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Abstract.   An outline of the Timoshenko beam theory is presented. Two differential equations of motion in 
terms of deflection and rotation are comprised into single equation with deflection and analytical solutions of 
natural vibrations for different boundary conditions are given. Double frequency phenomenon for simply 
supported beam is investigated. The Timoshenko beam theory is modified by decomposition of total 
deflection into pure bending deflection and shear deflection, and total rotation into bending rotation and 
axial shear angle. The governing equations are condensed into two independent equations of motion, one for 
flexural and another for axial shear vibrations. Flexural vibrations of a simply supported, clamped and free 
beam are analysed by both theories and the same natural frequencies are obtained. That fact is proved in an 
analytical way. Axial shear vibrations are analogous to stretching vibrations on an axial elastic support, 
resulting in an additional response spectrum, as a novelty. Relationship between parameters in beam 
response functions of all type of vibrations is analysed. 
 

Keywords:  Timoshenko beam theory; flexural vibration; axial shear vibration; vibration parameter; 

analytical solution; double frequency phenomenon 

 
 
1. Introduction 

 

Beam is used as a structural element in many engineering structures like frame and grillage 

ones (Pilkey 2002, Pavazza 2007, Carrera et al. 2011). Moreover, the whole complex structure can 

be modelled as a beam to some extend like ship hulls, floating airports, etc (Senjanović et al. 

2009). The Euler-Bernoulli theory is widely used for simulation of a slender beam behaviour. For 

thick beam Timoshenko theory has been developed by taking shear influence and rotary inertia 

into account (Timoshenko 1921, 1922). Shear effect is extremely large in higher vibration modes 

due to reduced mode half wave length. 

The Timoshenko beam theory deals with two differential equations of motion with deflection 

and cross-section rotation as the basic variables (Timoshenko 1921, 1922). The system is reduced 

into a single four order partial differential equation by Timoshenko (1937), where only 

approximate solutions are given as commented in (Inman 1994) and (van Rensburg and van der 

Merve 2006). In the most papers the first approach with two differential equations is used in order 

to ensure control of exact and complete beam behaviour, (Geist and McLaughlin 1997, van 
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Rensburg and van der Merve 2006). Possibility to operate with single equation of motion in terms 

of pure bending deflection is noticed and recently used, due to reason of simplicity, as an 

approximated but reliable enough solution (Senjanović et al. 1989, Li 2008). 
The Timoshenko beam theory is applied as a base for more complex problems, like beam 

vibrations on elastic foundation (De Rosa 1995), beam vibrations and buckling on elastic 
foundation (Matsunaga 1999), vibrations of double-beam system with transverse and axial load 
(Stojanović and Kozić 2012), vibration and stability of multiple beam systems (Stojanović et al. 
2013), beam response moving to load (Sniady 2008), etc. Recently, the Timoshenko beam theory 
is used in nanotechnology for vibration analysis of nanotubes, as for instance (Simsek 2011). 
Timoshenko idea of shear and rotary inertia influence on deflection is not only limited to beams. 
These effects are also incorporated in the Mindlin thick plate theory as a 2D problem (Mindlin 
1951). Timoshenko beam static functions are often used as coordinate functions for thick plate 
vibration analysis by the Rayleigh-Ritz method (Zhou 2001). Furthermore, differential equation of 
beam torsion, with shear influence is based on analogy with that for beam bending (Pavazza 
2005). Hence, in case of coupled flexural and torsional vibrations of a girder with open cross-
section the same mathematical model is used for analysis of both responses (Senjanović et al. 
2009). 

The Timoshenko beam theory plays an important role in development of sophisticated beam 

finite elements. Various finite elements have been worked out in the last decades. They are 

distinguished in the choice of interpolation functions for mathematical description of deflection 

and rotation. Application of the same order polynomials leads to so-called shear locking, since 

bending strain energy for a slender beam vanishes before shear strain energy. If static solution of 

Timoshenko beam is used for deflection and rotation functions this problem is overcome (Reddy 

1997, Senjanović et al. 2009). 

In spite of the fact that many papers have been published on Timoshenko beam theory during 

long period of time, it seams that all phenomena hidden in that theory are not yet investigated. 

Motivated by the state-of-the art, some additional investigation has been undertaken and the 

obtained results presented in this paper shed more light on the considered subject. In Section 2 an 

outline of the Timoshenko beam theory is presented, where basic equations in terms of deflection 

and cross-section rotation are listed, and general solution for natural vibrations is given. In Section 

3 the Timoshenko beam theory is modified in such a way that deflection is split into pure bending 

deflection and shear deflection, while rotation is decomposed into cross-section rotation due to 

pure bending and axial shear angle, as a novelty. Application of both theories is illustrated in 

Section 4 within numerical examples for simply supported, clamped and free beam. In Section 5 

comparison of the theories is done. It is found that flexural part of the modified beam theory, used 

in the literature as an approximate alternative, is actually rigorous as that based on the original 

theory. Axial shear vibrations extracted from the Timoshenko beam theory, gives an additional 

natural frequency spectrum.  

In Appendix A frequency equations for clamped and free Timoshenko beam are specified, and 

in Appendix B the same is done for the modified beam theory. Linear relation between the above 

frequency equations is presented in Section 5. A detail analysis of vibration parameters in 

arguments of hyperbolic and trigonometric functions in solutions of beam response is performed in 

Appendix C. Their exact asymptotic values as function of frequency are specified, that is an 

improvements comparing to the known approximate values. It is confirmed that double frequency 

spectrum is phenomenon related only to the simply supported beam. In that way dilemma 

concerning this subject is overcome. In Section 6 valuable conclusions based on the performed 

detail analysis are drawn. 
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2. Timoshenko beam theory 
 

2.1 Basic equations 
 
Timoshenko beam theory deals with beam deflection and angle of rotation of cross-section, w  

and ψ, respectively (Timoshenko 1921, 1922). The sectional forces, i.e., bending moment and 

shear force read 

 ,
w

M D Q S
x x




  
   

  
                                                      (1) 

where D=EI is flexural rigidity and S=kGA is shear rigidity, A is cross-section area and I is its 

moment of inertia, k is shear coefficient, and E and G=E/(2(1+ ν)) is Young's modulus and shear 

modulus, respectively. Value of shear coefficient depends on beam cross-section profile (Cowper 

1966, Senjanović and Fan 1990). Stiffness properties for complex thin-walled girder are 

determined by the strip element method (Senjanović and Fan 1993). 

Beam is loaded with transverse inertia load per unit length, and distributed bending moment 

 
2 2

2 2
,x x

w
q m m J

t t

 
   

 
                                                        (2) 

where m=ρA is specific mass per unit length and J=ρI  is its moment of inertia. 

Equilibrium of moments and forces 

 ,x x

M Q
Q m q

x x

 
    

 
                                                        (3) 

leads to two coupled differential equations 
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D S J
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    
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                                                (4) 
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0

w w
S m

x x t

   
   
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                                                     (5) 

From (5) yields 

 
2 2

2 2

w m w

x x S t

  
  

  
                                                        (6) 

and by substituting (6) into (4) derived per x, one arrives at the single beam differential equation of 

motion 

 
4 4 2 2

4 2 2 2 2
0

w J m w m J w
w

x D S x t D t S t

     
      

       
.                                (7) 

Once (7) is solved angle of rotation is obtained from (6) as 

  
2

2
d

w m w
x f t

x S t


 
   

 
                                                   (8) 
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where f(t) is rigid body motion. 

If w is extracted from (4) and substituted in (5) the same type of differential equation as (7) is 

obtained for ψ and (8) for w. 

 

2.2 General solution of natural vibrations 
 

In natural vibrations w=W sin ωt and ψ=Ψ sin ωt, and Eqs. (7) and (8) are reduced to the 

vibration amplitudes 

 
4 2

2 2 2

4 2

d d
1 0

d d

W J m W m J
W

x D S x D S
  

   
       

   
                                   (9) 

 2d
d

d

W m
Ψ W x C

x S
    .                                                 (10) 

Solution of (9) can be assumed in the form W=Ae
γx

 that leads to biquadratic equation 

 4 2 0a b                                                               (11) 

where  

 2 2 2, 1
J m m J

a b
D S D S

  
   

      
   

     .                                       (12) 

Roots of (11) read 

 , , ,i i                                                                 (13) 

where 1i    and 

 

2
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2

m J m m J

S D D S D






   
       
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                                        (14) 
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2

4

2

m J m m J

S D D S D






   
       

   
.                                      (15) 

Deflection function with its derivatives and the first integral can be presented in the matrix form 

 

1

2 2 2 2
2

3 3 3 3
3

4

sh ch sin cos

ch sh cos sin

sh ch sin cos

ch sh cos sin

1 1 1 1
ch sh cos sind

x x x xW
Ax x x xW
Ax x x xW
Ax x x xW
A

x x x xW x

   

       

       

       

   
   

  
          
          

     
            


.                     (16) 

According to the solution of Eq. (9),  Eq. (10) and Eq. (1), beam displacements and forces read 
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 1 2 3 4sh ch sin cosW A x A x A x A x                                          (17) 

2 2 2 2

1 2 3 42 2 2 2
1 ch 1 sh 1 cos 1 sin

m m m m
Ψ A x A x A x A x

S S S S

   
       

   

        
                

        
 

(18) 

    2 2 2 2

1 2 3 4sh ch sin cos
m m

M D A x A x A x A x
S S

       
    

          
    

           (19) 

  
2

1 2 3 4ch sh cos sin
m

Q A x A x A x A x


       


     .                      (20) 

Relative values of constants Ai, i=1,2,3,4, are determined by satisfying four boundary conditions. 

Since there is no additional condition constant C in (10) is ignored. 

 Coefficient α, Eq. (14), can be zero, in which case 0 /S J   and 

   0 / /S D m J   . Deflection function according to (17) takes the form 

 1 2 3 0 4 0sin cosW A x A A x A x                                               (21) 

where the first two terms describe rigid body motion. If 0  , then i  , where 

 

2

2

4

2

m J m J m

S D S D D






   
       

   
                                       (22) 

and deflection function reads 

 1 2 3 4sin cos sin cosW A x A x A x A x       .                                (23) 

Expressions for displacements and forces Eqs. (17)-(20) have to be transformed accordingly. 

Hence, cosch x x  , sinsh x i x  , where imaginary unit is included in constant A1, 
2 2   , instead of single factor α it is necessary to write  , and finally all functions associated 

with A1 and A2 must have the same sign as those with A3 and A4. 

The above analysis shows that beam has a lower and higher spectral response, and transition 

one. Frequency spectra are shifted for threshold frequency ω0. This problem is also investigated in 

(Geist and McLaughlin 1997, van Rensburg and van der Merve 2006, Li 2008). The basic 

differential Eqs. (4) and (5) are solved in (van Rensburg and van der Merve 2006) by assuming 

solution in the form w=Ae
γx

 and ψ=Be
γx

 and the same expressions for displacements (17) and (18) 

are obtained. 

 

2.3 Simply supported beam 
 

Origin of the coordinate system is located in the middle of beam length due to reason of 

simplicity. Symmetric natural modes for lower frequency spectrum are considered for which 

constant A1=A3=0. Boundary conditions read W(l/2)=0 and M(l/2)=0, and one obtains from (18) 

and (19) system of equations 
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2

2 2 2 2 4

ch cos
02 2

0
ch cos

2 2

l l

A

m l m l A

S S

 

     

 
     
     
                 

.                         (24) 

Its determinant has to be equal to zero for non-trivial solution 

  2 2Det ch cos 0
2 2

l l
      .                                            (25) 

The above frequency equation is satisfied if βl/2=(2n−1)π/2. By employing expression (15) for β, 

yields 

 4 2 0n n n na b                                                              (26) 

where 

 2

n n

S D S
a

J J m


 
   

 
                                                      (27) 

 
 4
2 1

, , 1,2...n n n

nDS
b n

Jm l


 


                                                 (28) 

Two positive solutions of (26) read 

 
 

2

1,2 2 2 41 1 4
2

n n n n

S D J D J DJ

J S m S m Sm
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    
         

    
.                       (29) 

They characterize the first and the second frequency spectrum, respectively. Relative values of 

integration constants can be determined from the first of Eq. (24) 

 
   
2 4cos 0, ch

2 2

n n

n n

l l
A A         .                                         (30) 

Since one constant is zero, another is arbitrary and natural modes read Wn=Ancos((2n−1)πx/l), 

n=1,2, ... 

If 0   than frequency equation (25) is transformed into 

  2 2 cos cos 0
2 2

l l
     .                                               (31) 

Now  / 2 2 1 / 2nl n    and by employing (22) for   the same expression for natural 

frequencies as in the previous case is obtained, i.e., Eq. (29). Ratio of the integration constants is 

 
 

 
4

2

cos
02
0

cos
2

n n

n

n

l
A

lA





                                                           (32) 
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and both constants are arbitrary, that results in the common natural modes Wn=Ancos((2n−1)πx/l), 

where n>n0, n0= β0l/π. 

Hence, for an integer n two frequency spectra exist, one due to βn and another due to n , which 

are shifted for ω0. Since / 2 / 2n nl l   their natural modes are identical. 

In similar way eigenpairs for antisymmetric modes taking 2 4 0A A   into account, can be 

determined. In that case sinβnl/2=0 and sin / 2 0nl  , that requires / 2 / 2 , 1,2n nl l n n     ... 

Formula (29) for natural frequencies is valid with 2 /n n n l    . Integration constants are 

expressed with sh and sin functions in an previously analogous way. 

Natural frequencies can be also directly determined from differential Eq. (9) by assuming 

natural modes in the form Wn=Ansin(nπx/l). Formula (29) is obtained with /n n l  , 1,2n  ... 

that includes both symmetric ( 1,3n  ...) and antisymmetric ( 2,4n  ...) modes. 

Double frequency phenomenon is analysed in (van Rensburg and van der Merve 2006), starting 

from basic Eqs. (4) and (5) with two variables, and the same results as presented above are 

obtained. 

 

2.4 Clamped beam 
 
Symmetric natural modes are considered, taking A1=A3=0. Boundary conditions read W(l/2)=0 

and Ψ(l/2)=0  and one obtains by employing Eqs. (18) and (19) frequency equation for lower 

spectrum (A1) shown in Appendix A. The integration constants are represented with Eq. (30). 

Frequency equation for antisymmetric modes is obtained by taking constants A2=A4=0, Eq. (A2). 

In similar way frequency equations for symmetric and antisymmetric modes for higher spectrum 

are specified, Eqs. (A3) and (A4), respectively. 

 

2.5 Free beam 

 

In this case boundary conditions read M(l/2)=0 and Q(l/2)=0. Frequency equations for lower 

and higher spectrum, and symmetric and antisymmetric modes, are also given in Appendix A, Eqs. 

(A5), (A6), (A7) and (A8), respectively. 

 

 

3. Modified beam theory 

 

3.1 Differential equations of motion 

 

Beam deflection w and angle of rotation ψ are split into their constitutive parts, Fig. 1, i.e. 

 , , ,b
b s

w
w w w

x
   


     


                                                  (33) 

where wb and ws is beam deflection due to pure bending and transverse shear, respectively, and φ 

is angle of cross-section rotation due to bending, while ϑ is cross-section slope due to axial shear. 

Equilibrium Eqs. (4) and (5) can be presented in the form with the separated variables wb and ws, 

and ϑ 
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Fig. 1 Thick beam displacements (a) total deflection and rotation w,ψ, (b) pure bending 

deflection and rotation wb,φ, (c) transverse shear deflection ws, (d) – axial shear angle ϑ 

 

 

 
3 2 2 2

3 2 2 2

b b sw w w
D J S D S J

x t x x x t

 


      
     

      
                               (34) 

  
2 2

2 2

s
b s

w
S m w w S

x t x

  
   

  
.                                            (35) 

Since only two equations are available for three variables one can assume that flexural and axial 

shear displacement fields are not coupled. In that case, by setting both left and right hand side of 

(34) zero, yields from the former 

 
2 2

2 2

b b
s

D w J w
w

S x S t

 
  

 
.                                                 (36) 

By substituting (36) into (35) differential equation for flexural vibrations is obtained, which is 

expressed with pure bending deflection 

 
4 4 2 2

4 2 2 2 2

b b b
b

w J m w m J w S
w

x D S x t D t S t D x

      
      

        
.                          (37) 

Disturbing function on the right hand side in (37) can be ignored due to assumed uncoupling. Once 

wb is determined, the total beam deflection, according to (33), reads 

 
2 2

2 2

b b
b

D w J w
w w

S x S t

 
  

 
.                                                 (38) 

The right hand side of (34) represents differential equation of axial shear vibrations 
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2 2

2 2
0

S J

x D D t

 


 
  

 
.                                                  (39) 

 

3.2 General solution of flexural natural vibrations 
 

Natural vibrations are harmonic, i.e., wb=Wbsinωt and ϑ=Θsinωt, so that equations of motion 

(37) and (39) are related to the vibration amplitudes 

 
4 2

2 2 2

4 2

d d
1 0

d d

b b
b

W J m W m J
W

x D S x D S
  

   
       

   
                               (40) 

 
2

2

2

d
1 0

d

Θ S J
Θ

x D S

 

   
 

.                                                  (41) 

Amplitude of total deflection, according to (38), reads 

 
2

2

2

d
1

d

b
b

J D W
W W

S S x


 
   
 

.                                                (42) 

Eq. (40) is known in literature as an reliable alternative of Timoshenko differential equations, 

(Senjanović and Fan 1989, Senjanović et al. 2009, Li 2008). 

By comparing (40) with (9) it is obvious that differential equation of flexural vibrations of the 

modified beam theory is of the same structure as that of Timoshenko beam theory, but they are 

related to different variables, i.e., W and Wb deflection, respectively. Therefore, general solution 

for W presented in Section 2.2 is valid for Wb with all derivatives. In that case flexural 

displacements and sectional forces read 

 

2 2 2 2

1 2

2 2 2 2

3 4

1 sh 1 ch

1 sin 1 cos

J D J D
W B x B x

S S S S

J D J D
B x B x

S S S S

     

     

   
        

   

   
        

   
   

                       (43) 

  1 2 3 4

d
ch sh cos sin

d

bW
Φ B x B x B x B x

x
                                    (44) 

  
2

2 2 2 2

1 2 3 42

d
sh ch sin cos

d

bW
M D D B x B x B x B x

x
                              (45) 

 

3
2 2 2 2 2

1 23

2 2 2 2

3 4

d d
ch sh

d d

cos sin .

b bW W J J
Q D J D B x B x

x x D D

J J
B x B x

D D

        

       

    
           

   

   
       

    
   

       (46) 
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Fig. 2 Analogy between axial shear model and stretching model 

 

 

Parameters α and β are specified in Section 2.2, Eqs. (14) and (15), respectively. 

In this case also parameter α can be zero that gives 0 /S J   and    0 / /S D m J   . 

By taking this fact into account, bending deflection bW  is of the form (21), while total deflection 

according to (43), reads 

  2

1 2 0 3 0 4 0sin cos
D

W B x B B x B x
S
                                           (47) 

where 
1B  and 

2B  are new integration constants instead of B1 and B2, which are infinite due to zero 

coefficients. 

Concerning the higher order frequency spectrum the governing expressions for displacements 

and forces, Eqs. (43)-(46), have to be transformed in the same manner as explained in Section 2.2. 

 

3.3 General solution of axial shear natural vibrations 
 

Differential Eq. (41) for natural axial shear vibrations of beam reads 

 
2

2

2

d
0

d

Θ J S
Θ

x D D

 

   
 

.                                                   (48) 

It is similar to the equation for rod stretching vibrations 

 
2

2

2

d
0

d
R

u m
u

x EA
  .                                                         (49) 

Difference is additional moment SΘ, which is associated to inertia moment ω
2
JΘ, and represents 

reaction of an imagined rotational elastic foundation with stiffness equal to the shear stiffness S, as 

shown in Fig. 2. 

Solution of (49) and corresponding axial force 
d

d

u
N EA

x
  read 

 1 2sin cosu C x C x                                                       (50) 

  1 2cos sinN EA C x C x                                                   (51) 

where  /R m EA  . Based on analogy between (48) and (49) one can write for shear slope 

angle and moment 
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 1 2sin cosΘ C x C x                                                        (52) 

  1 2cos sinM D C x C x                                                    (53) 

where 

 2 J S

D D
   .                                                           (54) 

Between natural frequencies of axial shear beam vibrations and stretching vibrations there is 

relation 
2 2 2

0 R    , where 0 /S J   belongs to the axial shear mode obtained from (44), 

0 1Θ A A x  , (which associates on sheared set of playing cards). It is interesting that 0  is at the 

same time threshold frequency of flexural vibrations, as explained in Section 2.2. 

 

3.4 Simply supported beam 
 
Let us consider symmetric modes for which A1=A3=0, and boundary conditions W(l/2)=0 and 

M(l/2)=0. By employing formulae (43) and (45) one obtains frequency equation in the form 

  2 2 2Det 1 ch cos 0
2 2

J l l

S
    

 
    
 

.                                    (55) 

It includes additional factor comparing to (25) based on Timoshenko beam theory, from which 

threshold frequency 0 /S J   is determined. Since the remained part of (55) is identical to (25), 

everything what is written in Section 2.3 is valid in this case including formula (29) for natural 

frequencies. If double frequency phenomenon is analysed in the same way as that for Timoshenko 

beam, the same results are obtained. 

 

3.5 Clamped beam 
 

Boundary conditions read W=0 and Φ=0 at x=±l/2. By employing (43) and (44) one obtains 

frequency equations for the first response spectrum and symmetric and antisymmetric modes listed 

in Appendix B, Eqs. (B1) and (B2). In a similar way, after modification of Eqs. (43) and (44) for 

higher spectrum, the obtained frequency equations are presented by Eqs. (B3) and (B4). 

 

3.6 Free beam 
 

For a free beam M=0 and Q=0 at x=±l/2. By employing (45) and (46) one obtains frequency 

equations for the first response spectrum and symmetric and antisymmetric modes shown in 

Appendix B, Eqs. (B5) and (B6). Frequency equations for higher spectrum, after modification of 

Eqs. (45) and (46), are represented by Eqs. (B7) and (B8). 

 

3.7 Axial shear vibrations 
 

A beam performing axial shear vibrations can be fixed or free at both ends, or one end can be 

fixed and another free. Mode function Θn=Csinηnx, ηn=nπ/l, n=1,2 ... satisfies boundary conditions 

529



 

 

 

 

 

 

Ivo Senjanović and Nikola Vladimir 

for fixed beam Θ(0)= Θ(l)=0. By taking into account Eq. (54) for η one obtains expression for 

natural frequencies 

 

2

n

S D n

J J l




 
   

 
.                                                       (56) 

If beam is free M(0)=M(l)=0, and frequency equation reads η
2
sinηl=0. The first condition η=0 

gives according to (54) threshold frequency 0 /S J  , while the second condition sinηl=0 

requires ηnl=nπ/l. Hence, natural frequencies are represented by Eq. (56) and natural mode is 

Θn=Csinηnx. 

For combined fixed-free boundary conditions, Θ(0)=0 and M(l)=0, frequency equation reads 

ηcosηl=0. Again, η=0 gives ω0 and cosηl=0 requires ηn=(2n−1)π/2l, n=1,2 ... Expression for 

natural frequencies reads 

 
 

2

2 1

2
n

nS D

J J l




 
   

 
.                                                  (57) 

Natural mode is sinn nΘ C x . 

 

 

4. Illustrative numerical examples 
 

4.1 Simply supported beam 
 

A beam of I-profile with height-to-length ratio h/l=0.2 and shear coefficient k=5/6 is analysed. 

Due to reason of simplicity dimensionless frequency parameter λ=ω/ω0 is introduced. Natural 

frequencies of flexural vibrations are given by (29) and frequency parameter can be presented in 

the form 

 
   

21,2 1
1 1

2

f

n n n nc c d                                               (58) 

where 

 
   

 
22

2

2 1 8 1
1 , .n n n n n

I
c e d e e n

k k Al

 


  
    
 

,                                 (59) 

Its values for the first and second frequency spectrum are listed in Table 1. They are the same for 

both Timoshenko beam theory (TBT) and modified theory (MBT). 

In flexural vibrations of a simply supported beam, angle of rotation is free. Therefore, let us 

consider axial shear vibrations of free beam. Natural frequencies are given by (56) and frequency 

parameter can be presented in the form 

 
 2 1

1s

n ne
k





  .                                                      (60) 
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Table 1 Frequency parameter λ=ω/ω0 of simply supported beam, h/l=0.2 

n 
Flexural, TBT and MBT Axial 

1
st
 spectrum, 

1f

n  2
nd

 spectrum, 
2f

n  Stretching, 
t

n  Shear, 
s

n  

0  1.000*  1.000* 

1 0.055 1.064 0.320 1.050 

2 0.189 1.227 0.641 1.188 

3 0.362 1.445 0.961 1.387 

4 0.549 1.693 1.281 1.625 

5 0.741 1.959 1.602 1.888 

6 0.935 2.237 1.922 2.167 

6.335* 1.000*    

7 1.128 2.524 2.243 2.455 

8 1.321 2.816 2.563 2.751 

9 1.512 3.113 2.883 3.052 

10 1.702 3.414 3.204 3.356 

11 1.891 3.718 3.524 3.663 

12 2.079 4.024 3.844 3.972 

*Threshold 

 

 

The second term in (60) belongs to the stretching vibrations and values for both parameters are 

listed in Table 1. Values of t

n  are larger than 1f

n  due to higher tensional than flexural stiffness. 

Both the second flexural spectrum, 2f

n , and axial shear spectrum, s

n , start with threshold 

parameter 0 1  , and it is interesting that they are very close in spite of different number of modal 

nodes, Table 1. 

 

4.2 Clamped beam 
 

Values of natural frequencies for TBT in the lower and higher spectrum are determined by 

frequency equations (A1), (A2), (A3) and (A4) for symmetric and antisymmetric modes. Eqs. 

(B1), (B2), (B3) and (B4) are used for determining frequencies of MBT. Values of frequency 

parameters are equal for both TBT and MBT and are listed in Table 2. Frequency parameter for 

axial shear vibrations of fixed beam, which is equal to that of free beam is also listed in Table 2. In 

spite of the fact that 
fH

j  and s

n  start with the threshold value λ0=1, they diverge for higher 

modes. 

 

4.3 Free beam 
 

Values of natural frequencies according to TBT and MBT are determined by Eqs. (A5), (A6), 

(A7) and (A8), and Eqs. (B5), (B6), (B7) and (B8), respectively. Values of frequency parameters 

are equal and are shown in Table 3, together with those for axial shear vibrations, which are the 

same as in the previous cases. 
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Table 2 Frequency parameter λ=ω/ω0  of clamped beam, h/l=0.2, k=5/6 

Mode no. 

j 

Flexural TBT and MBT 
Axial shear, 

s

j  
Lower spectrum, 

fL

j  Higher spectrum, 
fH

j  

0   1.000* 

1 0.106  1.050 

2 0.242  1.188 

3 0.404  1.387 

4 0.577  1.625 

5 0.758  1.888 

6 0.941  2.167 

* 1.000* 1.000*  

7  1.066 2.455 

8  1.123 2.751 

9  1.235 3.052 

10  1.314 3.356 

11  1.451 3.663 

12  1.508 3.972 

*Threshold 

 
Table 3 Frequency parameter λ=ω/ω0  of free beam, h/l=0.2, k=5/6 

Mode no. 

j 

Flexural TBT and MBT 
Axial shear, 

s

j  
Lower spectrum, 

fL

j  Higher spectrum, 
fH

j  

0   1.000* 

1 0.117  1.050 

2 0.272  1.188 

3 0.453  1.387 

4 0.638  1.625 

5 0.819  1.888 

6 0.967  2.167 

* 1.000* 1.000*  

7  1.070 2.455 

8  1.097 2.751 

9  1.272 3.052 

10  1.279 3.356 

11  1.299 3.663 

12  1.473 3.972 

*Threshold 

 

 

5. Comparison of Timoshenko beam theory and modified beam theory 
 

5.1 Natural frequencies 
 

Timoshenko beam theory deals with two differential equations of motion with two basic 
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variables, i.e., deflection and angle of rotation. That system is reduced to one equation in terms of 

deflection and all physical quantities depend on its solution. On the other side, in the modified 

beam theory total deflection is split into pure bending deflection and shear deflection, while total 

angle of rotation consists of pure bending rotation and axial shear angle. The governing equations 

are condensed into single one for flexural vibrations with bending deflection as the main variable, 

and another for axial shear vibrations. Differential equations for flexural vibrations in both theories 

are of the same structure so that expressions for natural frequencies of simply supported beam are 

identical. Numerical examples show that values of natural frequencies for other boundary 

conditions are also the same, in spite of the fact that frequency equations are different. Such a 

result is not expected since for clamped Timoshenko beam boundary angle 0Ψ Φ Θ   , while 

in the modified theory only 0Φ  . Hence, one could conclude that the Timoshenko beam theory 

will give somewhat higher frequency values than the modified theory due to fixation of the 

complete angle. Similar situation occurs in case of free beam, where total moment for Timoshenko 

beam 0Ψ Φ ΘM M M   , and in the modified theory 0ΦM  . 

Equal natural frequencies of flexural vibrations determined numerically can not be accepted as 

a rule. That fact should be confirmed in an analytical way. By comparing, for instance, frequency 

equations for clamped beam in lower spectrum and symmetric modes, Eqs. (A1) and (B1), they 

have the same functions but different coefficients. Since the equations give the same natural 

frequencies, their coefficients should be proportional. These equations can be written in matrix 

notation 

 

2 2 2 2

2 2

2 2

1 1 ch sin
02 2

0
1 1 sh cos

2 2

J D J D l l

S S S S

m m l l

S S

      

 
  

 

          
     
     
    

.                       (61) 

To meet the above condition of equal frequencies, determinant of the system (61) has to be zero. 

After some algebra determinant can be presented in the form 

    
2 2

2 2 2 4

2 2 2
Det DS Sm Jm

S

 
    

 


   .                                   (62) 

By substituting Eqs. (14) and (15) for α and β into (62) yields that the term in the brackets is zero. 

In similar way one can prove that determinants of all pairs of frequency equations (Ai) and (Bi), 

i=1,2...8 in Appendix A and B respectively, are zero. That is also valid for a beam with mixed 

boundary conditions, in which case complete expressions for displacements and forces with all 

four integration constants are taken into account. 

 

5.2 Natural modes 
 

Formulas for displacements and forces in TBT and MBT, Eqs. (17)-(20) and (39)-(42), 

respectively, are expressed with the same hyperbolic and trigonometric functions but their 

coefficients are different. Hence, it is necessary to compare mode shapes determined by TBT and 

MBT. For that purpose the previous example of clamped beam with symmetric modes in the lower 

frequency spectrum is taken into consideration. 

Natural modes are characterized by shape, while their amplitude is arbitrary. From the first 
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equation in (28) one finds 

 4 2

ch
2

cos
2

l

A A
l





                                                             (63) 

where constant A2 is chosen as referent one. In order to ensure the same total beam deflection 

within TBT and MBT, Eqs. (17) and (39), respectively, the following relations for integration 

constants in (39) have to be applied 

 2 2
2 2

1

1

B A
J D

S S
 



 

                                                    (64) 

 4 4
2 2

1

1

B A
J D

S S
 



 

.                                                  (65) 

Numerical calculation of displacements and forces within TBT and MBT is performed for the 

following input data: h=2 m, l=10 m, E=2.1∙10
11

 N/m
2
, ν =0.3, ρ =7850 kg/m

3
. Natural frequency 

is calculated from known frequency parameter λi in Table 2, as ωj= ω0λj. Diagrams for total 

deflection, WT and WM, angle of rotation, Ψ and Φ, bending moment, MT and MM, and shear force, 

QT and QM, for the first mode are shown in Fig. 3. Exactly the same values for TBT and MBT are 

obtained. Bending deflection Wb and shear deflection Ws, determined within MBT, are also 

included in Fig. 3. Their boundary values are cancelled, resulting in zero edge total deflection. 

Shape of shear deflection mode is similar to that of bending moment, as result of their structure, 

Eqs. (38) and (41), respectively. 

Diagrams of displacements and forces for the fifth mode determined by TBT and MBT, are 

shown in Fig. 4, and also are identical. Boundary values of bending deflection and shear deflection 

are quite large, but their sum is zero. 

Equal displacement and force modes determined by TBT and MBT indicate that coefficients in 

corresponding equations are identical and this can be proved analytically. Let us compare, for 

instance, the second coefficient in the TBT shear force and that of MBT, Eqs. (20) and (42), 

respectively 

 
2

2 2

2 2

m J
A D B

D


  



 
    

 
.                                              (66) 

By taking into account (64) the above relation can be presented in the form 

 
2 2 2 2 2 21 0

J J D
m

D S S
     

   
       

   
.                                     (67) 

By substituting Eq. (14) for α into (67) all terms are cancelled. 

Beam deflection W is expressed with hyperbolic and trigonometric functions, Eq. (17). The 

latter are related to simply supported beam and the former compensate boundary influence, which 

is reduced to local effect for higher modes, as can be seen by comparing the first and fifth modes 
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Fig. 3 The first flexural mode of clamped beam, A2=−1 m 

 

 

Fig. 4 The fifth flexural mode of clamped beam, A2=−0.1m 

 

 

shown in Figs. 3 and 4. After threshold frequency ω0 boundary interference almost disappears and 

modes are expressed only with trigonometric functions as in the case of simply supported beam. 

Therefore, natural frequencies ωj > ω0 of clamped and free beam are very close, Tables 2 and 3, 

535



 

 

 

 

 

 

Ivo Senjanović and Nikola Vladimir 

and are of the same order of magnitude as those in the first frequency spectrum of simply 

supported beam, Table 1. Vibration parameters in arguments of trigonometric functions converge 

to the asymptotic value /J D   and /m S   with frequency increased, as elaborated 

in Appendix C. 

Axial shear vibrations are analysed within MBT assuming zero deflection. Their first mode 

occurs at threshold frequency 0 , which corresponds to transition flexural mode, Eq. (21), with a 

larger number of modal nodes where deflection is zero. Hence, assumption of uncoupled flexural 

and axial shear vibration is realistic. The same differential equation for axial vibration as (37) can 

be obtained in TBT from Eq. (4), by ignoring deflection. 

 

5.3 Static solution 
 

Comparison of TBT and MBT for static analysis is also interesting. One expects that 

expressions for static displacements can be obtained directly by deduction of dynamic expressions. 

In case of TBT static term of Eq. (9) leads to W=A0+A1x+A2x
2
+A3x

3
, and Eq. (10) gives Ψ 

=−(A1+2A2x+3A3x
2
). That results in zero shear force Q, Eq. (1), and is also obvious from (20) if 

ω=0 is taken into account. Therefore, in order to overcome this problem, it is necessary to return 

back to Eqs. (4) and (5) with static terms. By substituting (5) into (4), yields Dd
3
Ψ /dx

3
=0, i.e., Ψ 

=−(A1+2A2x+3A3x
2
). Based on known Ψ, one obtains from (4) 

  2 3

0 0 1 2 3 2 3

d 2
d 3

d

D Ψ D
W Ψ x A A A x A x A x A A x

S x S
         .                   (68) 

On the other side, static part of Eq. (36) of MBT gives Wb=B0+B1x+B2x
2
+B3x

3
, and from (38) 

directly yields 

  
2

2 3

0 1 2 3 2 32

d 2
3

d

b
b

D W D
W W B B x B x B x B B x

S x S
                                 (69) 

which is the same as (68). Angle of rotation is Φ =−dWb/dx=−(B1+2B2x+3B3x
2
) that is the same as 

the above Ψ in TBT. If static solution for W and Φ, which are strongly dependent, is used for 

development of beam finite element shear locking, as mentioned in the Introduction, does not 

occur. 

 

 

6. Conclusions 
 

The research is motivated by the fact that an overall physical insight into Timoshenko beam 

theory has not been done after more than 90 years of its wide and successful application. The 

modified Timoshenko beam theory is result of such investigation. Based on the performed 

comparative analysis between the Timoshenko beam theory (TBT) and the modified beam theory 

(MBT), the following conclusions are drawn: 

• TBT deals with two differential equations of motion with total deflection and rotation, which 

are condensed into single equation in terms of deflection. 

• In MBT total deflection is split into pure bending deflection and transverse shear deflection, 

and total rotation is decomposed into bending angle and axial shear angle. 

• MBT operates with two uncoupled differential equations of motion, one for flexural and 
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another for axial shear vibrations in terms of pure bending deflection and axial shear angle, 

respectively. 

• TBT and MBT flexural differential equations are of the same structure and give the same 

values of natural frequencies and mode shapes, not only for simply supported beam, but also for 

any combination of boundary conditions. 

• Two flexural response spectra are obtained for simply supported beam by both theories, 

shifted for threshold frequency. 

• For a beam with mixed boundary conditions lower frequency spectrum is obtained up to 

threshold frequency, and then higher spectrum is continued. Double frequency spectrum doesn’t 

occur in this case. 

• Natural modes of higher spectrum are sinusoidal as in case of simply supported beam, and 

influence of boundary conditions is considerably reduced. 

• Threshold frequency depends on shear stiffness and mass moment of inertia, and its value is 

increased for more slender beams. 

• Axial shear vibrations result with an additional frequency spectrum, which starts with 

threshold frequency. Differential equation for axial shear vibrations can also be extracted from 

Timoshenko equations by assuming zero deflection. 

• MBT with its differential equation is already known in literature, as an approximate 

alternative of TBT developed under some assumption. The performed comparative analysis shows 

that introduced assumption actually represents the reality, and therefore MBT is rigorous theory as 

well as TBT. 

• Moreover, MBT holds mathematical model of axial shear vibrations, extracted from TBT, 

which is not manifested in flexural response of Timoshenko beam since flexural and axial 

displacement fields are not coupled. 

The obtained results within this investigation could have some impact on the other aspects of 

application of the Timoshenko beam theory, as referred in the Introduction, like beam on elastic 

foundation, beam stability, elastically connected multiple beams, thick plate, beam and plate finite 

elements, etc. 

Timoshenko beam theory and its modification are the first order shear deformation theories. In 

future work it would be interesting to investigate possibility to extend the modified beam theory to 

the second order, as it is done for Timoshenko beam theory by Levinson (1981a, 1981b). High 

order shear deformation beam theory is important for instance for longitudinal strength analysis of 

multideck ships like Cruise Vessels. They are characterized with quite stiff hull up to main deck, 

and high and light superstructure, that manifests non-uniform profile of axial displacement of ship 

cross-section, (Senjanović and Tomašević 1999). 
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Appendix A. frequency equations for Timoshenko beam theory 
 

Clamped beam: 
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Higher spectrum, antisymmetric modes 
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Free beam: 

Lower spectrum, symmetric modes 
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Lower spectrum, antisymmetric modes 
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Higher spectrum, symmetric modes 
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Higher spectrum, antisymmetric modes 
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Appendix B. frequency equations for modified beam theory 
 

Clamped beam: 

Lower spectrum, symmetric modes 
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Lower spectrum, antisymmetric modes 
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Higher spectrum, symmetric modes 
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Higher spectrum, antisymmetric modes 
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Free beam: 

Lower spectrum, symmetric modes 
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Lower spectrum, antisymmetric modes 
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Higher spectrum, symmetric modes 
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Higher spectrum, antisymmetric modes 
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Appendix C. analysis of vibration parameters 
 

Vibration parameters  ,  ,   and   in arguments of hyperbolic and trigonometric functions 

of beam response can be normalized in dimensionless form and presented as function of threshold 

frequency 0  in order to analyse their relationship. 

Beam parameters are the following: 
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                         .                    (C1) 

By employing (C1) threshold frequency reads 
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Any frequency can be expressed as fraction of threshold frequency, i.e. 0  . Terms in Eq. 

(14) for   take the following form 
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By substituting the above formulas into Eqs. (14) and (15) yields 
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where /r I A  is the radius of gyration. In the case of threshold frequency 0  , 0 1    

and 0 0r  , while 

 0

1
1r


  .                                                           (C6) 

For very high frequencies 1  , both r  and r  converge to the asymptotic values 

 ,a ar r
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In similar way parameter of axial shear vibrations can be presented in the form 
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By taking into account (C1) one obtains 
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Fig. C1 Diagrams of beam vibration parameters 
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Asymptotic value of r  is identical to that of r , Eq. (C7). 

Vibration parameters for rod stretching vibration reads  /R m EA  . By taking into 

account 0R   and 0 /S J  , one obtains that r  is identical to asymptotic value ar , Eq. 

(C7). 

Diagrams of dimensionless beam vibration parameters r , r , r , r  and r  as function of 

  are shown in instructive Fig. C1. Parameter r  is transformed into r  at the threshold 

frequency, where 0 0r  , while 0r  is presented with (C6). Both r  and r  converge to 

asymptotic values which are different. Parameter of axial shear vibrations r  follows r , giving 

a close higher frequency spectrum. 

A similar parametric analysis is performed by van Rensburg and van der Merve (2006), where 

flexural parameters 
2 ,  

2 ,  and 2  as functions of 
2  are shown. However, only slopes of their 

asymptotes are determined and indicated in corresponding figure of (van Rensburg and van der 

Merve 2006) in intuitive positions, which doesn’t provide realistic insight into parameter 

convergence. 

In general case natural frequencies are determined from frequency equation 

    Det , 0F      , which is formulated by satisfying boundary conditions. Step-by-step 

numerical procedure is used until such values of coupled vibration parameters     and     

meet the above condition. These values are distinct points in corresponding diagrams shown in 

Fig. C2 for clamped beam. 

If beam is simply supported values of parameter pairs are known a priori 

    
n n

r
r r n

l
    .                                                   (C10) 
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Fig. C2 Relations between vibration parameters and natural frequencies for clamped beam 

 

 
Fig. C3 Relations between vibration parameters and natural frequencies for simply supported beam 

 

 

Fig. C4 Relations between vibration parameters and natural frequencies for axial vibrations 
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By entering in parameter diagrams, natural frequencies for the first and second spectrum can be 

determined as shown in Fig. C3. Hence, for one value of n there are two different frequencies but 

one mode shape. 

In the above way it is proved in a physically transparent way that double frequency 

phenomenon is a characteristic of simply supported beam only. 

Axial vibrations have also two spectra for any boundary conditions, one for stretching motion 

and another for shear motion. For given n, pairs of frequencies are obtained, also shown in Fig. 

C4. Corresponding natural modes are of the same shape, but of different physical meaning. 
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