
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 48, No. 6 (2013) 849-878 

DOI: http://dx.doi.org/10.12989/sem.2013.48.6.849                                           849 

Copyright ©  2013 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=sem&subpage=8        ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Comprehensive evaluation of structural geometrical nonlinear 
solution techniques Part I: Formulation and characteristics of 

the methods 
 

M. Rezaiee-Pajand

, M. Ghalishooyan and M. Salehi-Ahmadabad 

 
Department of Civil Engineering, School of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 

 
(Received August 26, 2012, Revised November 6, 2013, Accepted November 9, 2013) 

 
Abstract.  This paper consists of two parts, which broadly examines solution techniques abilities for the 
structures with geometrical nonlinear behavior. In part I of the article, formulations of several well-known 
approaches will be presented. These solution strategies include different groups, such as: residual load 
minimization, normal plane, updated normal plane, cylindrical arc length, work control, residual 
displacement minimization, generalized displacement control, modified normal flow, and three-parameter 
ellipsoidal, hyperbolic, and polynomial schemes. For better understanding and easier application of the 
solution techniques, a consistent mathematical notation is employed in all formulations for correction and 
predictor steps. Moreover, other features of these approaches and their algorithms will be investigated. 
Common methods of determining the amount and sign of load factor increment in the predictor step and 
choosing the correct root in predictor and corrector step will be reviewed. The way that these features are 
determined is very important for tracing of the structural equilibrium path. In the second part of article, 
robustness and efficiency of the solution schemes will be comprehensively evaluated by performing 
numerical analyses. 
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1. Introduction 

 

To achieve the nonlinear structural behavior, there is a need of their equilibrium path in the 

space of load-displacement. This path specifies the critical and buckling points. Moreover, it 

identifies the amount of large displacements or the responses of structure to loadings. Nonlinear 

analysis is important in modeling the response of structures. Geometrical or material nonlinearity 

arises from many factors in structures. For instance, Gorgun and Yilmaz (2012) have assessed the 

effect of behavior of beam-to-column connections in the nonlinear analysis and design of steel 

structures. Nonlinear analysis of the structures is not as easy as the linear one, and it needs capable 

process. To overcome the difficulties, analysts have proposed different tactics for solving the 

structures with nonlinear behavior. In other words, researchers have formulated more practical and 

efficient methods to trace the complex equilibrium paths of structures. It should be added that the 

traditional schemes are not able to trace the equilibrium path of structures with complex nonlinear 
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Fig. 1 General characteristics of the nonlinear equilibrium path 

 

 

behavior, and it may diverge in passing the limit points. So far, the researchers have not found the 

desirable approach to trace all kinds of equilibrium paths. In fact, the most capable nonlinear 

solution techniques may fail in some cases. Therefore, analyst's interference is needed for 

correction of the analysis. Nonlinear behavior of the structures has different characteristics. Load 

limit and snap-back points, in stable and unstable paths, buckling points and post-buckling 

behavior of the structure and bifurcation points in equilibrium paths are very important. For 

example, if the structure behavior has a bifurcation point, the bifurcation paths should be detected, 

and the equilibrium path should be traced in the post-buckling area. Fujii and Ramm (1997) have 

proposed some solutions for these considerations. Ion Leahu-Aluas and Farid Abed-Meraim 

(2011) have assessed the advantages and drawbacks of nonlinear solution techniques by a set of 

buckling benchmark problems. Stable path of the structure may happen in a situation that the force 

and displacement increase simultaneously. Unstable path could occur when the force decreases 

and displacement increases. The general characteristics of the nonlinear behavior of structures are 

shown in Fig. 1. 

The capabilities of nonlinear solution methods are different from each other. Choosing the 

solution processes is highly dependent on the analyst's experience. In other words, clear and 

comprehensive criteria are not available for selecting the nonlinear analysis strategy. Therefore, a 

broad comparison study between these methods and evaluating quantitative and qualitative of the 

merits and deficiencies of the solution process are very valuable. After considering the limitations 

and capabilities of the solution techniques, analysts can choose the most effective one.  

In the present paper, some of the most well-known incremental-iterative nonlinear solution 

approaches will be studied. In the first part, characteristics, formulations, and steps of the 

algorithms will be explained. Then, a comprehensive evaluation, including quantitative and 

qualitative comparison, along with efficiency calculation of the techniques will be performed in 

the second part of paper. It is worth mentioning that previous researchers (Clarke and Hancock 

1990, Carrera 1994, Ragon et al. 2002, Yang et al. 2003, Memon and Su 2004, Yang and Proverbs 
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2004, Torkamani and Sonmez 2008, Rezaiee-Pajand et al. 2009, Greco et al. 2012) have published 

valuable papers on evaluation of capabilities and deficiencies of different nonlinear schemes. They 

have also introduced the limitations and characteristics of these methods. Due to the importance of 

this issue, there is still a need of more comprehensive studies. 

Researchers have proposed different strategies for structural nonlinear analysis, and currently 

this area of science is progressing. In the recent years, different schemes have been presented by 

analysts. Krenk and Hededal (1995) used orthogonal methods with quasi-Newton techniques for 

nonlinear analysis of the structures. Rezaiee-Pajand and Boroshaki (1999) proposed the variable 

arc length solution for analysis of the structures with nonlinear behavior. Kim and Kim (2001) 

performed the structural nonlinear analysis by using the neural network algorithm in predictor step 

and Newton-Raphson technique in corrector step. Toklu (2004) analyzed the trusses with 

nonlinear behavior by minimizing the total energy of structure used in the optimization process. 

Ligaro and Valvo (2006) studied the elastic pyramidal trusses having nonlinear behavior. Saffari 

and Mansouri (2011) proposed the two-point method for solving the nonlinear equations 

controlling the structural performance. This technique, which has been compared with the method 

of Newton-Raphson, cannot pass the load limit points. It should be mentioned that most 

researchers have not used similar symbols for writing the formulations. This leads to some 

difficulties in learning, comparison, and application of the solutions in algorithm and also 

computer programming. In the present study, all the procedures will be formulated with similar 

symbols. For instance, internal force vector of the structure, reference load, displacement, load 

factor, and residual load vector will be shown by F, P, u, λ, and R, respectively. Other factors, 

which will be used in the paper, are given in the Appendix. As it is shown in Fig. 2, some of the 

mentioned symbols are utilized to demonstrate the general process of an incremental-iterative 

scheme for nonlinear analysis. 

 

 

2. Nonlinear analysis 
  

The ability of nonlinear solvers in tracing the equilibrium path of structures can be investigated 

in the returning state to the equilibrium path after the first iteration. In this regard, the load factor 

and displacement increment at the first iteration of each solution step should move toward the 

equilibrium path. The reason is that residual load disturbs the equilibrium condition due to the first 

predictor step. By performing iterative process and utilizing the required accuracy, which should 

be defined by the investigator, the structural residual loads gradually decrease to zero. In advanced 

incremental-iterative methods, the load factor is calculated at the beginning of each analysis step. 

This step is called predictor step. Afterward, the iterative tactic achieves the equilibrium path of 

structure from the point obtained in the predictor step. This step which is shown in Fig. 2, is called 

the corrector step. As indicated in this figure, the symbol of increment factors in the predictor and 

corrector step are shown by∆ and δ, respectively. Superscripts n, and i demonstrate the number of 

incremental step and the performed iteration in that step, respectively. To simplify the 

formulations, the signs of vectors (→) and also matrices ([ ]) are avoided. It is worth mentioning 

that the difference between advanced incremental-iterative strategies is in the determination of 

process forming the iterative locus. In other words, the distinction between mentioned techniques 

is due to the diversity of proposed condition equation. As it is illustrated in the Fig. 2, this 

constraint is written in force-displacement space, which forms the analyses surface of corrector 

step. 
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Fig. 2 General process of an incremental-iterative scheme of nonlinear analysis 

 
 

2.1 Basic methods 
 

Presenting comprehensive explanation and formulation of the traditional solution techniques 

are avoided because they are deficient and infrequently used. For example, algorithms like pure 

incremental (Waszczyszyn et al. 1995, Zienkiewicz et al. 2005), Newton-Raphson, modified 

Newton-Raphson, displacement Control (Argyris 1965), and its modified versions have a lesser 

solution ability than the advanced ones. Some of these shortages come from not passing the load 

limit points (for Newton-Raphson and modified Newton-Raphson methods), not passing the snap-

back points (for displacement control schemes), long analysis time and slow convergence speed, 

error in the results, diverging from equilibrium path (for pure incremental technique), and other 

deficiencies. Although the pure incremental algorithm has the advantage of simple solution and 

low amount of analysis cost, it is not appropriate for analyzing structures with complex nonlinear 

behavior. Furthermore, this approach requires the tangent stiffness matrix at the beginning of each 

step. In the material nonlinearities, the response is dependent on the loading path, and incremental 

techniques can be used. It should be added that the incremental-iterative solutions have been 

proposed for analysis of the structures with nonlinear geometrical behavior, which are independent 

of the loading path (Felippa 1999). In spite of weakness of the well-known Newton-Raphson 

procedure and its modified version, they form the basis of many new and capable nonlinear 

solution methods. Based on this fact, a brief description of these two schemes will be discussed, 

before starting the advanced solution techniques. 
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2.1.1 Newton-Raphson method 
This approach is one of the oldest and most applicable incremental-iterative procedures. It is 

also called load control technique, because loading level is constant during the iterative process. 

Based on this, the following condition equation can be written for Newton-Raphson scheme 

(1) 
     

Cn  1  

(2) 
     

0n
i  

Where, C is a constant. Parameters n
1  and n

i  are the load factor increments in the first and 

in ith iteration of the nth step, respectively. Displacement increment for the first and other iterations 

are specified by the next equations 

(3)      
nnn uKP 1

1

1    

(4) 

     
n

i

n

i

n

i uKR   

Here, P is the reference load vector, K is the tangent stiffness matrix of structure, and
 

n
iR  is the 

residual load vector in ith iteration. Referring to Fig. 2, the following load vector shows the 

difference between the external load of structure and the calculated internal force 

(5) 

     

n
i

n
i

n
i FPR    

In this relation, n
iF  is the internal force. This force for the nodal point is determined based on 

the structural internal stress by the following equation (Zienkiewicz 1977) 

(6) 

    
 dVBF n

i

Tn
i

n
i    

Where, n
iB  is the strain matrix, and n

i  is the internal stress vector of the nodal point. Total 

displacements can be obtained in the below form 

(7) 

    



 
n

i

n

i

nnn

i uuuu
1

1

1   

As it can be seen in Fig. 3, when the load level of first iteration goes higher than the load limit 

point in equilibrium path, divergence occurs. In this case, the deficiency of this method in passing 

the load limit points becomes clear (Bergan and Soreide 1978, Batoz and Dhatt 1979, Ramm 1981, 

Powell and Simons 1981). Other advanced techniques, which will be addressed in the following 

sections, are based on the Newton-Raphson method. In other words, those approaches employ 

Newton-Raphson in each iterative step. 

 

2.1.2 Modified Newton-Raphson method 
For analyzing the structures with a large number of degrees of freedom, using Modified 

Newton-Raphson method increases the time and cost of the analysis. This is due to the large 

number of updating the structural tangent stiffness matrix. Updating the stiffness matrix in each 

iteration is a very time-consuming process. In order to decrease the number of updating, the 
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Fig. 3 Newton-Raphson method for a structure with one degree of freedom 
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Fig. 4 Modified Newton-Raphson method for the structure with one degree of freedom 
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Fig. 5 Increasing the number of iterations in sudden softening behavior 

 

 

modified Newton-Raphson scheme was proposed. Algorithm’s steps of this technique are similar 

to regular Newton-Raphson. The only difference is that stiffness matrix is usually calculated once 

in each step. Fig. 4 illustrates this solution process. In modified Newton-Raphson, the number of 

updating tangent stiffness matrix depends on the nonlinear intensity of structure. In other words, 

by increasing the structural nonlinear intensity, the number of updating the stiffness matrix will be 

grown up. In case there is no information about structural behavior, stiffness matrix will be 

calculated only at the beginning of each step. 

It is worth mentioning that the number of iterations for achieving convergence in Modified 

Newton-Raphson approach is more than the regular one, particularly, in a situation that structure 

has a sudden softening behavior in an increment. This characteristic is shown in Fig. 5. For 

improving this technique in problems with a slow convergence, acceleration procedures are used. 

One of the most common strategies is the Aitken (1937) solution. Furthermore, some researchers 

have proposed modified Aitken's scheme (Irons and Tuck 1969, Boyle and Jennings 1973). 

 

2.2 Advanced solution techniques 
 
As it was mentioned, traditional incremental-iterative tactics, like Newton-Raphson and 

modified Newton-Raphson are used in solving of the structures that do not have a buckling 

behavior. They are also utilized in structural analyses that their equilibrium path is traced before 

the load limit point. For instance, displacement control method cannot pass the snap-back point 

and fails (Ramm 1981, Crisfield 1981, Waszczyszyn 1983). To overcome these shortcomings, 

efficient incremental-iterative schemes are used. These techniques will be described later in the 

succeeding sections. Usually, Newton-Raphson is employed for the iterative steps of advanced 

tactics. In this study, methods of residual load minimization, normal plane, updated normal plane, 

cylindrical arc length, work control, residual displacement minimization, generalized displacement 

control, modified normal flow, three-parameter ellipsoidal, hyperbolic, and polynomial schemes 

are named advanced methods. 
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2.2.1 Residual load minimization method 
Bergan (1980) calculated the load increment of each iteration by minimizing of the difference 

between external load of the structure and its internal force. Based on this, he minimized the 

square of reduced residual load by the following equation 

(8) 
     

0
~~










 n
i

Tn
i RR


 

Here, the parameter n
iR

~
 is reduced residual load and is calculated by coming formula 

(9) 
     

PRR n

i

n

i

n

i 
~

 

Fig. 1 shows this vector. By differentiating of the last equation of n
i , the next load increment 

is obtained 

(10) 

     PP

RP
T

n

i

T
n

i   

In this technique, there is no need of finding displacement increments based on the reference or 

residual load vectors. In each iteration, the residual displacement is found only by solving the 

subsequent system of equation 

(11) 
     

n

i

n

i

n

i RuK
~

  

 
2.2.2 Normal plane method 
Nowadays, arc length approaches are well-known and are utilized extensively for tracing the 

nonlinear behavior of structures. The basic form of this scheme was first proposed by Wempner 

(1971), Riks (1972, 1979). These strategies were employed widely by other writers, and they were 

broadly expanded (Ramm 1981, Crisfield 1981, Rezaiee-Pajand and Akhaveysi 2000, Rezaiee-

Pajand and Tatar 2005, Sousa and Pimenta 2010). In these formulations, condition equation is 

written based on the displacement and the force of structure. Actually, this constraint determines 

the distance from the last obtained equilibrium point to the iterative surface. This distance is  

shown by  
nt1  and is called the arc length (Fig. 6). It is assumed that the distance in the first 

iteration is equal to a constant value, Ln. The difference of various arc length procedures is in 

determining the distance of obtained points from iterative analyses to prior equilibrium point. In 

normal plane strategy, locus of the obtained points from iterative analyses is perpendicular to the 

tangent at first equilibrium point of the current step (Riks 1975, Ramm 1981). Fig. 6 shows the 

scheme of normal plane for a structure with one degree of freedom. The subsequent condition 

equation is held for the normal plane tactic 

(12) 
     

01  n

i

n nt  

In this formulation,
 

n
in  is the passing vector from the iterative points of i and i+1. Based on the 

Fig. 6, vectors 
nt1  and 

n
in  can be formulated as follows 

(13) 
     21111 Peeut nnn   
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Fig. 6 Normal plane method for the structure with one degree of freedom 

 

 

(14) 
          21 Peeun n

i

n

i

n

i    

The unit vectors of the coordinate system are 1e  and 2e  . According to  2
2

1 n
n Lt   and Eq. 

(13), the load factor in predictor step can be calculated by coming relation 

(15) 
     

   2
2

111 n

TnnTn LPPuu    

Referring to the suggestion of Batoz and Dhatt (1979), for maintaining the symmetry of 

structural stiffness matrix, displacement increment can be obtained by the next linear combination 

(16) 
     

n

i

n

i

n

i

n

i uuu    

As it is shown in Fig. 7, the displacement increment is assumed as incremental linear 

combination of the displacements due to residual and reference load. In the present equation, n
iu  

is the displacement increment due to reference load. Displacement increment
 

n
iu   is resulted from 

the residual load of ith iteration. Therefore, the following equations are obtained 

(17) 
     

  PKu n

i

n

i

1
  

(18) 
     

  n

i

n

i

n

i RKu
1

  
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Fig. 7 Batoz and Dhatt's linear combination 

 
 

Eq. (16) is written for the first iteration of each step as follows 

(19) 
          

nnn uu 111
   

Where, parameter 
nu1
  is the displacement increment due to reference load, and it is in the first 

iteration of the nth step. This factor can be obtained by coming formulation 

(20) 
            

  PKu nn 1

11


  

Displacement increment of the first iteration is zero due to residual load  01  nu . By 

replacing the Eq. (19) in Eq. (15), and solving the result, the next load increment of the first 

iteration (predictor step) has the following shape 

(21) 

          
PPuu

L

TnTn

nn





11

1  

For the iterative steps, the following formula can be found by replacing the Eqs. (13) and (14) 

in condition Eq. (12) and using the Eq. (16) 

(22) 

      
PPuu

uu

Tnn

i

Tn

n

i

Tn
n

i

11

1









  
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2.2.3 Updated Normal Plane method 

In contrary to the previous technique, in the updated normal plane, the vector passing the 

equilibrium points and iteration surface points  n
it  is always perpendicular to the vector passing 

from its own iteration surface points  n
in  (Ramm 1981, Hinton et al. 1982, Forde and Stiemer 

1987). This strategy is illustrated in Fig. 8. The following constraint equation can be written for 

the updated normal plane 

(23) 
       

0 n

i

n

i nt


 

In this formula, vector 
n
it  connects equilibrium point n−1 to point i from the iteration surface. 

Parameters of this vector are similar to Eq. (13) and are connected by the below expression 

(24) 
         21 Peeut n

i

n

i

n

i   

In updated normal plane, load increment of the first iteration is similar to previous case, and it 

is calculated by the Eq. (21). To find the load factor increment in the corrector steps, Eqs. (24) and 

(14) are put in Eq. (23), and the obtained formula is solved for
n

i . The result is given in the 

following form 

(25) 

          PPuu

uu

Tn

i

n

i

Tn

i

n

i

Tn

in

i









  

Rezaiee-Pajand and Tatar (2006) have proposed several orthogonal methods for geometrical 

nonlinear analysis of the structures. 
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Fig. 8 Updated normal plane method for the structure with one degree of freedom 
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Fig. 9 Cylindrical arc length method for the structure with one degree of freedom 

 
 

2.2.4 Cylindrical arc length method 

One of the most applicable processes for nonlinear analysis of the structures is Crisfield 

cylindrical arc length (Crisfield 1981). In this algorithm, the distance of points obtained from the 

iterative analyses up to the previous equilibrium point is equal to a constant amount of Ln in all the 

step iterations. Fig. 9 shows the graphical representation of cylindrical arc length. Parameter 
n
it  is 

the connector vector of previous equilibrium point (n−1) to ith iterative point on the iterative 

surfaces. In addition, Crisfield ignored the force parameter forming the vector 
n
it  and proposed his 

solution in a simpler way and called it modified Riks technique in 1981. 

In cylindrical arc length method, vector n
it 1  is obtained by the following equation 

(26) 
       111 eut n

i

n

i    

In this technique, arc length is characterized with the subsequent formulation and remains 

constant up to the end of the iterations of each step 

(27) 
       

nTn

n uuL 11

2)(   

It is clear that the difference between this formula and Eq. (15) is in deleting the force 

parameter. Furthermore, by using the expression 2
11 )( n

n
i

n
i Ltt   , next constraint of the corrector 

iteration can be found in the below form 

(28) 
       

2

11 )( n

n

i

Tn

i Luu    
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Based on the Fig. 9, this formulation can be rewritten as the following 

(29) 
       

    2)( n

n

i

n

i

Tn

i

n

i Luuuu    

By putting Eq. (19) in Eq. (27), load increment of the first iteration is calculated by coming 

equation 

(30) 

      
nTn

nn

uu

L

11

1



  

In the corrector iterations, by inserting Eq. (16) into Eq. (29) and simplifying, the next second 

order equation for calculating the load increment is determined 

(31) 
     

    0  
2

 cba n

i

n

i   

The constant coefficients of this equation are written in the following shapes: 

(32) 
     

n

i

Tn

i uua    

(33) 
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i uuub  2  

(34) 
     

     2n
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i

Tn

i

n

i Luuuuc    

After determining the related constant coefficients and solving Eq. (31), two later answers are 

available for load increment 

(35) 

       
 

a

acbb

2

42

2,1


  

At this stage, the next three cases may occur for the roots of Eq. (31) 

(36) 
     

04      )1 2  acb  

(37) 
     

04     )2 2  acb  

(38) 
     

04     )3 2  acb  

In the first circumstance, the answers obtained from Eq. (35) are real roots. Selection procedure 

of the acceptable roots will be given later. In the second situation, there is only one acceptable 

root. The answers of Eq. (35) in third state are complex and are not suitable. To overcome this 

shortcoming, a common way is to split arc length into half. Then by solving these formulations 

again, new answers will be obtained. These roots should only satisfy either the Eqs. (36) or (37). 

Researchers have also proposed other processes to deal with this problem. For example, Zhou and 

Murray (1995) have suggested parallel correction method to avoid obtaining the complex root. It is 

worth adding that Ritto-Corrêa and Camotim (2008) have conducted a research on arc length 

methods and other second order techniques. Hrinda (2007) has used arc length solution for  
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Fig. 10 Work control method for the structure with one degree of freedom 

 

 

nonlinear analysis of the space truss structures. Torkamani and Shieh (2011) have also employed 

arc length approach to perform a nonlinear analysis of the plane truss structures with higher-order 

stiffness matrices. 

 
2.2.5 Work control method 
In 1981 and 1985, this technique was suggested by assuming work increment as a constant 

value in all analysis steps (Powell and Simons 1981, Yang and McGuire 1985). Fig. 10 shows the 

work control scheme for a problem with one degree of freedom. In this method, the work 

increment is assumed to be constant at the beginning of each step, and it is zero for other 

iterations. 

Therefore, the work control strategy has the following condition equations 

(39) 
       

CuPw nTnn  111   

(40) 
       

0 n

i

Tn

i

n

i uPdw   

Work increment in ith iteration is 
n
idw . Parameter C is assumed to be constant and will be 

explained later. By solving Eq. (39) for 
n
1  and inserting Eq. (19) in it, the load increment is 

determined for the first iteration 

(41) 

      
nT

n

uP

C

1

1


  
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By putting Eq. (16) in Eq. (40), the load increment in corrector iterations is obtained as 

(42) 

        
n

i

T

n

i

T
n

i
uP

uP




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


  

 
2.2.6 Residual displacement minimization method 
After the failure of the Newton-Raphson in passing the load limit points of the equilibrium 

path, many schemes were proposed to tackle this shortcoming. Solution strategies like arc length 

of Crisfield (1981), Riks (1972, 1979), Ramm (1981), displacement control (Zienkiewicz 1971, 

Pian and Tong 1971, Batoz and Dhatt 1979) and constant work of Powell and Simons (1981) and 

Yang and McGuire (1985) were not applicable in different conditions. These techniques do not 

trace the shortest path for obtaining the equilibrium point. In 1988, the residual displacement 

minimization approach was suggested by Chan (1988). This method traces the shortest path for 

achieving the convergence criteria by using Newton-Raphson process. In this way, displacement 

state is used in an incremental step for continuing or ending the iterations. By applying the 

condition equation and minimizing the second square of residual displacement, which is the 

analysis error, the following expression is written 

(43)

  
       

0)( 


 n

i

Tn

in

i

uu 
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By inserting Eq. (16) into Eq. (43), corrector load increment is easily calculated for each 

iteration 

(44) 

       
n
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Tn
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n

i
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i

uu

uu









  

The first corrector load increment can be determined by the user. Researchers have suggested 

that the amount of load increments should not be large in the first iteration. It is worth mentioning 

that in highly nonlinear structural behaviors, there is more need of this selection, because it plays a 

very important role in divergence or convergence of the analysis. Rezaiee-Pajand and Tatar (2009) 

have proposed several nonlinear methods with minimization of residual parameters for analyzing 

nonlinear structures. 

 
2.2.7 Generalized displacement control method 
This solution scheme is capable of passing load and displacement limit points, and it is known 

to be an efficient way of tracing the structural equilibrium path. According to the research of 

Young and Ku (1994), modified displacement control method, which has been proposed by Young 

and Shieh (1990), is more competent than arc length techniques due to the reasons of automatic 

compatibility with changing the direction of the loading in limit points, numerical stability in limit 

points and automatic adjustment of step size.  

Generalized displacement control approach has been used successfully by Richard Liew et al. 

(1997) in advanced analysis and design of spatial structures. Moreover, Yang et al. (2008) have 

employed this process in inelastic post-buckling response of steel trusses under thermal loadings. 

Additionally, Cardoso and Fonseca (2007) and Thai and Kim (2009) have discussed this 

technique. Constraint equation of the present scheme is written as the following 
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(45) 
       

n

i

n

i

Tnn Huu    )( 1

11  

 In this equation, n
iH  is the indicator of the generalized displacement. By putting Eq. (16) in 

Eq. (45), the load factor increment in corrector iterations is determined as 

(46) 
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)(
1

11

1

11  

By using the Eq. (19) and putting it in Eq. (45), load factor increment at the first iteration is 

formulated in the below form 

(47) 

       

nTn

n
n
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H

1

1

1

1
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
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
  

The following result will be available by inserting n=1 in the preceding equation 

(48) 
       

1

1

1

1

21

1

1

1 )()( uuH T    

For the first iteration, 1
1u  is used instead of n

iu . Based on two previous formulations, the next 

load factor increment for the first iteration of each step has the coming shape 

(49) 
      

GSPn  1

11    

Generalized stiffness parameter (GSP) is obtained by the following equation 

(50) 
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T
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2.2.8 Modified normal flow method 
This technique has been proposed by Saffari et al. (2008). It is said that the normal flow 

scheme (Watson et al. 1987, 1997) has not attracted the attention of researchers, in spite of the fact 

it has many capabilities. This algorithm is similar to the method of arc length. Fig. 11 

demonstrates the modified normal flow scheme. The basis of this method is performing iterative 

analyses on the normal lines of Davidenko flow curves to achieve the equilibrium point (Allgower 

and Georg 1980). It is important to know that equations of Davidenko flow lines are determined 

by using the perturbation parameter η. 

(51)        
 ),( uf  

By changing the parameter η, a set of curves is obtained. These curves are called Davidenko 

flow lines (Allgower and Georg 1980). Notably, equilibrium equations of structures have infinite 

answers and modified normal flow method gives the unique and minimized answer of the 

equations (Watson et al. 1981). The reason is that iterative steps move in the shortest path to reach 

the equilibrium path (normal path). Fig. 11 shows these paths. It is important to know that in 

modified normal flow technique, the condition equation of residual displacement minimization 

algorithm is used. Therefore, the load factor increment is calculated by the next formula 
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Fig. 11 Modified Normal Flow Method for the structure with one degree of freedom 

 

 

(52) 
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By selecting the following formulation and replacing the obtained load factor increment from 

Eq. (52) into it, the private answer V is specified  

(53) 
         

n

i

n

i

n

i RPVK    

Finally, displacement increment is formulated by the following equation 

(54) 

         

n
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i

n

i

T
n
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u

uV
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


 




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Where, 
n

iu   shows the norm of displacement increment due to the residual load. Saffari et al. 

(2008) have compared this technique with method of Chan (1988) and the Crisfield (1983) arc 

length with linear search. In all the arc length solutions, not only the load factor increment, but 

also its sign should be characterized. The way of determining the sign of this parameter will be 

explained later. 

 

2.2.9 Three-parameter methods 
Some of the arc length techniques are formulated in two spaces of force and displacement. This 

leads to different numerical problems during the analysis. One of the methods used to overcome 
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this shortcoming is called three-parameter arc length control scheme. This approach has been 

proposed by Krishnamoorthy et al. (1996). In this process, the constraint equations are 

dimensionless. In addition to specifying the primary load factor increment, three other parameters 

should also be determined (a0, a1, a2). Here, three methods of Ellipsoidal, Hyperbolic, and 

Polynomial are studied. 

 
2.2.9.1 Ellipsoidal method 
Like the equation of an ellipse in two-dimensional space, the constraint of the ellipsoidal 

technique can be written in multi-dimensional space 

(55) 
  2

02

2

2

1

2

1

11 a
a

PP

a

uu Tn

i

n

i
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
  

       

 

In this formula, a1 and a2 have the unit of displacement and force, respectively. Amount of a2 is 

calculated by the following equation 

(56) 
       

PPa T2  

By putting Eq. (56) in Eq. (55), parameter a2 is defined for the first step by the following 

expression 

(57) 
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uu
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It is clear that in this formula, denominator should be always larger than zero. Therefore, the 

absolute value of a0 ought to be greater than 
1
1 . Factor a0 is determined by the analyst. The 

obtained amount for a1 depends on the optional amount of 
1
1 . After determining parameters a0, 

a1 and a2, the load factor increment at first iteration of each step is estimated by the following 

equation 

(58) 
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Like cylindrical arc length method, by putting n
iu 1  and n

i 1  into Eq. (55) and using Eq. (16), 

load factor increment is written in corrector steps as 

(59)     0
2

 cba n

i

n

i 
        

 

Constant parameters of a, b and c have the subsequent forms 
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(62)       2
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Rezaiee-Pajand and Akhaveysi (2000) have proposed the new ellipsoidal arc length method for 

analysis of the structures. 

 
2.2.9.2 Hyperbolic method 
Constraint equation of hyperbolic technique is written by the following equality 

(63) 2
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Here, a0, a1 and a2 are obtained similar to the previous section. After determining the sign of the 

a0 by analyst, parameter a1 for the first step is specified by coming relation 

(64) 
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Parameter a2 is also found by Eq. (56). Appropriate selection of the 1
1  and P plays an 

important role in determining the sign of a1. Load factor increment for first iteration of the analysis 

steps is computed by 

(65) 
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Similar to preceding technique, the amount of load factor increments in corrector steps is 

expressed by the following equation 
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By the next formulas, a, b and c are specified 
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2.2.9.3 Polynomial method 
The condition equation for the polynomial solution approach is formulated from the 

combination of previous techniques. This equation is a second-order polynomial which is written 

in below shape 
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Parameters a0, a1 and a2 are calculated in a similar way of the previous sections. It is worth 

mentioning that Eq. (70) has the following characteristics: 

1- If the second and third terms are removed from the left side of this relation, the remaining 

parts will be Crisfield cylindrical arc length method.  

2- If the second term is removed from the left side of equation, the ellipsoidal formulation is 

obtained.  

3- By removing the first and third terms from the left side of this equation, the hyperbolic 

scheme is found.  

By solving the Eq. (70) for a1 at first iteration, the following second-order expression is 

obtained 
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Parameter a1 is determined by solving the preceding formula. The Delta equation after 

simplifying can be written as 
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In the case of Delta>0, by assuming 10 1
1   , inequality 75.00 a  is obtained. By 

specifying three parameters of a0, a1 and a2, the amount of load factor increment for first iteration 

of analysis steps is calculated by the next equation 
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Like two former techniques, the load factor increment for the corrector steps is obtained by the 

following formulation 
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The parameters a, b and c are given by 
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3. Methods characteristics 
 

In the process of nonlinear structural analysis, determining the parameters such as the amount 

and sign of the load factor increment for the predictor step, choosing the correct root for the 
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predictor and corrector steps (for second order methods) and convergence criterion are necessary. 

Researchers have used different ways of determining these characteristics. These methods are 

described in current section. It should be emphasized that the formula for determining these 

characteristics has an important role in the ability of nonlinear analysis strategies to trace the 

equilibrium path of structures. 

 
3.1 Determining the load factor increment at predictor step 
 

As it was mentioned, determining the load factor increment for the first iteration of each step 

plays a significant role in iteration processes of that step. This factor mainly depends on the 

intensity of nonlinear behavior of structure. Large selection of the first load factor increment may 

lead to the slowdown of convergence process or even may guide to divergence. Furthermore, small 

selection of this increment increases the analysis time. The reason is due to the large number of 

equilibrium points on the path of structure behavior. However, it may increase the analysis 

accuracy. Therefore, to improve the speed of analysis convergence, appropriate amounts of 
n
1  

and/or 
nu1  should be determined at the beginning of iterations.  

Usually, the amount of first load factor increment at the beginning of analysis  1
1  is assumed 

to be between 20 to 40 % of the predicted maximum load (Clarke and Hancock 1990). The current 

amount can also be utilized for other increments at the predictor step  n
1 . However, later, 

researchers have proposed the automatic methods for calculating this increment for a more 

efficient analysis process.  

Researchers have used different ways for determining the load factor increment at the predictor 

step. Choosing the load factor depends on the stiffness factor and the number of iterations of 

analysis. In the arc length algorithms, the load factor increment at the first iteration depends on the 

assumed arc length Ln. Increment of this factor in displacement control technique and constant 

work control is obtained based on the displacement increment and the assumed work increment, 

respectively. Therefore, the dependent increment should be specified and then predictor load factor 

should be calculated at the beginning of each step in these techniques. The required formulations 

for calculation of load factor increment at the predictor step have been given in the previous parts. 

Crisfield (1981) and Ramm (1981) used Jd/Jn−1 for estimation of the load factor increment. 

Parameter Jd is the number of modified iterations determined by the analyst for achieving 

convergence at n−1th step. This number is usually selected between 4 or 5. Parameter Jn−1 is the 

actual number of available iterations at the step n−1 to achieve convergence. Based on this, the 

following formulation has been proposed for determination of the predictor load factor increment 

(78) 
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It should be noted that γ is chosen to be 0.5 by Crisfield (1982) and Ramm (1981), and 0.25 by 

Bellini and Chulya (1987). In displacement control method, the jth component of displacement 

increment at the beginning of each step is calculated by coming relationship 

(79) 
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To determine the arc length size at the beginning of each step, the following equation is used 

(80) 
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In constant work control, the latter work increment at the beginning of all steps is determined 

by the next equality 

(81) 
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Other strategies of determining the load factor increment for the first iteration are based on the 

stiffness and nonlinear intensity of structures. For instance, Bergan et al. (1978) suggested current 

stiffness parameter as a criterion for nonlinear intensity of structure behavior. Therefore, load 

increment for the first iteration is found by the following equation 

(82) 
       

 )(1

11 P

n S  

In this equation, parameter γ is specified by the researcher. This parameter depends on the 

nonlinear intensity of structure behavior. For example, in the structures with quick geometrical 

change, like inelastic buckling of the columns, the amount of γ is assumed larger. The subsequent 

stiffness feature (SP) is utilized 

(83) 
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To find the load factor increment, Chan's generalized stiffness parameter, which is obtained by 

Eq. (50), can also be used. Thus, this parameter for the predictor step is calculated by the 

following equation 

(84) 
          

  GSPn 1

11   

It is clear that in structure with behavior close to the linear one, the predictor load factor 

increment can be chosen larger. In fact, this factor reaches its maximum for the linear behavior 

situation. 

 
3.2 Determining the displacement increment at the predictor step 
 
As it was discussed so far, the first iteration increments are called the predictor increment, and 

their related expressions are called predictor equations. When using displacement control method, 

it is necessary to determine a displacement increment on the predictor step. Most of the predictor 

equations are linear. The simplest one is Euler equation, which is given below: 

(85) 
         

  PKu nnn 11

11

   

In this equation, Kn−1is the tangent stiffness matrix, which is obtained at the end of n−1th step. 

 
3.3 Determining the sign of load factor increment at the predictor step 
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In the process of incremental-iterative methods, after calculating the load factor increment, its 

sign should also be specified. In other words, it ought to be illustrated that this increment is 

increasing or decreasing. It is clear that the sign of load factor increment changes at the load limit 

points. Due to its importance, different solutions have been proposed for determining the sign of 

load factor increment. Actually, these schemes present the maximum and minimum points of the 

structure equilibrium paths for a specified degree of freedom. 

Some analysts (Bergan et al. 1978, Bathe and Dvorkin 1983) have chosen the change of sign of 

external work increment as the criterion of determining the limit point. According to this scheme, 

sign of load factor increment does not change until the external work increment sign has not 

changed. In other words, change of the sign of external work increment alters the direction of the 

load factor increment. External work increment at the first iteration is calculated by the following 

formulation 

(86) 
        

nTnn uPW 111
   

The other approaches use the determinant of structural tangent stiffness matrix (Bergan and 

Soreide 1978, Ramm 1981, Crisfield 1981). In these techniques, the load factor increment sign 

changes when the sign of tangent stiffness matrix determinant changes. The reason is that, in the 

load limit point, the stiffness matrix determinant becomes zero and then its sign changes. 

Bergan et al. (1978) have also proposed the sign of the current stiffness parameters as the 

criterion of changing the sign of load factor increment. This method has also been used by some 

other researchers (Yang and Shieh 1990, Kuo and Yang 1995). The current stiffness parameter of 

the structure is obtained by Eq. (83).  

It should be noted that the last-mentioned techniques do not give an acceptable answer for 

determining the load factor increment sign in all situations. According to the research of Meek and 

Hoon Swee Tan (1984), in structures that their behavior has a large number of singular negative 

values, using the stiffness matrix determinant sign does not lead to an appropriate result. 

Inefficiency of the stated strategies has been examined by the researchers, and their shortcomings 

have been illustrated (Bellini and Chulya 1987, Clarke and Hancock 1990).  

In the second part of this paper, another strong technique will be utilized for determining the 

load factor increment sign. This scheme has higher efficiency than other proposed solutions. By 

defining two new vectors of ∆Qn and tT, in the following formulations and their internal 

multiplying, it is easy to determine the sign of load factor increment 

(87) 
       21 PeeuQ nnn   

(88) 
       21 Peeut TT   

Actually, ∆Qn connects the obtained equilibrium point at n−1th step to point n. Vector tT is also 

a tangent to the equilibrium path at point n. What is important in creating this vector is that its load 

factor increment is +1(∆λ=1). These vectors are shown in Fig. 12. After internal multiplying of 

two vectors, there is following discussion about the sign: if the sign is positive (tT•∆Qn≥0), the load 

factor increment is increasing and has a positive sign (∆λ>0). Otherwise, the load factor increment 

sign is negative (∆λ<1). 

 

3.4 Selection of the correct root in predictor step 
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Fig. 12 Determining the sign of load factor increment 

 

 
After determining the sign of load factor increment in predictor step, selection of the 

appropriate root of the load factor becomes easy. Based on Fig. 12, these roots are located on the 

constraint surface of analysis method. By calculating the roots of arc length equation, the load 

factor increment would be increasing or decreasing. In other words, the load factor increment sign 

determines the path for choosing the correct root of arc length. For example, Fig. 12 shows the 

negative load factor increment, because tT•∆Qn<0. Therefore, the structural equilibrium path goes 

to the down side, and finally, point A (instead of A’ point) is selected as the correct root. Other 

processes have also been proposed for this issue (Feng et al. 1995, 1996, Souza Neto and Feng 

1999). 

 
3.5 Selection of the correct root at the corrector step 
 
In the iterative analyses of the corrector step, the root which is closer to the obtained point in 

the last iteration is selected as the correct answer. For example, as point O is closer to the last 

iteration point (A) of Fig. 13, the acceptable root is identified, and point O’ is not the correct 

answer. For selecting the correct root, the following criterion can be used. By internal multiplying 

of the two vectors of tT and ∆Qn, the accurate root is obtained 

(89) 
        

      211     nTif Qt  

(90) 
        

      122     nTif Qt  

The values of  1 and  2  are the obtained roots in the corrector step. Other criteria have 

also been used for achieving the correct root. For example, the Carrera (1994) criterion can be 

mentioned. According to this method, the acceptable root is the one that is closer to the linear 

answer calculated by the method of Schweizerhof and Wriggers (1986). Hellweg and Crisfield 

(1998) have also proposed their own way for selection of the correct root in sharp snap-back 

points. 

872



 

 

 

 

 

 

Comprehensive evaluation of structural geometrical nonlinear solution techniques Part I 

 

L
n

n-1

n

O

O'

A

 

Fig. 13 Selection of the correct root 

 

 

3.6 Convergence criterion 

  

For limiting the iteration cycles and ending incremental-iterative calculations in each step, 

convergence criterion is used. Researchers have employed different criteria for achieving 

convergence. These methods are based on the displacement increment and work increment formed 

by residual forces (Bergan and Clough 1972, Chen and Blandford 1993). In the second part of this 

paper, the next convergence criterion will be utilized based on the residual load 

(91) 
        

n

i

Tn

i RR  

Amount of ε is specified by the analyst, and depends on the structure. It is usually determined 

in the range of 10−5 to 10−2. This amount will be considered to be 10−4in the second part of paper. 

Based on this, iterative analysis of each step continues until Eq. (91) is fulfilled or the number of 

iterations exceeds the maximum number of iteration. The maximum number of iterations is 

assigned by the analyst. 

  
 
4. Conclusions 
 

In this paper, formulations and characteristics of the most well-known and applicable structural 

nonlinear solution techniques were investigated. In fact, general limitations, features, and 

capabilities of the 13 solution schemes were discussed. After studying the traditional methods of 

Newton-Raphson and modified Newton-Raphson, advanced analysis approaches were described. 

These algorithms are named residual load minimization, normal plane, updated normal plane, 

cylindrical arc length, work control, residual displacement minimization, generalized displacement 

control, modified normal flow, and three-parameter ellipsoidal, hyperbolic, and polynomial 

methods. Then, different ways of determining required parameters were presented. These 

characteristics include determining the amount and sign of load factor increment in the predictor 

step, selection of the correct root in the corrector and predictor steps (for second order methods), 

and convergence criterion. It should be noted that authors have written the formulations of all 
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declared procedures with the similar symbols. As a result, some kinds of solution techniques with 

the wide range of abilities were investigated in this article. 

Additionally, a comprehensive and accurate comparison of the mentioned methods for the 

analysis of 17 numerical problems will be given in the second part of paper. Two and three-

dimensional truss structures, two and three-dimensional frames, and shells with simple and 

complex geometrical nonlinear behavior will be analyzed there. Based on the obtained results, 

capability of the solution techniques will be illustrated. In this regard, analysis running time, 

number of iterations, convergence speed, and capability to trace the equilibrium path, and other 

limitations and characteristics of these solution processes will be discussed. 
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Notations 
 

  Increment of the factors at first iteration 

  Increment of the factors at iterations except the first one 
  Vector sign 

   Matrix sign 

F  Internal force vector 

  Load factor 

P  Reference load 
u  Displacement 

nK  Tangent stiffness matrix in step n  
n
1  Load factor increment in first iteration of step n 

n

i  Load factor increment in iteration i of step n 

n
iR  Residual load vector in iteration i of step n 

n
iB  Strain matrix in iteration i of step n 

n
i  Internal strain vector in iteration i of step n 

n
iu  Displacement increment caused by reference load in iteration i of step n 

n
iu   Displacement increment caused by residual load in iteration i of step n 

nu1
  Displacement increment caused by reference load in first iteration of step n 
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nu1
  Displacement increment caused by residual load in first iteration of step n 

n
iR

~
 Reduced residual load vector 

n
it  Connector vector of i and n 

n
in  Connector vector of i and i+1 

1e
 

Unit vector in u direction 

2e
 

Unit vector in P direction 

nL
 

Arch length 

c b a ,,
 Constant factors in the second-order equation of load factor increment  

nw1
 

Work increment in first iteration of step n 

n
idw

 
Work increment in iteration i of step n 

n
iH

 
Generalized displacement in iteration i of step n 

GSP
 

Generalized stiffness parameter of Chan 
  Davidenko perturbation parameter 

V  Particular solution of modified normal flow algorithm 

 Norm sign 

321 ,, aaa  Factors of three-parameter methods 

dJ  Optimum number of iterations 

1nJ  Number of iterations in step 1n  
  Exponent of equation for determining the first load factor increment 

PS  Current stiffness parameter of Bergan 
nQ  Connector vector of n and n-1 

Tt  Tangent vector of equilibrium path with 1  

  Tolerance of convergence 
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