thermo-elasticity in an annulus (Taheri et al. 

2005). To study on coupled thermoelasticity of isotropic and homogeneous hollow spheres and 

cylinders based on LS, GL and GN theories, Bagri et al. presented a unified formulation for all 

theories (Bagri et al. 2007a). Also, they (Bagri et al. 2007b) developed their unified formulation 

for functionally graded cylinders and used the transfinite element method and numerical inverse 

Laplace technique to solve it. 

Hosseini et al. used the hybrid numerical method based on Galerkin finite element (GFE) and 

Newmark finite difference (NFD) methods to analyze the GN coupled thermo-elasticity in a 

functionally graded (FG) thick hollow cylinder with infinite (1D) and finite (2D) length (Hosseini 

et al. 2008, Hosseini 2009). In their works, the FG cylinder was divided through radial direction to 

many isotropic sub-cylinders to simulate the FGM features. In other works, the GN coupled 

thermo-elasticity analysis was carried out with considering uncertainty in constitutive mechanical 

properties of FGM (Hosseini et al. 2011a, b). The random field of mechanical properties was 

generated using Monte Carlo simulation. The hybrid numerical method based on GFE (Galerkin 

finite element) and NFD (Newmark finite difference) methods were employed to solve the GN 

governing equations. In another work, Hosseini et al. developed the application of meshless local 

Petrov-Galerkin (MLPG) method in GN coupled thermo-elasticity of functionally graded thick 

hollow cylinder subjected to thermal shock loading (Hosseini 2011c), also solving a similar 

problem in stochastic field by considering uncertainty in constitutive mechanical properties of 

FGMs (Hosseini 2011d). 

There is another method without any mesh generation, which is called generalized finite 

difference (GFD) method, to solve the partial differential equations. Benito et al. developed 

application of the GFD method in parabolic and hyperbolic differential equations and also they 
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analyzed the possibility of employing the GFD method over adaptive clouds of points 

progressively increasing the number of nodes (Benito et al. 2001, 2003). A procedure in GFD was 

given that can easily assure the quality of numerical results by obtaining the residual at each point 

(Gavete et al. 2003). Also, they compared the GFD method with another meshless method, so-

called, element free Galerkin method (EFG). Benito et al. applied the GFDM to solve the 

parabolic and hyperbolic differential equations. In their research, some examples from two kinds 

of differential equations were solved (Benito et al. 2007). 

In this article, a stochastic hybrid mesh-free method based on stochastic generalized finite 

difference (SGFD) method is exploited to analyze the GN coupled thermoelasticity in thick hollow 

cylinder with uncertainty in mechanical properties. The Gaussian distribution is considered to 

generate the random mechanical properties with various coefficients of variations (COVs). The 

thermoelastic wave propagation across thickness of cylinder have been studied for various values 

of COVs and also the time history of non-dimensional radial displacement and temperature are 

obtained for various points on thickness of cylinder. The mean, maximum and variance of non-

dimensional displacement and temperature fields are studied in details for various times and COVs 

at several points on thickness. The presented stochastic hybrid mesh-free method shows a high 

capability to use in coupled thermoelasticity analysis. 

 

 

2. Coupled thermoelasticity governing equations 
 

Consider a thick hollow cylinder with inner radius rin

 
and outer radius rout, which is subjected 

to thermal shock loading. To find the dynamic response of displacement field, the coupled 

thermoelasticity governing equations should be considered for the problem. One of the most 

important theories in coupled thermoelasticity is Green and Naghdi (GN) model of generalized 

coupled thermoelasticity (Green et al. 1993). The GN theory simulates the dependency between 

the temperature and displacement with and without energy dissipation, which are called type II and 

type III of GN theory. The type I is reduced to the classical heat conduction theory (based on the 

Fourier’s law). The governing equations of GN theory without energy dissipation are given as 

   
.  σ F u   (1) 

   
 *

0 . .    ucT T g k T   (2) 

where u is the displacement vector, T
 
is the temperature change with respect to the uniform 

reference temperature T0, F
 
is the external force and ġ

 
is the external rate of supply of heat. 

Furthermore, ρ is the mass density, c
 
is the specific heat, λ and μ are the Lame constants and 

    
  *3 2      (3) 

where β is the coefficient of volume expansion and k
*

 
is a material constant characteristic of the 

GN theory. The dot over the symbol denotes time differentiation. Assuming linear elasticity, the 

stress field can be computed using the following equation 

     
 , , ,( )   ij ij k k i j j iu T u u      (4) 

43



 

 

 

 

 

 

Seyed Mahmoud Hosseini and Farzad Shahabian 

The axi-symmetry and plane strain conditions are assumed for the problem. Consequently, the 

following relations are taken into account. 

 
 ,0 , 0 , 2    z rr r ru u u e T      

      
 2 / , ,    r zzu r e T e T        (5) 

    
0 r rz z     (6) 

where the term e is obtained as 

    
,     r

r r

u
e u

r  (7) 

The governing Eqs. (1) and (2) can be rewritten as follows. 

     
 2 divu u u       T F       (8) 

     

* 2

0divu   cT T g k T   (9) 

The F
 
and ġ are considered to be zero in this work. To analyze the problem, we use the non-

dimensional parameters as follows. 

     

 

0 0 0 0

21
, , , , ,u u


     r

r

r v T
r t t T

l l l T T T T




  
 

  
 (10) 

where l
 
is a standard length (which can be assumed to be outer radius of cylinder for example) and 

ν
 
is a standard speed (which can be assumed to be the elastic wave propagation velocity in 

material of cylinder for example). The term T0 stands for a certain value of temperature (for 

example environment temperature) and the terms λ and μ stand for Lame’s constants. The 

governing equations, which are (1) and (2) can be rewritten by using nondimensional parameters 

     
 2 2 2 2 2divu u u      s p s pC C C C T  (11) 

     

2 2 *divu  TC T T   (12) 

where 

      

2*
2 2 2 * 0

2 2 2

2
, , ,

2


   


p T s

Tk
C C C

v cv v c

  


   
 (13) 

The governing equations for axisymmetry and plane strain conditions can be obtained as 

follows 
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 

2

2 2 2 2 2

2 2

1  
    

  

r r r

p p p s p r

u u u T
C C C C C u

r r r r r
 (14) 

 

     

2
2 *

2

1    
     

      

r r

T

u uT T
C T

r r r r r
  (15) 

To study the effects of uncertainty in mechanical properties on dynamic behavior and 

thermoelastic waves, some random variables are replaced in the set of coupled equations. 

Uncertain mechanical properties are numerically generated with Gaussian distribution with 

different coefficients of variations using Monte Carlo simulation method. The mean values of 

random variables are considered to be equal with the deterministic values of mechanical 

properties. The symbol ~, which may be appeared above some parameters, stands for random 

variables. Consequently, the governing equations can be rewritten in random field as follows 

     
 2 divu u u             (16) 

     

* 2

0 div u  cT T k T  (17) 

where 

     
  *3 2      (18) 

The non-dimensional parameters considering randomness are 

     

 
0 0 0 0

21
, , , , ,u u


     r

r

r v T
r t t T

l l l T T T T




  
 

  
 (19) 

For the sake of brevity, the following terms are used 

  ˆˆ,ˆˆ,
~ˆ,~ˆ        TT   ur rr                    (20) 

The coupled themoelasticity governing equations with uncertainty in mechanical properties for 

axisymmetry and plane strain conditions can be obtained as follows 

rp
r

sp
r

p
r

p u
r

T
C

r

u
CC

r

u

r
C

r

u
C ̂

ˆ~ˆ
)

~~
(

ˆ1~ˆ~ 2

2

222

2

2
2 














              (21) 




































r

u

r

u
T

r

T

rr

T
C rr

T

 ˆˆ
ˆˆ

ˆ1ˆ~ *

2

2
2                    (22) 

For the sake of brevity, it is assumed that uu uu rr
 ˆˆ,ˆˆ  . To solve the derived coupled 
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thermoelasticity equations with uncertainty in mechanical properties (21) and (22), some 

numerical methods requiring mesh generation or mesh reduction or meshless techniques can be 

employed. In this article, we explore the use of a very efficient method, called stochastic 

generalized finite difference (SGFD) method which is not requiring any mesh. In the SGFD 

method, the Monte Carlo simulation is used for random fields. 

 

 

3. Solution technique 
 

3.1 Stochastic generalized finite difference (SGFD) method  
 

Here is developed the application of SGFD method without requiring any mesh generation for 

coupled thermoelasticity analysis based on Green -Naghdi theory for thick hollow cylinder. In this 

method, the partial derivatives are linearly approximated by Taylor series expansion on some 

nodes (center nodes) in the analyzed domain that each center node is surrounded by some other 

nodes. The partial derivatives of Taylor series expansion are obtained at the rest of each center 

nodes and the group of nodes with a center node and surrounding other nodes is called a star in 

this method. 

Consider the non-dimensional radial displacement at a center node to be 0û and non-

dimensional temperature to be 0T̂
 

and the terms iû  and iT̂  are the values of non-dimensional 

radial displacement and temperature at the rest of surrounding nodes in each star. The function 

values iû  and iT̂
 

can be approximated using Taylor expansion as 

...
ˆ

2

1ˆ
ˆˆ

2

0
2

20
0 
























r

u
h

r

u
huu iii                      (23) 

and 

...
ˆ

2

1ˆ
ˆˆ

2

0
2

20
0 

























r

T
h

r

T
hTT iii                     (24) 

The term i
 
is number of surrounding nodes. The term hi

 
can be calculated as 

     
 i i oh r r  (25) 

The terms over second order are ignored in Eqs. (23) and (24) and the linear approximation of 

second order can be obtained for radial displacement and temperature. To minimize the error in 

this method, the function of norm should be minimized. The functions of norm for radial 

displacement and temperature are 

 
 




















































N

i

iiii hw
r

u
h

r

u
huuu

1

2

2

0
2

20
0

ˆ

2

1ˆ
ˆˆ)ˆNorm(               (26) 

and 
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 
 




















































N

i

iiii hw
r

T
h

r

T
hTTT

1

2

2

0
2

20
0

ˆ

2

1ˆ
ˆˆ)ˆNorm(               (27) 

where w(hi) is the weight function. In this article, we assume that the weight functions is defined 

by 

     
 

 
3 3

1 1
 i

i

w h
hdist

 (28) 

If the norms (26) and (27) are minimized with respect to the partial derivatives, a set of linear 

equations system is obtained as follows 

     
2 2 2u u

uQ   (29) 

     
2 2 2T T

TQ   (30) 

where the terms ψ
u
2

 
and ψ

T
2 stand for 2×2

 
matrices in displacement and temperature fields, 

respectively. The components of matrices ψ
u

2

 
and ψ

T
2 and vectors ξ

u
2

 
and ξ

T
2 are obtained in the 

Appendix. The vectors Qu2

 
and QT2

 
are given, respectively, by 

     

2

0 0
2 2

,
  

  
  

T

u

u u
Q

r r
 (31) 

     

2

0 0
2 2

,
  

  
  

T

T

T T
Q

r r
 (32) 

There are some methods to solve the system of differential equations that one of them is 

Cholesky method (Benito et al. 2007). In Cholesky method, the symmetric matrices ψ
u

2

 
and ψ

T
2 

are decomposed to upper and lower triangular matrices. The method is explained as follows for 

ψ
u

2. 

     
2 2 2u TL L  (33) 

The components of the matric L2 are denoted by l(i, j) with i, j=1, 2, …, P, where P=2
 
in our 

case, and 

     
 2 2

1

1
( ) ( ) ( , ) ( 1,..., )

( , )





 
     

 

P k

u u

i

Q k Y k l k i k Q k i k P
l k k

 (34) 
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0

1 1 1

( ) ( , ) ( , ) ( 1,..., )
  

  
     

  
  

P N P

i j ji

i j i

Y k u M k i c u M k i d k P  (35) 

     

11
( , ) ( 1) ( , ) ( , ) ( , 1,..., )

( , )






  
i

i j

k j

M i j l i j M k j with j i i j P
l i j

 

(36) 

     

1
( , ) ( , 1,..., )

( , )
  M i j with j i i j P

l i j
 

(37) 

     
( , ) 0 ( , 1,..., ) M i j with j i i j P  (38) 

where 

     

2

2 2

1 2

1

, ,
2

  
N

j

i ji j j j

j

h
c d d h W d W  (39) 

and 

     
 

22 ( ) iW w h  (40) 

The similar approach can be used for QT2. Also, the first and second derivatives can be 

calculated as 

       
























N

i

i
i

i
u

N

i

iii
u hw

h
uuAhwhuuA

r

u

1

2
2

02

1

2
01

0

2
ˆˆˆˆ

ˆ
        (41) 

       
























N

i

i
i

i
u

N

i

iii
u hw

h
uuBhwhuuB

r

u

1

2
2

02

1

2
012

0
2

2
ˆˆˆˆ

ˆ
        (42) 

and 

       
























N

i

i
i

i
T

N

i

iii
T hw

h
TTAhwhTTA

r

T

1

2
2

02

1

2
01

0

2
ˆˆˆˆ

ˆ
       (43) 

       
























N

i

i
i

i
T

N

i

iii
T hw

h
TTBhwhTTB

r

T

1

2
2

02

1

2
012

0
2

2
ˆˆˆˆ

ˆ
       (44) 

where the coefficients uA1 , uA2 , uB1 , uB2 , TA1 , TA2 , TB1 , TB2  are obtained in details in Appendix. The 

derivatives of radial displacement and temperature can be also rewritten in star forms as follows 







 N

i

iiuu
r

u

1

00
0 ˆˆ

ˆ
                          (45) 
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where 

     
   

2
2 2 2

0 1 2

1 1 2

N N
u u i

i i i

i i

h
A h w h A w h

 

    (46) 

     
   

2
2 2 2

1 2
2

u u i
i i i i

h
A h w h A w h    (47) 

     
0

1

N

i

i

 


  (48) 

For second derivative of radial displacement, we have 







 N

i
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where 
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The temperature derivatives can be obtained using the similar method. 
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where 
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For second derivative of temperature, it can be written as 
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where 
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Also, the second derivative of radial displacement with respect to time can be approximated for 

first derivative with respect to radius as follows 
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where the terms α0

 
and αi

 
were introduced in Eq. (47). By substituting the obtained relations in 

star forms for first and second derivatives in governing Eqs. (21) and (22) at a center node, the 

coupled thermoelasticity governing equations can be obtained in new form based on SGFD 

method. In other words, the governing equations should be valid at every center node on analyzed 

domain. 
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and also the second governing equation can be written as 
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The following system of equations is obtained for the distributed nodes on the analyzed 

domain. 

     
 

     
 

 
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 1 * 1 1 * 1 1 *1 1 *11 *1N N N N N NN
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where 
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3.2 Time domain analysis stochastic 
 

There are some numerical methods to solve the system of equations based on SGFD method 

(68). In this article, the Newmark finite difference method with suitable time step is used and the 

dynamic behavior of temperature and displacement domains are obtained for the cylinder. 

Consider the system to be in non-dimensional time ptt  in which the governing equation of 

system is shown as follows 

     
     p p pt t t
M K f    

   (71) 

Using the initial conditions {f
0
}
 
and {ϕ

0
}, the following equation can be concluded as 

     
       0 0 0M f K    (72) 

The new matrices can be defined as follows 
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   


  
      

  
(74) 

The matrices of  pt
 ,  pt

  and  pt
 can be calculated using following equations. 
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Using aforementioned equations, the matrices of {f
0
}
 
and {ϕ

0
}can be obtained for an arbitrary 

time. The best convergence rate can be reached in this method by choosing λ1=1/4
 
and λ2=1/2. 

 

 

4. Numerical examples and discussions 
 

To study the thermoelastic wave propagation in thick hollow cylinder, we consider an 

axisymmetric hollow cylinder in plane strain conditions with inner and outer radii inr
 
and outr , 

respectively, which was defined in previous section. The term H
 
is defined as H= outr − inr  and 

)(tH  stands for Heaviside unit step function.  

The mechanical properties are generated as random variables, with mean value equal to the 

deterministic value of mechanical properties presented (Taheri et al. 2005) as follows 

     

*0.5, 1.0, 0.267, 0.073p T sC C C      (78) 

The random variables are generated with Gaussian distribution (Normal distribution) having 

various coefficients of variations (COVs) such as COV=2.5%, COV=5%
 
and COV=10%. To 

verify the results and method of solution, the mean values of results in both non-dimensional radial 

displacement and temperature are compared to the presented results based on the locally 

transversal linearization (LTL) method (Teheri et al. 2005) and also with presented data based on 

meshless local Petrov-Galerkin (MLPG) method (Hosseini et al. 2011c). The inner surface of 

cylinder is assumed to be under suddenly heat flux, the outer surface is isolated and radial 

displacement of nodes on both inner and outer surfaces are considered to be fixed. 

     
     , , , 0in inq r t H t u r t    (79) 
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 (80) 

where q is the heat flux that is defined in the GN theory of coupled thermoelasticity as 

     
 

 2
,

, T

T r t
q r t C

r


 


 (81) 

In GFD method, we consider N nodes distributed on thickness of cylinder through radial 
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direction and the first node i=1
 
is located on inner surface and the last one i=N

 
is located on outer 

surface of cylinder. 

The non-dimensional temperature distributions through radial direction of cylinder are depicted at 

various non-dimensional time using three different methods including SGFD (presented method), 

MLPG and LTL methods. The comparison between results of these three methods shows that the 

SGFD method is an effective method with high capability for coupled thermoelasticity analysis 

considering uncertainty in some inputs parameters. Also, the propagation of thermal wave through 

radial direction of cylinder (across thickness) can be seen in Fig. 1 at various non-dimensional 

times. The similar behavior can be found for non-dimensional radial displacement distribution, 

which is illustrated in Fig. 2. The propagation of non-dimensional radial displacement distributions 

based on three numerical methods are plotted in Fig. 2 for comparison. It can be also concluded 

from Fig. 2 that the obtained results (mean values) from SGFD method are in good agreement with 

the MLPG and LTL results at different non-dimensional times. The non-dimensional radial 

displacement wave front can be tracked in Fig. 2. 

 

 

 
Fig. 1 Thermal wave propagation through radial direction across thickness of cylinder in first example 
 

 
Fig. 2 Radial displacement wave propagation through radial direction across thickness of cylinder 

in first example 
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Fig. 3 Variation of non-dimensional radial displacement versus number of samples in Monte Carlo 

simulations 
 

 
Fig. 4 Maximum and minimum values of non-dimensional temperature distributions across 

thickness of cylinder for various values of COV and non-dimensional times at first example 
 

 

The results in time and displacement domains are random variables, if the inputs such as 

mechanical properties of cylinder are considered as random parameters and generated by Monte 

Carlo simulations. Consequently, for certain time and radius, the results can be found as random 

values, which are distributed around a mean values. Fig. 3 shows the random results versus 

number of samples in Monte Carlo simulation for radial displacement domain at 1t  for middle 

point of thickness. The maximum and minimum values are shown in this figure. The propagations 

of thermal wave based on maximum and minimum values of temperature are drawn in Fig. 4 for 

1.0t and 3.0t . The difference between minimum and maximum values is increased by 

increasing of coefficient of variations (COVs), which can be concluded from Fig. 4. From 

engineering perspective, it means that the maximum or minimum values of non-dimensional 

temperature should be considered for designing purposes. Also, the estimation of thermal wave 

speed is different based on minimum and maximum values of non-dimensional temperature. It can 

be seen in Fig. 4 that the wave front for maximum values is propagated faster than minimum 

values. The similar behavior can be seen for non-dimensional radial displacement distribution, 
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Fig. 5 Maximum and minimum values of non-dimensional radial displacement distributions across 

thickness of cylinder for various values of COV at a certain non-dimensional time in first example 
 

 

Fig. 6 Thermal wave propagation along radial direction in second example 
 

 
Fig. 7 Radial displacement wave propagation based on mean values along radial direction of 

cylinder in second example 
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which is shown in Fig. 5 for 2.0t  and various values of COV. Also, the wave front of 
maximum non-dimensional radial displacement s is propagated faster than minimum values for 

each value of COV. 
To show more abilities of GFD method in coupled thermoelasticity case, the following thermal 

shock loading is considered as second example. The inner surface of cylinder is assumed to be 

under suddenly temperature rising and simply supported conditions for displacements as follows 

     
     , , , 0in inT r t H t u r t   (82) 

     
   , 0 , , 0out outT r t u r t   (83) 

where )(tH
 

is the Heaviside unit step function. In the GFD method, there is no any interpolation 

or discretization on boundary conditions. It can be considered as another advantage of the SGFD 

method.  

The propagation of thermal wave has been obtained through radial direction across thickness of 

cylinder using three numerical methods including finite element (FE), MLPG and SGFD methods, 

which the results are drawn in Fig. 6. Also, the Fig. 6 shows us the obtained results using SGFD 

method have a good agreement with those obtained using other methods in second example too. 

There are some fluctuations before thermal wave front in the diagrams of results. The main 

justification of this physical phenomenon is the disturbances in displacement and temperature 

fields, which are created by shock loading. The fluctuations depend on the selected parameters of 

GN theory such as Cp, CT and Cs

 
and also depend on the some parameters of solution methods. 

The non-dimensional radial displacement wave propagation based on mean values can be tracked 

in radial direction on thickness of cylinder at various times, which can be found in Fig. 7. The time 

history of non-dimensional radial displacement and temperature based on mean values at various 

point on thickness are shown in Fig. 8 and Fig. 9, respectively. 

In Fig. 9, the non-dimensional temperature of point close to inner surface 4/Hrr in 
 
starts  

to oscillate earlier than other points. It means that the thermal wave front reaches to this point 

earlier than other point, which is compatible with realistic behavior of temperature domain from 

physical view. Both dynamic behaviors of non-dimensional radial displacement and temperature in 

time domain show a periodic behavior. There is no any damping in these periodic waves that 

shows a good compatibility with GN theory of coupled thermoelasticity without energy 

dissipation. Also, these behaviors in time domain can be used to estimate the velocity of thermal 

and non-dimensional radial displacement waves propagation. The application of SGFD method in 

coupled thermoelasticity furnishes a ground to study the wave propagation analysis and also 

natural frequency analysis using time history of non-dimensional variables. The authors would like 

to develop the application of SGFD method to aforementioned analysis in their future works.  

Fig. 10 shows the differences between maximum and minimum values distributions across 

thickness of cylinder for various values of COV. The differences are increased by increasing the 

values of COV. Also, it is concluded that the thermal wave fronts for maximum values are 

propagated faster than minimum values. The propagation of maximum values of non-dimensional 

temperatures are depicted in Fig. 11 for COV=5%. The time histories of maximum values, which 

are depicted for middle point of thickness and various values of COV in Fig. 12, show the similar 

behaviors. The differences between maximum values and results obtained from deterministic 

inputs are increased by increasing the value of COV. Fig. 13 is drawn to show the comparison of 

time histories of maximum values and time history of result obtained from deterministic inputs in 
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Fig. 8 Time history of non-dimensional radial displacement mean values at various points of 

thickness in second example 
 

 
Fig. 9 Time history of non-dimensional temperature mean values at various points of thickness in 

second example 
 

 
Fig. 10 The comparison of maximum and minimum values distributions across thickness of 

cylinder in non-dimensional temperature domain for various values of COV in second example 

57



 

 

 

 

 

 

Seyed Mahmoud Hosseini and Farzad Shahabian 

 

 
Fig. 11 The propagation of maximum non-dimensional temperature across thickness of cylinder 

for COV = 5% at various non-dimensional time in second example 
 

 
Fig. 12 The comparison between time histories of non-dimensional radial displacement maximum 

values and time history based on deterministic inputs in second example 
 

 
Fig. 13 The comparison between time histories of non-dimensional temperature maximum values 

and time history based on deterministic inputs in second example 

58



 

 

 

 

 

 

Stochastic analysis of elastic wave and second sound propagation in media with Gaussian 

 

 
Fig. 14 The distribution of maximum and minimum values of non-dimensional radial 

displacement across thickness of cylinder for various COV in second example 
 

 
Fig. 15 The comparison between distribution of non-dimensional radial displacement maximum 

values for COV = 5% and time history based on deterministic inputs at various non-dimensional 

times in second example 
 

 
Fig. 16 Time histories of variance of non-dimensional temperature for middle point of thickness 

and various COV in second example 
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Fig. 17 Time histories of variance of non-dimensional radial displacement for middle point of 

thickness and various COV in second example 
 

 
Fig. 18 The distributions of non-dimensional radial displacement across thickness of cylinder for 

COV = 5% at various non-dimensional times in second example 
 

 
Fig. 19 he distributions of non-dimensional temperature across thickness of cylinder for COV = 

5% at various non-dimensional times in second example 
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non-dimensional temperature domain. The non-dimensional radial displacement distributions 

across thickness of cylinder for minimum and maximum values can be compared together in Fig. 

14 for various values of COV at 2.0t . Also, the elastic wave propagation based on maximum 

values and the obtained results from deterministic inputs can be found in Fig. 15 at various non-

dimensional times and COV=5%. 

Figs. 16 and 17 show the time histories of variance of non-dimensional temperature and radial 

displacement for middle point of thickness and various values of COV, respectively. The peak 

points in diagrams are increased by increasing the values of COV and the biggest one is for 

COV=10%. The distributions of variance across thickness of cylinder for non-dimensional radial 

displacement and temperature are illustrated in Figs. 18 and 19, respectively. In both figures, the 

distributions are plotted for COV=5%
 
at various non-dimensional times. Also, the propagations of 

variances can be tracked through radial direction of cylinder. 

 

 

5. Conclusions 
 

The application of a stochastic hybrid mesh-free method based on stochastic generalized finite 

difference (SGFD) method has been developed to solve the coupled thermoelasticity governing 

equations based on Green-Naghdi theory (without energy dissipation) in media with Gaussian 

uncertainty in mechanical properties. The second sound phenomenon is stochastically studied in 

details. The thick hollow cylinder is considered as the analyzed domain for the problem, which is 

under thermal shock loading. The axi-symmetry and plane strain conditions are assumed in this 

article.  The main outputs of this paper can be outlined as follows. 

- The governing coupled thermoelasticity equations of thick hollow cylinder are derived in 

SGFD forms. The propagations of thermal and non-dimensional radial displacement waves 

through radial direction of cylinder are simulated and discussed in details for two kinds of thermal 

shock loading. 

- The elastic wave propagation and second sound are stochastically studied in details. Also, the 

effects of COV on second sound are determined and discussed in both non-dimensional 

temperature and radial displacement domains. 

- The uncertainty in mechanical properties influences on the thermal and elastic wave 

propagation through radial direction and also on the time histories in temperature and 

displacement domains. The thermal and elastic wave fronts are different for maximum and 

minimum values, which are discussed in details in the paper. Also, the value of COV influences on 

the distributions and time histories of temperature and displacement.  

- The time history of non-dimensional temperature and radial displacement show periodic wave 

that furnishes a ground to use the SGFD method to estimate the wave propagation velocity with 

uncertainty in some parameters in teh problem and also for natural frequency analysis of cylinders. 

It is concluded from presented results in the paper that the thermal and elastic wave velocity are 

different for maximum and minimum values. 

In general, the paper develops the application of the presented stochastic hybrid mesh-free 

method based on SGFD method in thermoelastic wave propagation and stochastic coupled 

thermoelasticity analysis of thick cylinder as an efficient method. 
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Stochastic analysis of elastic wave and second sound propagation in media with Gaussian 

Appendix 
 

The first and second derivations of non-dimensional radial displacement and temperatures can 

be calculated using following method. 
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The first and second derivatives are calculated as 

     

       
2

2 20
1 0 2 0

1 1 2

N N
u u i

i i i i i

i i

u h
A u u h w h A u u w h

r  

   
        

    
   (A-2) 

     

       
2 2

2 20
1 0 2 02

1 1 2

N N
u u i

i i i i i

i i

u h
B u u h w h B u u w h

r  

   
        

    
   (A-3) 

and 

     

       
2

2 20
1 0 2 0

1 1 2

N N
T T i

i i i i i

i i

T h
A T T h w h A T T w h

r  

   
        

    
   (A-4) 

     

       
2 2

2 20
1 0 2 02

1 1 2

N N
T T i

i i i i i

i i

T h
B T T h w h B T T w h

r  

   
        

    
   (A-5) 

where 

     

 

     

4
2

1

1 2
4 3

2 2 2 2

1 1 1

4

4 2

N
i

i

iu

N N N
i i

i i i i

i i i

h
w h

A
h h

h w h w h w h



  

 
 
 

    
    

    



  

 (A-6) 

63



 

 

 

 

 

 

Seyed Mahmoud Hosseini and Farzad Shahabian 

     

 

     

3
2

1

2 2
4 3

2 2 2 2

1 1 1

2

4 2

N
i

i

iu

N N N
i i

i i i i

i i i

h
w h

A
h h

h w h w h w h



  

 
 
 

    
    

    



  

 (A-7) 

     

 

     

3
2

1

1 2
4 3

2 2 2 2

1 1 1

2

4 2

N
i

i

iu

N N N
i i

i i i i

i i i

h
w h

B
h h

h w h w h w h



  

 
 
 

    
    

    



  

 (A-8) 

     

 

     

2 2

1

2 2
4 3

2 2 2 2

1 1 14 2

N

i i

iu

N N N
i i

i i i i

i i i

h w h

B
h h

h w h w h w h



  

 
 
 

    
    

    



  

 (A-9) 

and also 

     

 

     

4
2

1

1 2
4 3

2 2 2 2

1 1 1

4

4 2

N
i

i

iT

N N N
i i

i i i i

i i i

h
w h

A
h h

h w h w h w h



  

 
 
 

    
    

    



  

 (A-10) 

     

 

     

3
2

1

2 2
4 3

2 2 2 2

1 1 1

2

4 2

N
i

i

iT

N N N
i i

i i i i

i i i

h
w h

A
h h

h w h w h w h



  

 
 
 

    
    

    



  

 (A-11) 

     

 

     

3
2

1

1 2
4 3

2 2 2 2

1 1 1

2

4 2

N
i

i

iT

N N N
i i

i i i i

i i i

h
w h

B
h h

h w h w h w h



  

 
 
 

    
    

    



  

 (A-12) 

     

 

     

2 2

1

2 2
4 3

2 2 2 2

1 1 14 2

N

i i

iT

N N N
i i

i i i i

i i i

h w h

B
h h

h w h w h w h



  

 
 
 

    
    

    



  

 (A-13) 

 

64




