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Abstract.  The current paper proposes a boundary element formulation, applicable to 2-D and 3-D 
elastostatics problems using a unified approach for transformations of the domain integrals into boundary 
integrals. The method is applicable to linear problems encompassing both finite and infinite multi-region 
domains allowing non-vanishing body forces. Numerical results agree quite well with the analytical 
solutions; while the present method offers easy formulation with less numerical efforts in comparison to 
FEM or some BEM which need interior points to treat arbitrary body forces. It is demonstrated that the 
method has the potential to have profound impact on engineering design, notably in dam-foundation 
interaction. 
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1. Introduction 

 

In many practical problems of soil-structure interaction, the soil is modeled as a homogeneous, 

isotropic and linearly elastic half-space. Thus the class of problems amenable to analytical 

solutions is quite limited and therefore numerical methods of solution are imperative for problems 

associated with complex geometry, boundary conditions and loading. The most popular numerical 

method is the finite element method (FEM). However, for the solution of problems involving a 

semi-infinite or infinite medium, FEM or FDM (finite-difference method) exhibit a deficiency 

because one has to employ a mesh of finite size which needs approximate far boundary conditions. 

An alternative approach for the numerical analysis of the aforementioned problems is the boundary 

element method (BEM). Although BEM needs no discretization inside the domain, but it suffers 

from certain shortcomings: loads may only be applied at boundaries, and not inside the domain. 

Thus a number of complications should be overcome when body forces such as gravity, seepage or 

centrifugal forces have to be considered. Although some researchers have studied elasticity with 

arbitrary body forces by BEM, but they mainly dealt with two dimensional applications or purely 

axisymmetric elastostatics problems. They usually used the dual reciprocity BEM formulations, or 

particular integrals to eliminate the domain integrals (Deb and Banerjee 1990, Park and Banerjee 

2002, Ochiai and Kobayashi 2000, Perez-Gavilon and Aliabadi 2001, Park 2002). 
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Recently, several researchers have studied boundary element methods in elastostatics problems 

to propose new methods reducing the errors resulted from the numerical calculation of integrals 

(Milroy et al. 1997, Tang and Fenner 2005, Simpson et al. 2013), the time and memory needed for 

the analysis (Maerten 2010) or to resolve singularities inherent to BEM using either indirect (Shen 

2011, Cheng and Shuwei 2012) or semi-analytical methods (Khodakarami 2011). However, for 

simplicity, they neglected the body forces to remove the volume integral. 

This paper proposes a method to include, with ease; the general body forces in the direct three-

dimensional BE model including finite or infinite multi-region domains. The method could deal 

with essential geotechnical loads such as gravity, initial stress, seepage, buoyancy and even 

centrifugal forces, or any arbitrary body forces due to potential functions with linear spatial 

variation. The method employs a fairly straight forward transformation of volume integrals into 

surface integrals. Despite previous works, the method suits particularly for multi-region problems 

with infinite domains. Some practical applications to dam-foundation interaction are presented to 

prove its versatility and precision. 

 

 

2. Governing equations 
 

Boundary value problems with body force for 3D multi region elastostatics are considered. The 

material for each region is homogeneous, isotropic, linear elastic and the domain may be finite or 

infinite. 

The equations of equilibrium are stated as 

                                (1) 

where σij are the Cauchy stress tensor and bi denotes the components of the body-force. Assuming 

small displacements, strains εij are defined by 

         
 

 
(         )                 (2) 

ui represents a displacement component, and commas imply differentiation. In addition to Eq. (2), 

strains have to satisfy the following compatibility equations (Timoshenko and Goodier 1970) 
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where i, j, and k count from 1 to 3, but i≠ j ≠ k. 

One of the most common ways of deriving the BE formulation is to utilize Betti’s reciprocal 

theorem which states that, given two loading states σ   ε   and σ  
∗  ε  

∗  then these can be related 

(assuming linear elasticity) as 

       ∫       
∗     

 

∫    
∗       

 

 (4) 

V denotes the domain with the boundary S of the problem. Applying the divergence theorem and 

using equilibrium Eq. (1), the displacement–strain relation (2), and the definition of tractions given 

by ti = σ  nj, the integral representation for the displacement u at a point P on the boundary of an 

elastic body, with body force b and zero initial conditions can be written as (Aliabadi 2002) 
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    ( )  ∫  (   ) ( )   ∫  (   ) ( )   ∫  (   ̅) ( ̅)  
   

 (5) 

where u and t stand for the displacement and traction vectors, respectively; U(P,Q) and T(P,Q) are 

the fundamental solution displacement and traction tensors, respectively, at point Q due to a point 

load at P. The coefficient c only depends on the geometry at point Q on the boundary, and  ̅ is a 

point within the domain. The fundamental solution tensors are 

         (   )   (             ) (6) 

with 
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and 
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with 
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              (9) 

The last integral in Eq. (5) is a volume integral. It can be shown that for constant body forces 

over volume V, this integral can be transformed into a surface integral (Brebbia et al. 1984) 

     ∫  (   ) ( )    ∫    
  

 (10) 

For 3-D problems the coefficients of G may be computed from (Beer et al. 2008) 

           
 

   
(       
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      ) (11) 

where x, y, and z may be substituted for i,   is the shear modulus and 

            
 

 
  (12) 

r is the position vector and    denotes the components of the outward normal to the boundary S. 

For plane strain problems (Beer et al. 2008) we have 
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      ) (13) 

To allow for numerical implementation, we discretize the boundary into a non-overlapping set 

of Ne elements giving 

           ⋃  

  

   

                        (14) 

To arrive at a system of equations, the conventional procedure is to use collocation at a series of 

points around the boundary. This corresponds to placing the point P at a discrete set of points; 
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most often, for classical (i.e., unenriched) BE formulations the nodal positions, since this 

automatically provides a square set of equations. In this way, the system of equations can be 

written in matrix notation as 

     , -* +   , -* + (15) 

where [T] is a square matrix containing a combination of the integrals of the Tij kernel and the 

jump terms, {u} is vector of displacement components, [U] is a rectangular matrix of Uij kernel 

integrals, and {t} is a vector of traction components. Rearranging this set of equations by placing 

all unknown components on the left-hand side and all known components on the right hand side, 

the following is found 

     , -* +   * + (16) 

where the vector x contains all unknown displacement and traction components. 

The analysis of problems with constant body forces proceeds the same way, except that an 

additional right hand side term is assembled. The final system of equations will be 

     , -* +   * +   * +  (17) 

where the components of Fb for the i-th collocation point are 

         ∑   
 

 

   

 (18) 

and 

        
   ∫  (    )  ( )  

 (19) 

The discretized form of Eq. (5) can be written as 

       (  )  ∑∑ 
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Eq. (17) may then be solved using an appropriate solver. 

 

 

3. Boundary elements in multi region problems 
 

In usual fundamental solutions it is assumed that material properties do not change inside the 

domain being analyzed and thus they are only applicable to homogeneous domains. There are 

many instances, however, where this assumption does not hold. For example, in a soil or rock mass 

body, the modulus of elasticity may change with depth or from one layer to the other. For some 

special types of heterogeneity it is possible to derive fundamental solutions, if the material 

properties change in a simple way (e.g., when linearly increasing with depth). However, such 

fundamental solutions are often complicated and the programming efforts significant. In cases 

where we have layers or zones of different materials, however, we can develop special solution 

methods based on the fundamental solutions for homogeneous materials. The basic idea is to 

consider a number of regions connected to each other, much like pieces of a puzzle. Each region is 

treated in the same way but can now be assigned with a different material property and thus we are 
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able to solve piecewise homogeneous material problems (Beer and Poulsen 1994). Since at the 

interfaces between the regions both traction and displacement are not known, the total number of 

unknowns is increased and additional equations are required to solve the problem. The latter 

equations could be obtained from the conditions of equilibrium and compatibility at the region 

interfaces (Aliabadi 2002). 

In addition to Eq. (5), another integral equation, written in terms of tractions, may be used 

dealing with contact problems (Leonel and Venturini 2010a). This equation can be obtained from 

Eq. (5), which must be differentiated to obtain the integral representation in terms of strains. Then, 

Hooke’s law is applied to obtain the integral representation in terms of stresses. Finally, 

multiplication by the director cosines of the normal to contact surfaces at the collocation point 

leads to the traction representation, as follows 

   
 

 
 ( )   ∫  (   ) ( )    ∫  (   ) ( )    ∫  (   ̅) ( ̅)  

   

 (21) 

where n is the unit outward normal vector, the fundamental solutions of D and S are obtained from 

the matrices U and T by applying the definition of tractions (Aliabadi 2002), and the second 

integral on the right hand side contains hyper singular integrands. 

Generally three schemes are used for dealing with multi-zone contacts. In the first scheme, 

called SST (Leonel and Venturini 2011), only algebraic relations derived from the integral 

expression written in terms of displacements, i.e., Eq. (5), are used. 

The second scheme is the HST scheme in which for external boundaries only algebraic 

equations derived from the singular integral equation, i.e., Eq. (5) are used, while along contact 

surfaces only algebraic equations derived from the hyper singular integral equation, Eq. (21), are 

used. An alternative scheme, namely THST, has been also proposed in which all the algebraic 

relations along the contact surfaces and along external boundaries are founded on the hyper 

singular integral equation, Eq. (21). 

It is worth to emphasize that when algebraic relations are obtained from Eq. (21), discontinuous 

elements must be used to approximate tractions and displacements. As the hyper-singular integral 

equation can be approximated only if the derivatives of the displacement function are continuous 

in the vicinity of the source point, the nodes should be defined inside the elements. However in the 

case of SST approach, continuous elements can be adopted for all boundaries. 

Moreover, as shown in Leonel and Venturini (2011), the model uses only algebraic equations 

coming from singular integral representation. It has demonstrated to be more accurate when 

compared with other works, especially in nonlinear contacts. Such superiority of SST might be due 

to higher singularity level present in the algebraic equations of the HST and THST schemes, in 

respect to that of the SST approach. Therefore, in the present research the SST approach is 

employed, which is appropriate for both linear and non-linear contact problems, while the HST 

and THST methods are more popular in the fracture mechanics (Beer 1993, Leonel and Venturini 

2010b). 

There are two approaches how to implement the SST method. In the first, we modify the 

assembly procedure, so that a larger system of equations is now obtained including the additional 

unknowns at the interfaces. The second approach is similar to the approach taken in the finite 

element method (Banerjee 1994, Kuo and Chen 2005, Rodriguez-Tembleque and Abascal 2010). 

Here we construct a “stiffness matrix”, K, for each region, the coefficients of which are the 

tractions due to unit displacements (Pereira and Beer 2009). The matrices K for all regions are 

then assembled in the same way as in FEM. The second method may be naturally used for  
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Fig. 1 Example of computation of “stiffness coefficients” 

 

 

coupling some boundaries with finite elements. The method is also more efficient and more 

amenable for parallel computing, and consequently the stiffness matrix approach is proposed in 

this paper. 

 

3.1 Stiffness matrix assembly 
 

The idea is to compute a “stiffness matrix” K
N
 for each region N. Coefficients of K

N
 are values 

of t due to unit values of u at all region nodes. In elasticity problems these would correspond to 

tractions due to unit displacements. To obtain the “stiffness matrix” K
N 

of a region, we simply 

solve the Dirichlet problem M times, where M is the number of degrees of freedom of the BE 

region nodes. For example, to get the first column of K
N
, we apply a unit value of displacement in 

x-direction, as shown in Fig. 1, while setting all other node values to zero. 

For computation of Dirichlet problems we recall Eq. (15), with a modified right hand side 

     ,  -* +   ,  -* +  (22) 

here [ΔT], and [ΔU] are the assembled coefficient matrices, {t}1is the first column of the stiffness 

matrix K
M

, and {u}1 a vector with a unit value in the first row, i.e. 

     * +   

{
 
 

 
 
 
 
 
 
 
 }
 
 

 
 

 (23) 

If we perform the multiplication of [ΔT]{u}1, it can be easily seen that the right hand side of Eq. 

(22) is simply the first column of matrix [ΔT]. The computation of the region “stiffness matrix” is 

therefore basically a solution of [ΔU]{t}i = {F}i with N right hand side vectors {F}i, where each 

right hand side corresponds to a column in [ΔT]. Each solution vector {t}i represents a column in 

K , i.e. 

         ,* + * +      - (24) 

For each region N, we have the following relationship between {t} and {u} 

     * +     * +  (25) 

 

3.2 Partially coupled problems 
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In many cases we have problems where not all nodes of the regions are connected. Here only 

some of the nodes of one region are connected to other regions. It is obviously more efficient in 

the calculation of the stiffness matrix to consider only the interface nodes, i.e., only nodes 

connected to other regions. For partially coupled problems we therefore have to solve the 

following two problems; 

First, the prescribed boundary conditions are applied only to nodes not connected to other 

regions (free nodes), and at the same time zero-value Dirichlet boundary conditions are applied to 

nodes connected to other regions (coupled nodes). 

The second problem to be solved (for each region), is to apply Dirichlet boundary conditions of 

unit value to coupled nodes and zero-value to free nodes. 

After all regional stiffness matrices K
N 

have been computed, they are assembled to form a 

system of equations established on the conditions of equilibrium and compatibility. This results in 

the following system of equations 

   , -* +   * + (26) 

where [K] is the assembled “stiffness matrix” of the interface nodes and {F} is the assembled right 

hand side vector. This problem is solved for the unknown {u}c at all interfaces nodes of the  

system. 

After the interfaces unknowns have been determined, the values of t at the interface, denoted 

by * + 
  and the values of u, or t at the free nodes, denoted by *𝒙+𝑓

   are determined for each 

region. These are obtained by the application of 

          {

* + 
 

*𝒙+𝑓
 
}  {

* +  
 

*𝒙+𝑓 
 
}  [

  

  
] * + 

  (27) 

where matrices K
N 

and A
N 

are defined by 

         [* +           * +   ]
 

 (28) 

and 

         [*𝒙+           *𝒙+   ]
 

 (29) 

Vector * + 𝑜
  contains the tractions at the coupled nodes, and vector *𝒙+𝑓𝑜

  contains either both 

displacements and tractions at the free nodes of region N, depending on the boundary conditions 

prescribed with fixed interface nodes. 

Note that * + 
  is obtained by gathering values from the vector of unknowns at all the 

interfaces {u}c. 

 

 

4. Results 
 

4.1 Validation of the method 
 

4.1.1 Circular excavation in infinite domain 
Consider a cavity inside an infinite, homogeneous, and elastic space. The elastic space is  
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Fig. 2 Circular cavity inside infinite domain 

 
Table 1 Response around circular cavity inside infinite domain 

 Max. Displacement (mm) Max. Stress (MPa) 

BEM 0.600 -9.000 

FEM 0.506 -8.165 

Theory 0.600 -9.000 

 

 

assumed to have a modulus of elasticity of 10 GPa, a Poisson’s ratio of zero, and an initial stress 

field of σx= 0.0 MPa, σy= -3.0 MPa, τxy= 0.0 MPa as shown in Fig. 2. 

Twelve parabolic boundary elements are used to model the circular cavity. Maxima of stress 

and displacement due to excavation are obtained and compared with those of the FEM, and the 

theoretical solution. In the FE model, 64 quadratic elements of the same size as that of the BEs are 

employed. A truncation boundary at distance of two diameters away from the excavation is used. 

At the truncation surface all displacements are assumed as fixed. 

It is seen that FE model introduces two sources of error; one associated with the truncation of 

the medium due to disability of modeling the infinite domain, and the other associated with the 

shape functions approximations inside the continuum as well as along the boundary surfaces (Beer 

et al. 2008). The results are shown in Table 1. 

 
4.1.2 Multi-region domain solution 
In next example, a cantilever beam consisting of two regions is specified under applied shear 

traction at its end as shown in Fig. 3. 

For comparison with theorical results, both the regions have the same properties as E = 10 GPa, 

and ν = 0.0. The beam end shear traction is 10 kN/m. 

It can be seen that the maximum displacement is 0.5012m, as compared with the theoretical 

value of 0.500m, and that the multi-region method does not result in any loss of accuracy. 

 

4.1.3 Self-weight in a soil 
In order to test the body force formulation, an example of application for gravitational forces is 

given and the results are compared with their analytical and numerical solutions. The example 

deals the problem of finding stresses in the elastic soil body due to its own weight (Fig. 4).  
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Fig. 3 Cantilever beam multi-region mesh 

 

 
Fig. 4 Self-weight in a soil 

 

 
Fig. 5 Typical modeling mesh for self-weight problem in a soil 

 

 

The bottom and lateral sides of the soil are restrained for normal displacement by using roller 

boundary condition and modeled with eight parabolic boundary elements shown in Fig. 5. 
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Table 2 Numerical results for self-weight problem in a soil 

 
Analytical 

Solution 

2D BEM Model (Park 2002) 

(Error Percentage) 

Present BEM Model 

(Error Percentage) 

uz at z=0 0.371 0.382 (3.0%) 0.379 (2.2%) 

σz at z = H 1.000 1.028 (2.8%) 1.017 (1.7%) 

σx at z = H 0.429 0.441 (2.8%) 0.437 (1.9%) 

 

 
Fig. 6 Model of Morrow Point arch dam 

 

 

Numerical results for settlement at the top surface and stresses at the bottom are compared with 

analytical solutions and the 2D axisymmetric BEM model including 3 interior points in Table 2 

(Park 2002). Better agreement can be seen in present formulation analysis in comparison with 

results from the 2D BEM model using particular integrals, while it includes some interior points. 

 

4.2 Numerical examples for general application of the method 
 

4.2.1 Static loading of an arch dam 
The well-studied Morrow Point arch dam of 141.73 m height is considered under static loading. 

The loads consist of the dam body weight load and the reservoir hydrostatic pressure. Modulus of 

elasticity and poison ratio of concrete are 26 GPa and 0.2, respectively. Concrete and water unit 

mass values are also 2400 and 1000 kg/m3. Assuming rigid foundation, BEM results are compared 

against those of the FEM published by Ahmadi et al. (2001) as shown in Table 3. Boundary 

element model employed here is composed of 6 coupled regions (defined by vertical contraction 

joints) containing 62 linear 3D surface elements, while the FE model is constructed of a single 
layer of 22 quadratic elements. These results depict a notable agreement between the two methods, 

i.e., the multi-region BEM and the standard FEM. 

 

4.2.2 Multi-region unbounded foundation interaction of an arch dam 
Further analysis including the unbounded foundation and the same dam is conducted next 

under the same type of loads and dam elements. Here dissimilar to dam engineering practice in 

linear analysis, foundation weight load is included. Deformability of the foundation rock is  
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Table 3 Results of Morrow Point dam analyses with rigid foundation 

 
Max. U/S Tensile 

Arch Stress (MPa) 

Max. D/S Compression 

Cantilever Stress (MPa) 

Max. Displacement of the 

Dam Crest (mm) 

BEM 0.4 6.5 25 

FEM 0.3 6.7 27 

 

 
Fig. 7 Model of Morrow Point arch dam and its foundation 

 

 

characterized by the modulus of deformation or elasticity. Depending on the type of material and 

discontinuities present in a foundation, values of the modulus of elasticity may vary significantly 

from abutment to abutment, or with elevations. The presented BE algorithm is used to survey the 

effects of the dam-foundation interaction effects on the response of the dam. Nine cases are being 

analysed as cases I to IX. In all cases the foundation free-field boundary elements are extended in 

each side of the dam by a length of three times the dam height. In the first five cases EI and EII, 

moduli of elasticity of abutments, and the lower foundation are the same and equal to constant 

value of Ef. However, in the next three analyses the abutment (zone I) is assumed to be weaker 

than the lower foundation (zone II) as in Fig. 7. Case IX is analyzed to compare the effects of 

foundation and abutment stiffness on the response of the arch dam. In this case, the lower 

foundation is assumed to be weak and the left and the right abutments strong. The dam properties 

are same as in section 4.2.1, and abutment and foundation properties are shown in Table 4. 

The results in Table 4 demonstrate that the dam deflections and stresses are more sensitive to 

foundation modulus ratios Ef/Ec of less than 1.0. Such responses especially increase dramatically 

when Ef/Ec becomes less than 0.5; while dam deflections for stiffer foundation rock is practically 

tending to those for a rigid foundation. For such uniform isotropic foundations, under gravity and 

hydrostatic loading, foundation flexibility increases arch stresses mostly in the central part of the 

upstream and on the lower part of the downstream faces of the dam, while cantilever stresses are 

primarily increased in the lower 1/3 portion of the dam. 

At some dam sites, the foundation modulus may vary significantly with elevation. In the next 

three cases variable foundation modulus with regard to zones I and II is being studied. Sensitivity  
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Table 4 Morrow Point Dam-foundation system analyses cases and response sensitivities to foundation 

parameters 

Analyses Cases Case I Case II Case III 
Case 

IV 

Case 

V 

Case 

VI 

Case 

VII 

Case 

VIII 

Case  

IX 

EII /Ec 0.25 0.5 1.0 2.0 Rigid 1.0 2.0 4.0 0.25 

EI /Ec 0.25 0.5 1.0 2.0 Rigid 0. 5 1.0 0.25 4.0 

Max. U/S Tensile 

Arch Stress (MPa) 
0.9 0.6 0.5 0.4 0.4 0.6 0.5 1.4 1.0 

Max. D/S Compression 

Cantilever Stress (MPa) 
12.3 8.7 7.3 6.3 6.2 7.6 7.4 17.4 14.5 

Max. Displacement 

of the Dam Crest (mm) 
75 52 30 27 25 42 29 104 78 

 
Table 5 Shear Stresses in right abutment of the arch dam 

Elevation Point 

Shear Stresses (MPa) 

Case I Case III Case IV Case X 

BEM BEM FEM BEM BEM 

0.3 H 

A 3.0 1.6 1.5 1.7 2.0 

B 2.9 1.5 1.5 1.5 1.9 

C 2.7 1.3 1.2 1.4 1.8 

0.7H 

A 2.8 1.3 1.3 2.7 1.9 

B 2.5 1.2 1.1 2.4 1.8 

C 2.1 1.0 1.0 2.2 1.6 

 

 

analysis of Morrow Point Dam with the foundation rock overlain by a weaker layer indicates that 

decreasing foundation modulus with elevation generally increases dam deflections and stresses 

(Table 4). Furthermore, the effects of weaker abutments (zone I) on the dam response are most 

significant when their moduli are substantially less than the modulus of the concrete. 

Bearing in mind that safety of arch dam is much increased once tensile stresses and crest 

displacement decrease, comparison of cases IX and VIII reveals that, strong abutments are much 

more influential on arch dam safety, than strong bed rock. 

Stability of the abutments is crucial for the safety of arch dam. While unstable wedges of rock 

in the abutments could endanger the safety of the dam. The abutments are required to resist safely 

against the thrust imposed upon the dam by the impounded reservoir. 

Moreover, the loads that must be considered in the analysis of abutment rock wedges include 

the weight forces of the rock wedge, (not taken into account in most studies using BEM), thrusts 

forces of the dam, uplift or buoyancy forces applied to the wedge, and other forces applied due to 

different loading cases. 

Table 5 shows the shear stresses at six points in the abutment of the dam in three cases studied 

considering foundation self-weight body forces. The points are selected at elevations 0.3H and 

0.7H from the base, where H is the dam height. In each elevation three nodes are chosen. Point A 

is at the intersection of dam intrados with the right abutment; point B and C are at depth “b” and 

distance “a” of the right abutment respectively as shown in Fig. 8. Previous studies (Federal 

Energy Regulation Commission, “Chapter 11: Arch Dams” 1999) have shown that the three nodes 

may contribute to the formation of a sliding wedge in the abutment and need to be checked for the 

dam stability. 
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Fig. 8 Schematic plan of arch dam in elevations 0.3H and 0.7H 

 

 
Fig. 9 Finite element model of free field foundation for Morrow Point arch dam 

 

 

In order to compare the numerical results, especially body forces in infinite domains, free field 

foundation of Morrow Point arch dam was analyzed by program Abaqus Ver. 6.11. Foundation 

properties are the same as in case III with the mass density of 2200 kg/m
3
. Its corresponding model 

consists of 927 20-node brick elements for the foundation. The length of the finite foundation in 

each direction in finite element model is the same as the boundary element model, and has roller 

supports in each end to restrain normal displacements as shown in Fig. 9. In this case the system 

results are achieved by superposing the two analyses results. First, the free-field foundation is 

analyzed by FEM including body forces load, and subsequently, the complete system is modeled 

and analysed by the present BEM program with a weightless foundation. 

Case X is modeled by a weightless foundation and the same elasticity ratio as in cases III. The 

latter case is used to clarify the weight effects of the semi-infinite foundation in the dam stability. 

Table 5 shows that the results of the boundary element and finite element models have 

differences up to 9 percent. These differences are attributed to the approximation caused by 

domain discretization in FEM and the finite boundary conditions.  

As the abutments and the foundation properties of Morrow Point arch dam are similar to those 

of case III and, the corresponding stresses do not seem to exceed the safety criteria (Federal 

Energy Regulation Commission 1999, 1991) the dam is stable under static loads. However, 

787



 

 

 

 

 

 

Mohammad Ghiasian and Mohammad Taghi Ahmadi 

stresses of case I may cause dam instability, if a dam of such properties exists. Moreover, as shown 

in Table 5, eliminating foundation body forces as in case X, leads to unrealistically low stresses 

estimation and is quite unconservative, thus causing dam instability. Therefore, a careful and 

precise stability analysis such as the method elaborated in this research may be crucial and must be 

performed to ensure an adequate factor of safety against abutment sliding.  

 

 

5. Conclusions 
 

In this research, methods of transforming the volume integral to a surface integral for three-

dimensional BEM analysis of unbounded media due to body forces are described along with some 

applications. The method is verified by comparing against the results of a number of examples 

with their analytical or numerical solutions. The method is simple to implement and the results are 

highly accurate in respect to those of finite elements in infinite domains and previous formulations 

in BEM including body forces. It is demonstrated that elastostatics multi zone problems with 

infinite or semi-infinite domain including arbitrary body forces could be solved with ease. 

Moreover, the proposed method is suitable for considering uplift, buoyancy forces, centrifugal 

forces or any potential functions which could be estimated by a linear function in each domain. 

Furthermore, some practical applications of the method are presented to show the significance of 

body forces; sometimes overlooked in BE analysis due to traditional complexity of treatments of 

such volume integrals. Further development of the proposed method for dynamic loading and 

indeed in the analysis of nonlinear three-dimensional elastodynamic problems is naturally 

possible. 
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