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Abstract.  A 3-node 3D co-rotational beam element using vectorial rotational variables is employed to 
consider the geometric nonlinearity in 3D space. To account for shape versatility and reinforced concrete 
cross-sections, fibre model has been derived and conducted. Numerical integration over the cross-section is 
performed, considering both normal and shear stresses. In addition, the derivations associated with material 
nonlinearity are given in terms of elasto-plastic incremental stress-strain relationship for both steel and 
concrete. Steel reinforcement is treated as elasto-plastic material with Von Mises yield criterion. 
Compressive concrete behaviour is described by Modified Kent and Park model, while tensile stiffening 
effect is taken into account as well. Through several numerical examples, it is shown that the proposed 3D 
co-rotational beam element with fibre model can be used to simulate steel and reinforced concrete framed 
structures with satisfactory accuracy and efficiency. 
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1. Introduction 

 

For framed structures subjected to extreme loading such as an earthquake or a blast event, 

collapse takes place initially from the failures of some critical structural members, such as beams, 

columns and joints, which deform and fail before failure spreads to the entire structure. At the 

member level, it is important for finite element analysis to capture the characteristics of material 

yielding and large geometric deformation, so as to simulate the process of progressive collapse. 

Besides, the analysis should also model hardening property of materials as well as overall 

softening of structural response, as the structure is on the verge of collapse. 

In terms of geometric nonlinearity, the efficient approaches of beam elements for large 

deformation analysis of frame structures can be generally classified into three types, that is, total 

Lagrangian (TL) formulation (Bathe and Bolourchi 1979, Schulz and Filippou 2001, Nanakorn 

and Vu 2006), updated Lagrangian (UL) formulation (Bathe and Bolourchi 1979, Cardona and 

Geradin 1988, Teh and Clarke 1999), and co-rotational (CR) formulation (Hsiao et al. 1987, 

Crisfield 1990, Felippa and Haugen 2005, Li 2007, Battini 2008). 
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It is challenging to simulate the coupled effects of large deformation and material failure due to 

the computation accuracy of strain and stress in the deformed configuration. However, based on a 

CR framework, all the information necessary to determine the material stress state can be derived 

in the local system with only pure deformation excluding the rigid-body movement. This is the 

most appealing advantage of CR formulations, which will result in a more accurate and efficient 

computational scheme on strain and stress compared with other formulations. Therefore, CR 

formulations are employed for the beam formulation in the present study. Nevertheless, the 

superiority of CR formulations was only discussed at a theoretical level (Hsiao et al. 1987, Felippa 

and Haugen 2005, Li 2007) and needs to be numerically confirmed by comparison with other 

formulations, such as TL formulation (Dvorkin et al. 1988). 

There are various CR formulations (Hsiao et al. 1987, Crisfield 1990, Felippa and Haugen 

2005, Li 2007, Battini 2008) proposed in the literature, even though they share the common 

characteristics in terms of CR framework. Compared to the other CR formulations, there are two 

main advantages of the CR formulation proposed by Li (2007). In his approach, a set of vectorial 

rotational variables, which are three orthogonal components of normal vectors, is defined to 

describe spatial rotations. Through the judicious selection of vectorial rotational variables, all 

variables in the incremental solution process can be treated as vectors subjected to the usual rules 

of commutative addition. This results in a symmetric geometric stiffness matrix both in the local 

and the global systems. Furthermore, updating of vectorial rotational variables in incremental 

loading is much simpler compared to the conventional definitions of rotational degrees of freedom 

using absolute rotations about coordinate axes. Thus, the general idea of the CR beam formulation 

by Li (2007) is advantageous over the other CR formulations.  

However, this CR formulation was initially derived for linear elastic material, which is not 

suitable for simulating structures undergoing large deformation with material yielding and 

approaching failure. For material nonlinearity, there are a few publications concerning numerical 

and experimental aspects. There is a comprehensive review collection on material nonlinearity 

from Hinton and Owen (1984), but none of them can be directly applied to the CR framework by 
Li (2007). Therefore, if the CR beam formulation by Li (2007) were employed to predict the RC 

beam geometric nonlinearity, derivations for material nonlinearity at the fibre level for both steel 

and concrete have to be conducted in the framework of this CR formulation. This work is 

described in greater detail later in the present study. 

In order to accurately simulate structures subjected to large deformation and material 

nonlinearity, the coupled effects of geometric and material nonlinearities of steel and RC structures 

should be incorporated for the proposed three dimensional CR beam. This is fundamental to the 

study of deformation behaviour of structural members at the ultimate limit state. Therefore, 

validations for the proposed derivations incorporating material nonlinearity will be conducted 

through examples including isolated steel and RC structural members, a spatial steel frame and an 

RC beam-column subassemblage. 

In addition to the formulation derivations and material properties, computational efficiency of 

beam elements is also of interest when conducting finite element analysis for large-scale 

structures. Theoretically, CR formulations have an intrinsic advantage compared with TL and UL 

formulations. That is, CR formulations decompose the deformation into a rigid-body movement 

and a pure deformation. Moreover, the pure deformation depicted in local coordinate system is 

assumed to be small and can be efficiently calculated. Nevertheless, it should be pointed out that 

even though the CR beam formulation was proposed by Li (2007) a few years ago and since then, 

the efficiency advantage has been claimed, there is no direct comparison published in terms of  
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(a) The undeformed configuration of a beam (b) The deformed configuration of a beam 

Fig. 1 Notation details for undeformed and deformed configurations of a CR beam 

 

 

computational time. The computational efficiency has to be evaluated based on the same material 

model and solution technique to be absolutely fair. This requires a lot of work to be done. For 

example, the TL beam element proposed by Dvorkin et al. (1988) can be utilized to represent a 

typical TL formulation, and a benchmark in terms of computational accuracy and efficiency can be 

conducted with comparison of the CR formulation. With the main objective of this study to 

simulate the nonlinear behaviour of RC framed structures, the examples to conduct the benchmark 

tests will be based on structural problems involving geometric and material nonlinearities. 

 

 

2. Co-rotational (CR) beam formulation 
 

The greatest challenge for a 3D beam element formulation is to simulate spatial rotations. A 

three-node CR beam formulation is employed to simulate the geometric nonlinearity of three 

dimensional deformations. In the utilized CR beam formulation, rotational variables in spatial 

rotations are defined by vectorial rotational variables. The details of the 3D beam formulations can 

be found in the works by Li (2007). 

Some assumptions are made the CR beam formulations. (1) In the local coordinate system the 

strain is small. (2) Normal vectors to the neutral axis before deformation remain straight but not 

necessarily normal to the neutral axis after deformation. (3) The shape of the CR beam 

cross-section does not warp.  

The numbering sequence of a three-node CR beam is shown in Fig. 1 with the end nodes 

tagged as 1 and 2, and the middle node as 3. As shown in Fig. 1, both local and global coordinates 

systems are created in order to describe the local and global displacements and rotations. The local 

system {x, y, z} remains fixed with the middle node (Node 3) and does not deform with the 

movement of the element. The local x axis is set to be tangential to the beam longitudinal axis by 

default. Therefore, there are only two active end nodes (Nodes 1 and 2) for the CR beam element 

in the local coordinate system. Directional changes of the local y and z axes imply the local 

deformation of the beam element. The degrees of freedom in the local and global systems are 

 
1 1 1 2 2 2

T

1 1 1 1 , 1 , 1 , 2 2 2 2 , 2 , 2 ,           L y n y m z n y n y m z nu v w r r r u v w r r ru   

and  
1 1 1 2 2 2 3 3 3

T

1 1 1 1 , 1 , 1 , 2 2 2 2 , 2 , 2 , 3 3 3 3 , 3 , 3 ,                 G y n y m z n y n y m z n y n y m z nU V W e e e U V W e e e U V W e e eu
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where ui, vi, wi are the local displacements of Node i (i=1,2), riy,ni 
, riy,mi 

, riz,ni
 are the local vectorial 

rotational variables representing the rotation of Node i (i=1,2). The terms Ui, Vi, Wi are the global 

displacements of Node i (i=1,2,3) and eiy,ni 
, eiy,mi 

, eiz,ni
 are the global vectorial rotational variables 

representing the rotation of Node i (i=1,2,3). The subscripts ni and mi indicate the nth and mth 

components of the direction vectors of Node i. The vectorial rotational variables riy,ni 
, riy,mi 

, riz,ni
 in 

the local coordinate system and eiy,ni 
, eiy,mi 

, eiz,ni
 in the global coordinate system are, respectively, 

defined according to the relative quantities and permutation sequence of all three components for 

direction vectors riy and riz of Node i in the local system (see Fig. 1) and direction vectors eiy and 

eiz of Node i in the global system
 
as discussed by Li (2007). For example, assuming | riy,li 

|>| riy,ni 
| 

and | riy,li 
|>| riy,mi 

| ( n,m,l ∈{1,2,3} and n≠m≠l), if | riz,li 
|>| riz,ni 

| and | riz,li 
|>| riz,mi 

| are satisfied, 

then the values of n , m and l follow a cyclic permutation of {1,2,3}. In the case of a beam bending 

slightly in the local x-y plane, the direction vectors r1y and r2y at Nodes 1 and 2 slightly rotate 

about the local z axis, then the component with the maximum value among all three components 

should be the one along the local y axis, that is, l should be equal to 2 with n equal to 3 and m 

equal to 1. After each load increment or iteration, the vectorial rotational variables should be 

updated based on the orthogonality conditions riy
T
riz=0

 
and eiy

T
eiz=0.  

In addition, the definition of the local system {x, y, z} as shown in Fig. 1 indicates the 

cross-sectional orientation of the CR beam element. The direction of local y axis is taken as the 

weak axis direction, whereas local z axis is the stronger axis direction. Both the local system {x, y, 

z} and the global system {X1, X2, X3} follow the right-hand rule. 

Since the CR formulation decomposes the incremental deformations into a rigid-body 

movement and pure deformations, the deformations in the local coordinate system is assumed to 

be small. The deformation at any point of the element can be obtained based on nodal 

deformations by means of quadratic Lagrangian interpolation functions.  

           0 0

3

1

( ) i iy iy iz izi
i

y zh 


     
 u t r r r r                     (1) 

where ti={ui, vi, wi}
T
 consists of the local nodal translational displacements; riy0 and riy are 

direction vectors along the cross-sectional weak axis (local y axis) at Node i before and after 

deformation, respectively (see Fig. 1); riz0 and riz are direction vectors along the cross-sectional 

strong axis (local z axis) at Node i before and after deformation, respectively (see Fig. 1); y and z 

are the local coordinates along the cross-sectional weak and strong axes of the beam element; hi is 

the Lagrangian interpolation function; ζ is one-dimensional natural coordinate along the centre line 

of the beam element. 

As the first derivative of displacement with respect to local degrees of freedom uL, the 

corresponding strain in the local coordinate system is based on Green strain. In a compact form (Li 

2007), Green strain can be written as  

(0) (1) (2) (3) 2 (4) 2 (5)y z yz y z     ε ε ε ε ε ε ε                    
 (2) 

The six coefficients of ε are derived by the author of this paper and are listed below for 

completeness. 
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0 0

(3) 0

0

y y zz

x x x x

  
 
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 
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
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(4)

1

2

0

0

y y y y

x x x x

     
        
 

  
 
 
 
 


r r r r

ε
    

0 0

(5)
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0

0

z zz z

x x x x
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 
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 
 
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ε
 

where x0={x0, y0, z0}
T
 is the local coordinate at any point in the beam element; 

3

0 0
1

( )iy iy
i

h 


r r  is 

the initial direction vector along the cross-sectional weak axis at any point; 
3

1

( )y i iy
i

h 


r r is the 

current direction vector along the cross-sectional weak axis at any point after deformation; 
3

0 0
1

( )iz iz
i

h 


r r  is the initial direction vector along the cross-sectional strong axis at any point;  

3

1

( )z i iz
i

h 


r r  is the current direction vector along the cross-sectional strong axis at any point 

after deformation; 
3

1

( )t i i
i

h 


u t  is the translational displacements at any point. The subscript i 

indicates the corresponding function at node i; the subscript 0 indicates the function in the state 

before deformation and if there is no 0, the function is in the current deformed state as shown in 

Fig. 1. Jacobian matrix is calculated as the relationship between the natural coordinate system and 

the local coordinate system. 

With respect to the local unknown variables uL, the geometric matrix B can be expressed in a 

compact form as 
(0) (1) (2) (3) (4) (5)

2 2

(0) (1) (2) (3) (4) (5)2 2   

L L L L L L L

l l l l l l

l l l l l l

y z y z y z

y z y z y z

      

      
      

     

ε ε ε ε ε ε ε

u u u u u u u
Β

Β Β Β Β Β Β

 

where B is a 3×12 matrix relating element strains and local displacements. 

With the definition of Green Strain ε and geometric matrix B, it is straightforward to obtain the 

expression of internal force vector fL and stiffness matrix KL in the local coordinate system for CR 

beam. The strain energy of the CR beam element can be expressed as  

T1
 

2
V

U dV  ε Dε   where 
0

0

0 0

0 0

0 0

 
 


 
  

E

k G

k G

D

                  

 (3) 

where D is the elastic matrix to represent the material property; E and G are the elastic modulus 

and shear modulus, respectively; k0 is the shear factor depending on the shape of the employed 
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cross-section and is equal to 5/6 for a rectangular cross-section; V is the volume of a CR beam 

element.  

The first derivative of strain energy with respect to unknown variables uL in the local 

coordinate system leads to local internal force vector fL. 

T
T T1 1

   
2 2

L

L L LV V V

U
dV dV dV

  
   
    

ε ε
f Dε ε D B Dε

u u u
               (4) 

The first derivative of out-of-balance force (internal force fL minus external load P) with 

respect to local unknown variables can be used to calculate the local stiffness matrix KL. 

  T

T T

 

       

L

L

L L V

LV V

dV

dV dV

   
   

   


 





 

f P
K B Dε

u u

B
B DB ε D

u
                        

(5) 

Substituting the compact form of Green strain and geometric matrix into the local internal force 

vector fL, Eq. (4) can be rewritten as 





T T

T

(0) (1) (2) (3) 2 (4) 2 (5)

(0) (1) (2) (3) (4) (5)2 2

  

    +

         

L

V L A

L A

l l l l l l

l l l l l l

dV dAdx

y z y z y z dAdx

y z y z y z

    

  
 

      

   

  

 

f B Dε B Dε

D ε ε ε ε ε ε

Β Β Β Β Β Β           (6) 

where the scalar terms A and L are the cross-sectional area and the length of CR beam, 

respectively. 

When incorporating the fibre model into the CR beam formulation, for the convenience of 

programming, local internal force vector fL can also be rewritten in the form of Eq. (7) by 

expanding Eq. (6). 

14

1

L i i

iL

C dx


 
  

 
f f

                              

(7) 

where the coefficients Ci (i=1,…,14)
 
are derived as follows. 

0

A

C dA  , 1

A

lC dAy  , 2

A

lC dAz  , 3

A

l lC dAy z  , 2

4 l

A

C dAy  , 2

5 l

A

C dAz  , 

2

6 l

A

lC dAy z  , 2

7 l

A

lC dAy z  , 2 2

8 l l

A

C dAy z  , 4

9 l

A

C dAy  , 4

10 l

A

C dAz  , 3

11 l

A

C dAy  , 

3

12 l

A

C dAz  , 3

13 l

A

lC dAy z  , 3

14 l

A

lC dAy z  . 

Details of the vectors fi (i=1,…,14)
 
can be found in Appendix A. Similarly, after substituting 

the Green strain and geometric matrix into the local stiffness matrix KL, the tangential stiffness 

matrix in the local coordinate system can be written as 
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

T T T T

T

(0) (1)

(0) (1) (2) (3) (4) (5)2 2

(0) (1) (2) (3) (4) (5)2 2

   

     

              

          +

  
    

  

 
 

 
 

 

    

    

   

 

L

L LV V L A

L A

l l

l l l l l l

l l l l l l

dV dV dAdx

y z

y z y z y z

y z y z y z

B B
K B DB ε D B DB ε D

u u

D

ε ε

Β Β Β Β Β Β

Β Β Β Β Β Β

T
(2) (3) 2 (4) 2 (5)

2 2
(0) (1) (2) (3) (4) (5)

           

    

       
      

         

l l l l

l l l l l l

L L L L L L

y z y z

y z y z y z dAdx

ε ε ε ε

B B B B B B
D

u u u u u u

    (8) 

The tangential stiffness matrix can also be expressed in the form of Eq. (9) by expanding Eq. 

(8). 

14

1

L i i

iL

C dx


 
  

 
K K

                            

 (9) 

where the coefficients Ci are the same as those in Eq. (7) and the details of the sub-matrices Ki 

(i=1,…,14)
 
are given in Appendix B. These are derived by the author of this paper. According to 

the transformation matrix T from the local to the global coordinate system form (Li 2007), global 

internal force vector fG and tangential stiffness matrix KG can be derived, respectively. 

T

G Lf T f    and  
T

T

G L L

G


 



T
K T K T f

u
                   

(10) 

It should be noted that the derivations of local internal force vector and stiffness matrix are for 

general beam cross-sections including non-symmetric sections, so that non-symmetric steel 

reinforcement for a concrete beam section can be modelled and this will be discussed next. 

 

 

3. Fibre model  
 

After the internal force vector fL and stiffness matrix KL in the local coordinate for the CR 

beam have been computed from Eq. (6) and Eq. (8), they can be expressed in the form of 

T  L

L A

dAdx    f B Dε  and  
T T  L

LL A

dAdx
 

  
 

 
B

K B DB ε D
u

            

(11) 

Conventionally, in the process of three dimensional integration, both the local internal force 

vector fL and local stiffness matrix KL can be obtained by integrating certain functions at the 

cross-section A and then integrating them along the element length L. That is, the integration can 

be treated as an integration of a known function X with respect to the cross-section A and element 

length L to obtain F, as expressed in Eq. (12). 

     
L A

dAdxF X

                             

(12)  
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Since the integration of X can be performed at the cross-section of each fibre first and then 

summed up together to obtain the integrated value around the entire cross-section, the material 

properties and the cross-sectional shape can be implemented at the fibre level. The cross-section 

may contain fibres with different material properties (or even voids) or different shapes. Fig. 2(a) 

shows a non-symmetric section. However, the assumption of “plane sections remain plane” has to 

be kept, so that the studied beam element is assumed to be laterally restrained and no warping 

effect is considered. 

To simulate RC members, steel reinforcement and concrete are assigned to different fibres. 

Fibre model assumes perfect bond between concrete and reinforcement. Therefore, the integration 

process provides the opportunity to employ fibre model to represent the CR beam cross-section 

and to simulate more accurately the mechanical behaviour and the stress and strain constitutive 

relations at specified „cells” around the CR beam cross-sections. By employing the fibre model, 

the local internal force vector fL and local stiffness matrix KL can be expressed as 

14

1

L i i

NF iL

C dx


 
  

 
 f f   and  

14

1

L i i

NF iL

C dx


 
  

 
 K K                ( 13 ) 

where NF is the number of fibres of the cross-section at the Gaussian point along the longitudinal 

axis of the CR beam element (Fig. 2 (b)); the coefficients Ci (i=1,…,14)
 
at the fibre cross-sections 

are first computed by using Eq. (7) and 
14

1

i i

i

C


 f  at the fibre level can be computed conveniently. 

The summation of 
14

1

i i

i

C


 f  from all of the fibres, which is the integrated value for the whole 

cross-sectional area at a Gaussian point along a CR beam element, can then be obtained. The 

calculation procedure of local stiffness matrix KL follows the same way.  

It should be noted that reduced integration with two Gaussian points along the longitudinal axis 

of the proposed three-node CR beam element is adopted as explicitly described in Fig. 2(b). 

However, a lower order integration scheme (i.e. single-point integration) for each fibre around the 

cross-section is utilized with the assumption of uniform stress for each fibre area. In all of the 

examples employed in the present paper, single-point integration is applied for fibre model by 

default. 

 

 

 

 

(a) Distribution of fibres with different material properties 
(b) Fibre model and integration procedure 

for a CR beam 

Fig. 2 Fibre model of a CR beam 

 

Material 1 

Material 2 

Material 3 (void) 

 

: Gaussian point for the longitudinal direction; 

: Node; 

 : Fibre with single-point integration 
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4. Material nonlinearity 
 

When handling material nonlinearity for RC structures, steel reinforcement is treated as an 

elasto-plastic material with Von Mises yield criterion which conforms to associated flow rule, 

plastic potential and normality condition. On the other hand, the constitutive relationship of 

concrete is assumed to follow empirical formulae (Karsan and Jirsa 1969, Rots et al. 1984, 

Barzegar-Jamshidi 1987, Dvorkin et al. 1988, Taucer et al. 1991) which have been widely 

employed and verified to be suitable for numerical computation. 

 

4.1 Steel reinforcement 
 

From Hinton and Owen (1984), the elasto-plastic incremental stress-strain relation is given as 

epd dσ D ε
                                

(14) 

where the equivalent material matrix Dep=D-Daa
T
D/(H+a

T
Da), D is the elastic material matrix, 

flow vector a=∂F/∂σ and F is the yield function indicating the plastic state of the material in yield 

criteria. Therefore 

T T

T T
      

 
ep e e

d
d d d d d d d

H H

Daa D a D ε
σ D ε D ε ε σ Da σ Da

a Da a Da        
(15) 

where dλ=a
T
Ddε/(H+a

T
Da). 

With a common procedure to handle problems including elasto-plastic and strain hardening 

behaviour, the stress increments can be divided into one part inside the yield surface and another 

part outside the yield surface, with R as the ratio of the part outside the yield surface to the whole 

stress increment, as shown in detail in Fig. 3. 

 1e e ed R d Rd  σ σ σ
                         

(16)
 

Substituting the part outside the yield surface Rdσe back to the elasto-plastic incremental 

stress-strain relation dσ=dσe-dλDa and considering the contribution from the part inside the yield 

surface, the whole incremental stress can be obtained as 

 1 e ed R d Rd d   σ σ σ Da
                      

(17) 

where dλ=a
T
DRdε/(H+a

T
Da). 

The plastic part outside the yield surface Rdσe-dλDa will be eliminated through several 

iterations. After that, the elasto-plastic incremental stress-strain relation for the first iteration can 

be expressed as  

 1 e
e

Rd d
d R d

m m


   

σ Da
σ σ

                      
(18) 

where m is the user-defined iteration number and is suggested to be the nearest integer which is 

less than 8(Rdσe/σY0)+1, where σY0 is the initial uniaxial yield strength. 
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Fig. 3 Incremental stress changes in an elasto-plastic material 

 

 

In the present CR beam formulation, the strain is calculated in the form 

(0) (1) (2) (3) 2 (4) 2 (5)

l l l l l ly z y z y z     ε ε ε ε ε ε ε                 
(19) 

The incremental strain can be then written in the form 

(0) (1) (2) (3) 2 (4) 2 (5)

l l l l l ld d y d z d y z d y d z d     ε ε ε ε ε ε ε              
(20) 

So the incremental stress is given as  

 

 

T

T

T

T

1
1

1
    1

R d Rd
d R d

m m H

R
R d Rd

m m H

 
     

 

  
          

D ε a D ε
σ D ε Da

a Da

D a D
D ε ε Da

a Da

 

   

 

(0) (1) (2) (3) 2 (4) 2 (5)

T
(0) (1) (2) (3) 2 (4) 2 (5)

T

    1

1
    

l l l l l l

l l l l l l

R
R d y d z d y z d y d z d

m

R d y d z d y z d y d z d
m H

 
        
 

 
       

 

D
D ε ε ε ε ε ε

a D
ε ε ε ε ε ε Da

a Da
   

(21) 

In general, assuming that vector x can be expressed as α1x1+ α2x2 where α1 and α2 are scalar 

quantities, the matrix-vector computation can be performed as follows. 

           1 1 2 2 1 1 2 2 1 1 2 2                  a x c a x x c a x c a x c a x c a x c
 
(22) 

From Eq. (22), the expression (a·x)c can be calculated by superposition of vector components. 

So the incremental stress in Eq. (21) can be rewritten as  

 

edσ

1rσ

 1 eR dσ eRdσ

1σ

2σ

3σ

Yield surface 
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   (0) (1) (2) (3) 2 (4) 2 (5)

T T
(0) (1)

T T

T T
(2) (3)

T T

1

1 1
       

1 1
       

    

l l l l l l

l

l l l

R
d R d y d z d y z d y d z d

m

Rd y Rd
m H m H

z Rd y z Rd
m H m H

 
        
 

   
      

    

   
      

    

D
σ D ε ε ε ε ε ε

a D a D
ε Da ε Da

a Da a Da

a D a D
ε Da ε Da

a Da a Da

T T
2 (4) 2 (5)

T T

1 1
   l ly Rd z Rd

m H m H

   
      

    

a D a D
ε Da ε Da

a Da a Da
     

(23) 

Defining the term dλi as follows 

T
( )

T

1 i

id Rd
m H

  


a D
ε

a Da
,   0,  1,  5i  ，

                 
(24) 

the incremental stress and the components cast in the CR framework can be specified as  

(0) (1) (2) (3) 2 (4) 2 (5)

l l l l l ld d y d z d y z d y d z d     σ σ σ σ σ σ σ
           

(25) 

where  

 ( ) ( ) ( )1i i i

i

R
d R d d d

m
   

D
σ D ε ε Da   

and 

T
( )

T

1 i

id Rd
m H

  


a D
ε

a Da
,  0,  1,  5i  …， . 

 

4.2 Concrete  
 

Similarly, the elasto-plastic incremental stress-strain relation for concrete materials is also 

written in the form of  

epd dσ D ε
    where 0

0

0 0

0 0

0 0

ep

E

k G

k G

 
 


 
  

D

                  

(26)
 

where Dep is the material matrix of concrete and E and G are the elastic modulus and shear 

modulus, respectively. In the present article, the shear stress components are assumed to be elastic 

throughout, which is reasonable for most applications failed by concrete cracking or crushing at 

the fibre level. The compressive behaviour of the normal concrete stress is adopted from Modified 

Kent and Park model (Park et al. 1982) as shown in Fig. 4.  

The ascending and descending curves are given by 
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




































2

00

2







 cc

cc Kf ,    if 0 c                    
(27) 

   



 cccc KfZKf 2.01 0 ,    if uc  0                

(28) 

where 

0 0.002K 
 

1 S yh cK f f  
 

and  

   
0.5

0.5 3 0.29 145 1000 0.75 / 0.002c c S hZ f f h S K


      
    

ε0 is the concrete strain at the maximum stress, εu is the concrete ultimate strain in compression, K 

is a factor which accounts for the strength increase due to confinement, Z is the strain softening 

slope, fc´is the concrete compressive cylinder strength in MPa, fyh is the yield strength of stirrups 

in MPa, ρS is the ratio of the volume of hoop reinforcement to the volume of concrete core 

measured to the external dimensions of stirrups, h´is the width of concrete core measured to the 

external dimensions of stirrups, and Sh is the centre-to-centre spacing of stirrups or hoop sets.  

Thus, although the cross section does not explicitly model stirrups, their effect on concrete 

compressive strength is implicitly considered through the factor K. 

Tensile stiffening effect is taken into account by adopting the bilinear stress-strain relationship 

suggested by Rots et al. (1984) as illustrated in Fig. 5 with εcr=ft´/Ec, εcu=α1εcr and α1=10~25 

(Barzegar-Jamshidi 1987). 

The hysteretic behaviour of concrete stress-strain relationship is also considered as shown in 

Fig. 6. For hysteretic behaviour of concrete in compression, the unloading from a point on the 

envelop curve takes place along a straight line connecting the point εr at which unloading starts to 

a point εp on the strain axis given by Karsan and Jirsa (1969) and Taucer et al. (1991) as shown in 

Eq. (29) and Eq. (30). 

 

 

 
 

Fig. 4 Stress-strain relationship for concrete under 

compression 

Fig. 5 Stress-strain relationship for concrete under 

tension 
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(a) Hysteretic behaviour of concrete in compression (b) Hysteretic behaviour of concrete in tension 

Fig. 6 Hysteretic behaviour of confined and unconfined concrete 
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( 30 ) 

where ε0 is the strain level corresponding to the maximum compressive stress.  

Note that the hysteretic behaviour of concrete in compression and tension above does not 

account for the cyclic damage of concrete. Additionally, due to the stiffening and softening 

characteristics of structural deformations, direct displacement-control or load-control method 

cannot guarantee numerical convergence in all cases with critical points in the load-deflection 

curves, e.g. limit points and snap-back points. For greater numerical robustness, generalized 

displacement control method proposed by Yang and Shieh (1990) is employed to ensure stability 

for iteration at the regions near critical points by self-adaptive loading step sizes and loading 

directions.  

 

 

5. Validations 
 

Several examples including steel and RC beams and frames are simulated to test the 

capabilities of the proposed 3D CR beam element of simulating structural deformations involving 

geometric and material nonlinearities and the versatility of fibre model.  

To demonstrate computational accuracy and efficiency of the proposed CR formulation, total 

Lagrangian (TL) beam element developed according to Dvorkin et al. (1988) is utilized to 

compare the prediction results by CR formulation for an isolated steel beam with large 

deformation and a spatial steel frame with material nonlinearity. When simulating large scale 

structures, computation cost has to be balanced between simulation accuracy and processing time. 

It is ideal to have fewer elements in structural modelling and yet achieving acceptable accuracy. 

Therefore, using TL formulations as a benchmark, a case study is conducted for CR beams on the 
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minimum number of beam elements and the CPU time required for both large deformation and 

elasto-plastic problems. Besides, I-shaped cross-sections with appropriate fibre schemes are 

employed to show the capabilities of the proposed CR formulation to predict large deformation 

and material nonlinear behaviour of steel structures with non-rectangular cross-sections.  

For RC structures, the tensile stiffening, compressive softening and hysteretic behaviour of 

concrete model in CR formulation are taken into consideration, along with the yielding and 

fracturing behaviour of steel reinforcement. Isolated column and beam members are validated to 

demonstrate the numerical accuracy and stability of the proposed CR formulation at the member 

level. At the end, an RC beam-column subassemblage is studied with reliable experimental results. 

End supports with assembly gaps are calibrated and considered as nonlinear springs in the 

numerical prediction. In addition to the validations using experimental studies on RC structures, 

corresponding numerical validations are also conducted by comparing the predictions from the 

proposed CR beam elements with the simulation results of frame elements provided by the 

nonlinear finite element software Engineer‟s Studio (ES) (2009) for isolated RC beams and the 

ABAQUS solid element (2009) for an RC beam-column subassemblage. These two programs are 

highly reputable and are expected to produce reliable and accurate predictions for RC 

beam-column structures.  

In order to conduct an objective comparison regarding computational efficiency and prediction 

accuracy, the TL and CR formulations are studied on the same platform in terms of linear equation 

solver and data input/output. Moreover, it should be noted that the correctness of the implemented 

TL beam element formulation is verified against the published simulations by Dvorkin et al. 

(1988) and a great number of others‟ experimental studies on steel and RC structures. 

 

5.1 A cantilever beam with an end point load 
 
A cantilever beam with an end point load as shown in Fig. 7 is employed to demonstrate the 

computation accuracy of the proposed CR formulation to simulate problems with large 

displacement and large rotation. The discretization schemes for the cantilever are two, three and 

four CR and TL beam elements, respectively. The beam length is 3.0 m and the concentrated load 

P is 3.11×10
6
 N. The material is linear elastic with Young‟s modulus of 2.1×10

11
 N/m

2
. Sixteen 

fibres are employed to discretize the beam cross-section for both CR and TL elements. Numerical 

evaluations of elliptic integral solutions of some large deflection problems have been conducted by 

Mattiasson (1981). The result is utilized to verify the numerical solution from CR beam 

formulation.  

In the comparison with theoretical results as shown in Fig. 8, there is good agreement of the 

predictions when three and more CR elements are used to mesh the cantilever equally, while the 

predictions by four TL beam element are not sufficiently accurate. It should be noted that when the 

cantilever is divided into two elements equally, the CR predictions are still reasonably acceptable. 

However, the calculation by two TL beam elements cannot predict accurately. 

 

 

 

Fig. 7 A cantilever beam with an end point load 
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(a) u/L (b) v/L 

Fig. 8 The comparison of results for a cantilever beam with an end point load (Mattiasson 1981) 

 

 
Fig. 9 The finite element idealization and fibre scheme for the I-shaped cross-section 

 

 

Fig. 10 The relationship of the applied load and the deflection at the mid-span (Hinton and Owen 1984) 

 

 
5.2 An I-shaped cross-section beam with both ends clamped 
 
To illustrate the versatility of fibre model in CR beam formulation for different cross-sectional 

shapes, an example of an I-shaped beam with both ends clamped from Owen and Hinton (1984) is 

shown in Fig. 9. The I-shaped cross-section is discretized into six fibres as shown in Fig. 9 and 

five CR beam elements are employed to mesh the beam span as the same mesh employed by 

Owen and Hinton (1984). The material properties are Young‟s modulus E=210 kN/mm
2
, Poisson 

ratio v=0.3, yield stress σ0=0.25 kN/mm
2
 and strain hardening parameter H=0. 

The relationship of the applied load versus central deflection is shown in Fig. 10. Yielding of 

the cross-section at both clamped ends initiates from flange fibres 1 and 6 and spreads to web 

fibres 2, 3, 4 and 5. Similarly, the yielding of fibres of the cross-section at the mid-span follows 
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the same sequence. As shown in Fig. 10, in both the elastic deformation and yielding stages, 

numerical prediction obtained by CR beam elements agrees well with the results from Owen and 

Hinton (1984).  

A simulation using TL beam elements with the same number of elements and fibre scheme is 

conducted as well. To achieve the same 25mm mid-span deflection, the computation time for TL 

formulation is 7.031s and average iteration number for each loading increment is 9 to 11 in the 

elasto-plastic stage, while CR formulation requires a CPU time of 4.656s and in the elasto-plastic 

stage average iteration number is only 7 to 8. This represents a computational saving by the 

proposed CR formulation of more than 30% for elasto-plastic problems. Moreover, with the same 

mesh and fibre scheme the prediction accuracy of CR formulation is better than those from TL 

formulation as shown in Fig. 10. 

 

5.3 A space frame with an elasto-perfectly plastic material and different cross-sectional 
shapes 

 
To demonstrate the capacity of CR formulation to simulate 3D structures using an 

elasto-perfectly plastic material with different cross-sectional shapes, a space frame with eight 

members is employed and shown in Fig. 11(a), which was analyzed by Marino (1970), Yang and 

Fan (1988) and Gendy and Saleeb (1993)based on different approaches. The columns and beams 

are made of W10×60 and W18×60 sections, respectively. The material properties are E=30,000 ksi 

(206.9 GPa), G=11,500 ksi (79.3 GPa) and σy=34 ksi (234.48 MPa). Each member is of length L = 

144 in (3.655 m) with warping restrained at the ends. The member is idealized using two CR beam 

elements and the cross-section orientations and fibre discretization are illustrated in Fig. 11(b).  

The prediction by 16 CR beam elements is shown in Fig. 12 with the comparison of numerical 

results (Marino 1970, Yang and Fan 1988, Gendy and Saleeb 1993). To demonstrate the 

advantages in terms of the element number requirement for the proposed CR formulation, the 

comparisons based on three sets of simulations with each structural member idealized by one, two 

and three CR and TL elements, respectively, are conducted. Good agreement is achieved by the 

proposed CR formulation with a small number of elements as shown in Fig. 12. On the other hand,  

 

 

 

Fig. 11 A space frame with different cross-sectional shapes 
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Fig. 12 Curves of Load- horizontal displacement u at the loaded point (Marino 1970, Yang 

and Fan 1988, Gendy and Saleeb 1993) 

Notes: 1 kips=4.448 kN; 1 in.=25.38 mm 

 

 

Fig. 13 Reinforced concrete columns 

 

 

with the same number of beam elements, the simulations by TL formulation demonstrate lower 

accuracy compared with the results by the proposed CR formulation.  

As shown in Fig. 12, the predictions by different numbers of CR elements are quite close, while 

there is an apparent discrepancy between the predictions by 8, 16 and 32 TL elements. Obviously, 

compared with TL formulation, there is clear advantage using CR formulation when solving an 

elasto-plastic problem as the latter requires fewer CR beam elements to produce the same level of 

accuracy. 

 

5.4 RC columns with concentric or eccentric axial loads 
 
Normal-strength concrete columns subjected to short-term concentric or eccentric axial loads 

are simulated based on the tests by Mander et al. (1988), Kim and Yang (1995). The columns are 

modelled with six 3-node beam elements. The cross-section was discretized into 100 concrete 

fibres. The number of steel fibres is equal to the number of steel bars in the column cross-section. 

Transverse reinforcement is also considered through confined concrete model. The reinforcement 

is shown in Fig. 13. The column properties are listed in Table 1. 
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Fig. 14 Result comparisons for an RC column in 

the test by Mander et al. (1988) 

Fig. 15 Result comparisons for an RC column 

in the test by Kim and Yang (1995) 

 
Table 1 Properties of the RC columns  

Column properties Mander et al. (1988) Kim and Yang (1995) 

Column label in the original paper C6 10M2 

Length (mm) 1200 240 

Load type (eccentricity) Concentric Eccentric (24mm) 

Cylinder compressive strength (MPa) 25.3 63.5 

Crushing strain of plain concrete 0.002 0.002 

Concrete compressive modulus (GPa) 23 33.356 

Longitudinal steel ratio (%) 1.79 1.98 

Yield stress of longitudinal steel (MPa) 394 387 

Yield stress of stirrup (MPa) 309 300 

Stirrup transverse volumetric ratio (%) 0.883 0.3 

Concrete core width measured to stirrup (mm) 410 62 

Stirrup spacing (mm) 72 60 

 

 

Along with the simulations from experimental studies, the predictions of the proposed CR 

formulation for both columns subjected to concentric or eccentric axial load are shown in Fig. 14 

and Fig. 15, respectively. Excellent agreement for the initial elastic deformation stage is achieved. 

However, the agreement in the descending parts of both curves are not as good as that for the 

ascending parts due to the approximation in post-peak descending curves according to the Kent 

and Park concrete model as discussed in Section 4.2. If the descending slope is calibrated 

according to the reinforced concrete utilized in the experiment, the proposed CR formulation can 

provide a closer trend to test results. 

 
5.5 Simply-supported RC beams 
 
Four simply-supported beams with different spans subjected to a concentrated load at the 

mid-span from the classic set of RC beams tested by Bresler and Scordelis (1963) are simulated 

using the proposed CR formulation. The geometry, loading, boundary condition and steel 

reinforcement details are illustrated in Fig. 16. Five elements and 100 concrete fibres are utilized 

to mesh the beam span and the cross-section. In addition, equivalent steel fibres are assigned to the  
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Fig. 16 Geometry and steel reinforcement details of shear beams by Bresler and Scordelis (1963) 

 
Table 2 Material properties of Specimens 

Specimen OA1 OA2 A1 A2 B3 

Cylinder compressive strength (MPa) 22.54 23.72 24.06 24.27 38.75 

Young's modulus (MPa) 23000 23000 23000 23000 23000 

Crushing strain of plain concrete (%) 0.2 0.2 0.2 0.2 0.2 

Yield stress of bottom rebars (MPa) 555 555 555 555 552 

Yield stress of top rebars (MPa) - - 345.41 345.41 345.41 

Yield stress of stirrup (MPa) - - 325.42 325.42 325.42 

Stirrup spacing   (mm) - - 210 210 190 

 

 

location of steel reinforcement as shown in Fig. 16. The properties of concrete and steel 

reinforcement are listed in Table 2. 

Since a load-controlled system was used in the experimental study, the post-peak response of 

the beams was not available and only the initial ascending part was presented. Due to the 

assumption that the shear stress components always remain elastic for concrete fibres, shear failure 

in the specimens cannot be captured by the proposed CR formulation. This is a common limitation 

for current published empirical concrete models. If the shear contribution to concrete failure needs 

to be taken into account, a three dimensional constitutive material model for concrete should be 

carried out based on plasticity theory along with concrete fracture. To validate the post-peak 

loading stage due to flexural failure rather than shear failure, frame element using fibre model in 

Engineer‟s Studio (ES) (2009) was employed with Maekawa's nonlinear concrete constitutive 

relationship (Okamura and Maekawa 1991). The comparison of experimental study and numerical 

simulations by CR formulation and ES is given in Fig. 17, which shows good agreement in the 

initial loading stage for all the five specimens. The deflection-load trend from CR and ES are quite 

close to each other, even though there are some slight discrepancies on the peak strengths. 

 

5.6 An RC subassemblage with nonlinear elastic supports 
 

An RC subassemblage test conducted in NTU by Yu and Tan (2012) is employed to validate 

 

310 mm 

556 mm 

L=3658 mm 

Beam OA1 

305 mm 

560 mm 

L=4752 mm 

Beam OA2 

307 mm 

560 mm 

L=3658 mm 

Beam A1 

305 mm 

558 mm 

Beam A2 

229 mm 

556 mm 

L=6400 mm 

Beam B3 

Bottom bars: #9; Top bars: #4; Stirrup: #2 

P 

L 

L=4572 mm 

605



 

 

 

 

 

 

Xu Long, Kang Hai Tan and Chi King Lee 

  
(a) OA1 (b) OA2 

  
(c) A1 (d) A2 

 
(e) B3 

Fig. 17 Comparisons of experimental study and numerical simulations of the RC beams 

 
 
the proposed CR formulation for the simulation of beam-column structures. The dimensions and 

steel reinforcement details of the RC subassemblage are shown in Fig. 18(a), in which the beam 

section is 250 mm×150 mm and its net span is 5750 mm. 31 CR elements are employed to mesh 

the sub-assemblage as illustrated in Fig. 18(b). It should be noted that the reinforcement 

configuration along the beam is symmetric but not uniform. The material properties of concrete 

and steel reinforcement are listed in Table 3 and Table 4, respectively. 

For the accuracy of numerical simulations, the measured stiffness and assembly gap measured 

at the specimen supports connected with the end column stubs in the test have been calibrated and 

converted into nonlinear spring elements at compression and tension zones as shown in Fig. 19. 

The calibration results are given in Table 5. 

With consideration of nonlinear spring elements at the specimen supports, a simulation is 

conducted using ABAQUS 6.9 (2009) by the solid element C3D8R (an 8-node linear brick with 

reduced integration) which is expected to produce a reliable and accurate prediction for large scale 

RC beam-column structures. To stabilize the numerical simulation, explicit solver is employed  
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(a) Dimensions and reinforcement details of the RC subassemblage (unit in mm) 

 
(b) Numerical model 

Fig. 18 Detailing and the boundary conditions of the RC subassemblage (mm) 

 
Table 3 Material properties of concrete 

Tensile strength ft 

(MPa) 

Compressive strength fc  ́

(MPa) 

Strain at compressive 

strength     (%) 

Initial modulus of 

elasticity Ec (MPa) 

3.5 38.2 0.25 29645 

 

Table 4 Material properties of steel reinforcement 

Rebar 

type
 

Nominal 

diameter (mm) 

Yield strength 

fy (MPa) 

Elastic modulus 

 Es (MPa) 

Tensile strength 

fu (MPa) 

Ultimate 

strain εu (%) 

Hardening modulus 

Eh (MPa) 

R6 10 349 199177 459 -- -- 

T13 13 494 185873 593 10.92 929.2086 

 

Table 5 Calibration for the end-supports in the laboratory  

Horizontal  

restraints 

Tension stiffness 

(kN/m) 

Compression stiffness 

(kN/m) 
Tension gap (mm) 

Compression gap 

(mm) 

Top 62413.11 -- 2.4 -- 

Bottom 23050.53 146390.7 4.1 -0.7 

 

 

during the displacement-control loading procedure. A comparison of experimental study and 

numerical simulations by proposed CR formulation and ABAQUS 6.9 is illustrated in Fig. 20.  

Both sets of numerical simulations provide good approximations for the initial loading stage 

and catenary action stage after the bottom rebars fracture at the mid-span. However, the simulation 

by ABAQUS fails to capture the peak strength and rebar fracture phenomenon in terms of the  

 

Applied load 

23 elements equally for the span and 

4 elements equally for each column 

and 
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Fig. 19 Nonlinear behaviour of the proposed spring element to simulate the specimen supports 

 

 

Fig. 20 Result comparisons for the RC subassemblage 

 

 

sudden decrease in the loading versus deformation curve due to the „embedment constraint‟ 

technique between concrete and steel reinforcement. Even though fibre model of the proposed CR 

formulation also assumes perfect bonding between concrete and reinforcement, the rebar fracture 

can still be simulated when integrating the internal force vector and stiffness matrix around the 

cross-section with fibres. 

 

 

6. Conclusions 
 

Based on 3-node 3D CR beam elements using vectorial rotational variables, fibre model and 

material nonlinearity in terms of elasto-plastic incremental stress-strain relationship for both steel 

and concrete are derived and conducted. The derivations on the local internal force vector and 

stiffness matrix are generalized into cross-sections without symmetry. Different cross-sectional 

shapes and reinforced concrete cross-sections can be conveniently discretized into a combination 

of fibres with various areas and material properties for steel and concrete regions. In the utilized 

concrete model, compressive concrete behaviour is described by Modified Kent and Park model, 

while tensile stiffening effect is also taken into account.  
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With the advantages of proposed CR formulation with fibre model, the calculations for stress 

and strain of steel and concrete fibres and the element pure deformation decoupled from a 

rigid-body movement are conducted in the local coordinate system. The predictions by the 

proposed CR formulation for both steel and RC structures are accurate and efficient for large 

displacement and large rotation problems and elasto-plastic problems with the comparison of TL 

formulation and ABAQUS solid element. 

Through several numerical examples and validations with test results, the proposed 

co-rotational 3D beam element demonstrates satisfactory numerical capacity when analyzing both 

steel and RC structures with arbitrary cross-sectional shapes undergoing geometric and material 

nonlinearities. The proposed CR beam formulation can be an effective approach to simulate the 

deformation of steel and RC framed structures in the process of progressive collapse.  
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Abbreviations 
 

TL= Total Lagrangian 

UL = Updated Lagrangian 

CR = Co-rotational 

RC = Reinforced concrete 

ES= Engineer‟s Studio 

 

 

Notations 
 
a Flow vector 

eiy, eiz Direction vectors in the global system of Node i 

eiy,ni 
, eiy,mi 

, eiz,ni
 Global vectorial rotational variables of Node i 

fL Internal force vector in the local system 

fc´ Concrete compressive cylinder strength 

ft´ Concrete tensile strength in the cylinder splitting test 

fyh Yield strength of stirrups 

hi Lagrangian interpolation function 

h´ Width of concrete core measured to the external dimensions of stirrups 
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k0 Shear factor of cross-sections 

m User-defined iteration number 

riy, riz Direction vectors in the local system of Node i 

riy,ni 
, riy,mi 

, riz,ni
 Local vectorial rotational variables of Node i 

ti Displacement vector at any point in the beam element 

uG Degrees of freedom in the global system 

uL Degrees of freedom in the local system 

ui, vi, wi Local displacements of Node i 

x, y, z Local coordinate system 

A Cross-sectional area of a CR beam 

B Geometric matrix 

D Material matrix 

Dep Equivalent material matrix 

E Elastic modulus of steel 

Ec Elastic modulus of concrete 

F Yield function of steel 

G Shear modulus of steel 

H Strain hardening parameter of steel 

KL Stiffness matrix in the local system 

K  Confinement factor in concrete model 

L Length of a CR beam 

P External load 

R Ratio of the part outside the yield surface to the whole stress increment 

Sh Centre-to-centre spacing of stirrups or hoop sets 

X1, X2, X3 Global coordinate system 

Ui, Vi, Wi Global displacements of Node i 

V Volume of a CR beam element 

Z Strain softening slope in concrete model 

dσ Incremental stress vector 

dσ
(0) 

~ dσ
(5)

  Components of incremental stress 

dσe Whole stress increment of steel 

σy Yield stress of steel 

dε Incremental strain vector 

ε Green strain 

ε
 (0) 

~ ε
 (5)

 Components of Green strain 

ε0 Concrete strain at the maximum compressive stress 

εcr  Concrete strain at the maximum tensile stress 

εcu Concrete ultimate strain in tension 

εr   Unloading start point 

εp Unloading end point the strain axis 

εu Concrete ultimate strain in compression 

ρS Ratio of the volume of hoop reinforcement to the volume of concrete core 

measured to the external dimensions of stirrups 

ζ Natural coordinate system along the centre line of the beam element 
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