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Abstract.  This paper studies the static and dynamic characteristics of composite plates subjected to an 
arbitrary periodic load in hygrothermal environments. The material properties of composite plates are 
depended on the temperature and moisture. The governing equations of motion of Mathieu-type are 
established by using the Galerkin method with reduced eigenfunction transforms. A periodic load is taken to 
be a combination of axial pulsating load and bending stress in the example problem. The regions of dynamic 
instability of laminated composite plates are determined by solving the eigenvalue problems based on 
Bolotin’s method. The effects of temperature rise and moisture concentration on the dynamic instability of 
laminated composite plates are investigated and discussed. The influences of various parameters on the 
instability region and dynamic instability index are also investigated. The numerical results reveal that the 
influences of hygrothermal effect on the dynamic instability of laminated plates are significant. 
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1. Introduction 

 
Most laminated composite plates can offer a higher ratio of strength and stiffness to weight 

than traditional metal plates do and thus have been widely used in many engineering industries. 

When a plate is subjected to periodic loads, it may experience the dynamic instability due to 

parametric resonance. It is important in theory and practice to accurately determine the region of 

dynamic stability of the plate, and a careful investigation of this phenomenon is necessary. 

Numerous references pertaining to the parametric resonance of plates can be found in the books 

written by Bolotin (1964) and Evan-Ivanowski (1976). The dynamic stability of laminate 

composite plates has been studied by many researchers using various approximate methods (Chen 

et al. 2009, Chakrabarti 2008, Dey and Sinqha 2006, Patel et al. 2009). In addition, the stability of 

composite laminate plates in hygrothermal environments has been also studied by many 

researchers. During the service life, the elevated temperature and moisture will reduce the elastic 

modulus and degrade the strength of the composite laminated material (Gigliottia et al. 2006, 
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Kumar and Singh 2012, Rao and Sinha 2004a). In such hygrothermal circumstances, the stresses 

will be induced in the laminated composite plates and consequently lead to the change in 

mechanical behaviors. So the quantity of the research in stability behavior of laminated composite 

plates in hygrothermal environments considerably increased in recent years.  

Parhi et al. (2001) presented the dynamic behavior of delaminated composite shells subjected 

to a hygrothermal environment. The analysis took into account the lamina material properties at 

elevated moisture concentration and temperature. Newmark's direct integration scheme was used 

to solve the dynamic equation of equilibrium at every time step during the transient analysis. The 

results showed a reduction in the fundamental frequency with an increase in the percentage of 

uniform moisture content as well as temperature for any size of delamination considered. The 

effect of hygrothermal conditions on the nonlinear vibration (Huang et al. 2004) and dynamic 

response (Shen et al. 2004) of laminate plates resting on an elastic foundation were studied. The 

material properties of the composite were affected by the variation of temperature and moisture 

based on a micromechanical model of a laminate. The equations of motion were solved by an 

improved perturbation technique to determine nonlinear frequencies and dynamic responses of 

laminated plates. The results showed that the hygrothermal environment has a significant effect on 

the natural frequency, nonlinear to linear frequency ratios and dynamic responses of the plate.  

Rao and Sinha (2004b) presented the effects of temperature and moisture on the free vibration 

and transient response of composites. The analysis accounted for the degradation of composite 

properties due to both temperature and moisture concentration. The numerical results for the 

natural frequencies and transient response of multidirectional composites under the effect of both 

temperature and moisture concentration were presented and discussed. The active stiffening and 

active compensation analyses were carried out to present the influence of active stiffness on the 

dynamic behavior of piezo-hygro-thermo-elastic laminates by Raja et al. (2004). Through a 

parametric study, the influence of active stiffening and active compensation effects on the 

dynamics of laminated plates and shells were highlighted. The reduction in natural frequencies of 

laminates due to hygrothermal strain is actively compensated by active stiffening. Dynamic 

responses of an orthotropic plate subjected to hygrothermal environments were optimized by Cho 

(2009). The dynamic deflection and natural frequency were minimized by optimizing design 

variables. The dynamic analysis of orthotropic plate under temperature and humidity boundary 

conditions was presented. The nonlinear dynamic response of laminated shells with imperfection 

in hygrothermal environments was studied by Nanda and Pradyumna (2011). The theoretical 

formulations were based on the first-order shear deformation theory and von Karman nonlinear 

kinematics. An imperfection function capable of modeling a variety of sine type, global type, and 

localized type imperfections was used. The effects of moisture and temperature on the nonlinear 

free vibration and transient responses of laminated composite shells were studied. There is no 

literature investigating the dynamic behavior of shear deformable laminated plates subjected to an 

arbitrary periodic load under hygrothermal environmental conditions.  
The dynamic vibration behavior of composite plates under arbitrary initially stresses was 

analyzed by the author et al. (2009). Then the dynamic instability of laminated plates under 

arbitrary in-plane periodic loads in thermal environments (Chen et al. 2013) was presented. The 

governing partial differential equations of motion were established by a perturbation technique. 

The effects of temperature, modulus ratio and dynamic load on the dynamic instability of 

laminated plates were investigated. In the present study, the governing equations of laminated 

plate in arbitrary periodic loads under hygrothermal environmental conditions were further 

derived. The Galerkin method was applied to the governing partial differential equations to yield 
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ordinary differential equations. The dynamic load was taken to be a combination of a periodic 

bending stress and a periodic axial stress in the example problems. The material properties of 

laminated plate were assumed to be functions of temperature and moisture, and both ambient 

temperature and moisture were assumed to feature a uniform distribution. Based on Bolotin’s 

method, a set of ordinary differential equations with periodic coefficients of Mathieu-Hill type was 

formulated to obtain the boundaries of the regions of dynamic instability of laminated composite 

plates. An eigenvalue problem was solved to determine the boundary frequencies for the 

boundaries of instability regions. And the effects of temperature rise, moisture concentration and 

fiber volume fraction on the region of hygrothermal dynamic stability were studied. 

 
 
2. Theoretical formulations  

 
The dynamic equations of a composite plate with uniform thickness h in a general state of 

general time-varying initial stress are established in this study. Hamilton’s principle as described 

by Brunell and Robertson (1974), Chen et al. (2006) is applied to derive the governing equations 

of motion of the plate 

dt)WWK(Uδ
t

t
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where  
t

U  is the strain energy, dVU
ij

V
ijt


0

 

t
K  is the kinetic energy, dVvvK

i

iV
t

.

0

2

1    

e
W  is the work of external forces, dSvpW

S
iie 

0

 

i
W  is the work of internal forces, dVvXW

ov
iii    

The application of the variational principle leads to the general equations and boundary 

conditions. σij is the stress referred to the material coordinates; εij is the strain referred to the 

material coordinates; vi is the displacement referred to the spatial frame; Xi is the body force per 

unit initial volume and pi is the external force per unit initial surface area. Then taking the 

variation, integrating the kinetic energy term by parts with respected to time, Eq. (1) becomes 
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0 0

])()([
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iiiiiij

t

t V
ij

dtdSvpdVvvvX   =0                (2) 

In order to account for the transverse shear deformation and rotary inertia effects in the 

laminated composite plate, the incremental displacements are assumed to be of the following 

forms based on the first-order shear deformation plate theory 

x
v (x, y, z, t)

x
u= (x, y, t)

x
+z (x, y, t) 

y
v (x, y, z, t)

y
u= (x, y, t)

y
+z (x, y, t) 

z
v (x, y, z, t)=

z
w (x, y, t)                          (3) 

where ux, uy and wz 
are displacements at the midplane in the x, y and z directions, respectively; φx 
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and φy are rotation angles about y and x axes, respectively. The x and y axes of the coordinate 

system are set to coincide with the two edges of the laminate.  
The constitutive matrix equation for a typical kth layer with reference to the material-axis 

coordinate system can be written as 
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(4) 

where Cij is the material stiffness of lamina. ∆T and ∆C are respectively the rise in temperature and 

moisture concentration; αxx, αyy and αxy 
are transformed thermal expansion coefficients in the 

principal material directions; hygro coefficients βxx, βyy and βxy 
are moisture expansion coefficients. 

If Vf and Vm are the fiber and matrix volume fractions of a plate, the two volume fractions are 

related by 

 1
mf

VV
                                 

(5) 

Then, ρf and ρm are fiber and matrix mass density, and the mass density of a laminate is 

obtained by 

 
mmff

VV  
                               

(6) 

The material properties of laminate are function of temperature and moisture. In terms of a 

micro-mechanical model of the laminate, the thermal expansion coefficients in the longitudinal 

and transverse directions can be written as (Tsai and Hahn 1980) 
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where Ef, αf and υf are Young modulus, thermal expansion coefficient and Poisson ratio of the 

fiber, respectively. Em, αm and υm are corresponding properties for the matrix. The Poisson ratio υxu 

is 
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(8) 

The longitudinal and transverse coefficients of humid expansion of a lamina may be written as 
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(9) 

where cfm, βf and βm is the moisture concentration ratio, fiber and matrix humid expansion 

coefficient, respectively. Thus, the material properties of lamina can be expressed as 
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The general time-dependent initial stress system applied to the rectangular laminated plate is 

assumed to have the form: 

h
ij

/2z= m

ij

n

ij
   

 htzt Dm

ij
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ij

D

ij

S

ij
/)cos(2)cos(    (i, j = x, y, z )               (11) 

which is consisted of the spatially uniform longitudinal, transverse, shear, bending and twisting 

stress. Here S
ij  and D

ij  are the static and dynamic components of the periodic normal or shear 

stress n
ij ; Sm

ij  and Dm
ij  are the static and dynamic components of the periodic pure bending 

or torsion stress m
ij ;   is the disturbing frequency of the dynamic loads. Substitute Eqs. (3)-

(11) into Eq. (2), perform all necessary partial integrations and group terms together by the 

displacements variation, the dynamic equations of rectangular laminated plates are obtained as 

follows 
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(16) 

The coefficients of above equations are given in the Appendix. 

 

 

3. Hygrothermal dynamic instability analysis 
 

As the dynamic behavior of a laminated plate in hygrothermal environments is affected by 

many parameters, it is difficult to study all various cases. Hence, this study investigates the 

dynamics behavior of a simply supported rectangular laminated plate subjected to a periodic 

spatially uniform in-plane stress which consists of a pulsating longitudinal normal stress and a 

pure bending stress. With assuming all other stresses zero, the stress system Eq. (11) is reduced to 

hz
m

m

xx

n

xxxx
/2/hz2=

n
                           

(17) 

Here
n = tD

xx
S
xx  cos = tDS  cos  and 

m = tDm
xx

Sm
xx  cos = tDmSm  cos . The 
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static and dynamic stress components, σS, σD, σSm
 and σDm, are taken to be constants. The nonzero 

loads are only Nxx = hσn, Mxx = Sh2σm/6, 12/n
3*

xx h=M  , where bending ratio 
nmS  /  is the 

ratio of bending stress to normal stress. The hygrothermal coupling in governing equations 

vanishes. 

The boundaries of the rectangular plate are simple supported along x=0 and a, y=0 and b. To 

satisfy the simply supported boundary conditions, the following shape modes of displacement 

fields are used. 

 mnx
U h=u (t) cos( x/am ) sin( y/bn ) 


mny

V hu (t) sin( x/am ) cos( y/bn ) 


mnz

W hw (t) sin( x/am ) sin( y/bn ) 


xmnx

 (t) cos( x/am ) sin( y/bn ) 

 
ymny

 (t) sin( x/am ) cos( y/bn )                  (18) 

Assume that the  (t)= T

ymnxmnmnmnmn
WVU ],,,,[  =  f(t), in which the   and   denote the 

time dependent and independent displacement vector, respectively. Substituting the assumed 

displacement field Eq. (18) into the Eqs. (12)-(16) and applying Galerkin method lead to the 

following matrix equation of motion  

{([K]-[T]-[H]+[G]) f(t)+[M] ( 2d f(t)/dt)}=0                  (19) 

in which [K], [T], [H], [G] and [M] are the respective elastic stiffness matrix, thermal effect matrix, 

humid effect matrix, geometric stiffness matrix and mass matrix. The system Eq. (19) is related to 

the eigenvalue problems of the buckling, vibration and dynamic instability.  

To analyze the buckling of laminated plates in hygrothermal environments, the inertia term [M] 

and f(t) in Eq. (19) are set to be zero and one, respectively. The eigenvalue equation for 

determining the buckling load is obtained as follows. 

 {[K]-[T]-[H]+[G])}{ }={0}                        (20) 

The condition for the existence of a non-trivial solution is that the determinant of the 

coefficients is zero. The critical buckling load can be determined from the solution 

 ][])[][]([ GPHTK
cr

 =0                        (21) 

where Pcr is the static critical buckling load of the plate subjected to a uniaxial in-plane load. The 

governing equations of the free vibration of laminated plates in hygrothermal environments are 

obtained from Eq. (19) by setting f(t)= tie   

 {([K]-[T]-[H]+[G])- 2 [M]}=0                     (22) 

The roots of the determinant of the coefficients of Eq. (22) are the natural frequencies of the 

laminated plate. The dynamic stability analysis of the laminated plate under a non-zero periodic 

stress in Eq. (17) is given next. The nonzero stress resultant Nxx can be obtained by integrating Eq. 

(17) with respect to variable z.  
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S

 =h S

xx
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cr
P  and 

D
 =h D

xx
 /

cr
P  are static and dynamic load parameters, respectively. Let 

[C]=[K]-[T]-[H]. Substituting Eq. (23) into Eq. (19) gives  

 {[C]+
S


cr

P [G]*+
D


cr

P [G]* tcos )f(t)+[M]( 2d f(t)/dt)}=0             (24) 

which represents a second-order ordinary differential equation with periodic coefficients of 

Mathieu-Hill type. To determine the regions of dynamic instability, Bolotin’s method (1964) is 

used. As the boundaries of primary instability region are usually more important in practicality 

than those of secondary instability region, and the solutions of the first-order approximation (a1 

and b1) of the primary instability region of the dynamic stability is sufficiently accuracy (Chen and 

Yang 1990), only the first-order solution of primary instability region is considered in this study 

and is given by 

][][][][ 2

4
1*

2
1* MGPGPC

crDcrS
  =0                   (25) 

 

 

4. Results and discussion 
 

In this study, the hygrothermal effect on dynamic vibration of a laminated plate is investigated. 

To validate the accuracy of present computer program, the minimum vibration frequency, critical 

buckling load in a thermal environment, and excitation frequencies of primary instability region 

are presented in Tables 1-4 and compared with solutions from other investigators. The data show 

that the the present results agree well with those obtained by Liu and Huang (1996), Patel et al. 

(2002), Wang and Dawe (2002). 

In the following tables and figures, the influence of various parameters, including temperature, 

moisture, fiber volume fraction and bending stress, on the dynamic instability response of an eight-

layers cross-ply laminated plate in hygrothermal environmental conditions is discussed. The 

 

 
Table 1 Comparison of vibration frequencies of a four-layered cross-ply laminated plate in thermal 

environment 

o
T  Source 

yyxx
 /  

-0.05 0.1 0.2 0.3 

-50 
Liu’s results 15.149 15.247 15.320 15.394 

Present results 15.165 15.277 15.351 15.425 

0 
Liu’s results 15.150 15.150 15.150 15.150 

Present results 15.179 15.179 15.179 15.179 

50 
Liu’s results 15.164 15.052 14.978 14.902 

Present results 15.193 15.081 15.006 14.930 

 
Table 2 Comparison of critical load ratio of a cross-ply laminated plate in thermal environment 

Source 
Temperature ( Co ) 

300 325 350 375 400 

Patel’s results 1 0.9954 0.9313 0.8650 0.8300 

Present results 1 0.9933 0.9422 0.8885 0.8567 
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Table 3 Comparison of critical load ratio of a laminated plate in moisture environment 

Source 
Moisture concentration (%) 

0 0.25 0.5 0.75 1 1.25 1.5 

Patel’s results 1 0.9863 0.9731 0.9606 0.9487 0.9380 0.9273 

Present results 1 0.9863 0.9732 0.9607 0.9489 0.9383 0.9277 

 
Table 4 Excitation frequencies for a symmetrically four-layer cross-ply laminate plate with various static and 

dynamic loads 

S
  

D
  

Wang’s results Present results 

ω
U
 ω

L
 ω

U
 ω

L
 

0.0 0.0 144.57 144.57 144.36 144.36 

0.0 0.3 155.03 133.29 155.64 133.79 

0.0 0.6 164.83 120.95 165.12 121.45 

0.0 0.9 174.08 107.21 174.43 107.63 

0.0 1.2 182.87 91.43 183.21 91.86 

0.0 1.5 191.25 72.28 191.75 72.62 

0.2 0.06 131.71 126.86 132.12 127.26 

0.4 0.12 117.45 106.24 117.96 106.82 

0.6 0.18 101.20 80.49 101.84 81.10 

0.8 0.24 81.78 40.89 82.31 41.32 

 

 

temperature-dependent graphite/epoxy composite material properties are (Adams and Miller 1977; 

Bowles and Tompkins 1989, Shen 2001)  

f
E =230 GPa, 

f
G =9 GPa, 

f
 = Co/1054.0 6 , 

f
 =0.203, 

f
 =1750 3/ mkg , 

f
 =0, 

fm
c =0, 

m


= Co/1045 6 , 
m

 =0.34, 
m

 =1200 3/ mkg , 
m

 = OHwt
2

3 %/1068.2  , 
m

E =

)142.0)25(003.051.3( CT  GPa 

The hygrothermal dynamic stability behaviors of laminate plates are investigated based on the 

procedure described in the previous section. The nondimensional vibration frequency (  =

ff
Ehb 22 /10  ) and buckling coefficient (

fxx
ENbK /100 2 ) are defined and used throughout the 

study. The non-dimensional coefficients of excitation frequency  , the instability region 
LU   and the dynamic instability index )/(

crnfDI
K are defined for the study of 

dynamic instability. Here U  and L  are the upper and lower boundary excitation frequency, 

respectively; n f
  and 

cr
K  are the dimensionless fundamental vibration frequency and critical 

buckling load. The dynamic instability index 
DI

 , an instability measure of the laminate plates 

under hygrothermal environments, represents a relationship between the instability region, 

fundamental vibration frequency, and static critical buckling load. The influence of various 

parameters of the laminated plate on its hygrothermal dynamic instability behaviors is examined 

and discussed next. 
The effect of temperature, moisture, and fiber volume fraction on the buckling load and 

vibration frequency of laminated plates are presented in Tables 5-6. The buckling load and 

vibration frequency of laminated plates decrease as moisture and temperature increase and fiber 

volume fraction decreases. When the moisture or temperature increases, the buckling load and 

vibration frequency of laminated plates without fiber reinforced decrease significantly. The effects 
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of static load parameters on the excitation frequency ratio Ω/ωnf are presented in Fig. 1, in which 

αD/|αs|=0.3. The excitation frequency ratio is independent of fiber volume fraction and 

hygrothermal condition. When the compressive static load (αs>0) increases, the upper and lower 

boundary of Ω/ωnf decrease and the tensile static load (αs<0) has a reverse effect. Meanwhile, the 

distance between the two boundaries increases with the static load parameter. The figure also 

shows that the primary instability onset for αs=0 occurs at Ω equal to 2ωnf, i.e., Ω/ωnf=2, where αD 

=0. The onset of instability and instability width with static load factor can be further seen in Fig. 

2, where the values of static load parameter αs are set to be -0.4, 0 and 0.4. The figure shows that 

the instability onset occurs at Ω equal to 2.3664, 2.0 and 1.5492, respectively. It is evident that the 

compressive static load (αs>0) produces a softening effect on the excitation frequency ratio and  

 

 
Table 5 Effect of temperature on buckling load and vibration frequency of a eight-layered cross-ply 

laminated plate (a/b=1, a/h=10, S=0, C =0)  

 f
V  

Temperature rise( Co ) 

0 50 100 150 

cr
K  

0 5.0687 4.8377 4.6075 4.3782 

0.1 11.6571 11.3883 11.1178 10.8453 

0.2 17.4845 17.1472 16.8038 16.4534 

0.3 23.0311 22.6150 22.1880 21.7487 

0.4 28.6316 28.1347 27.6222 27.0925 

0.5 34.5830 34.0079 33.4128 32.7955 

n f
  

0 8.5414 8.3444 8.1435 7.9382 

0.1 12.6661 12.5192 12.3696 12.2171 

0.2 15.1831 15.0359 14.8846 14.7286 

0.3 17.0710 16.9161 16.7556 16.5890 

0.4 18.6615 18.4989 18.3297 18.1530 

0.5 20.1235 19.9555 19.7801 19.5966 

 
Table 6 Effect of moisture concentration on buckling load and vibration frequency of a eight-layered cross-

ply laminated plate (a/b=1, a/h=10, S=0, T =0) 

 f
V  

Moisture concentration (%) 

0 1 2 3 

cr
K  

0 5.0687 3.6978 2.4270 1.2564 

0.1 11.6571 10.1178 8.6877 7.3665 

0.2 17.4845 15.7196 14.0734 12.5453 

0.3 23.0311 20.9919 19.0840 17.3065 

0.4 28.6316 26.2585 24.0343 21.9577 

0.5 34.5830 31.7873 29.1655 26.7160 

n f
  

0 8.5414 7.2954 5.9103 4.2524 

0.1 12.6661 11.8002 10.9345 10.0688 

0.2 15.1831 14.3964 13.6217 12.8610 

0.3 17.0710 16.2978 15.5395 14.7982 

0.4 18.6615 17.8714 17.0978 16.3425 

0.5 20.1235 19.2930 18.4802 17.6872 
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reduces the onset of instability region, on the other hand, the tensile static load (αs <0) has a 

reverse effect. In addition, the effect of dynamic load on excitation frequency ratio can also be 

seen in Fig. 2. When the dynamic load parameter increases, the upper excitation frequency ratio 

increases and the lower excitation frequency ratio decreases. Table 7 lists the effect of compressive 

static load on excitation frequency ratio under various dynamic loads. It can be seen that the 

compressive static load reduces the excitation frequency ratio, and the larger the compressive 

static load, the smaller the excitation frequency ratio. The table also shows that the onset of 

primary instability, where αD=0, is reduced with an increasing compressive static load. The results 

in Figs. 1-2 and Table 7 show that the influence of dynamic load parameter on the excitation 

frequency ratio is more significant than that of static load parameter. This is due to that the 

dynamic resonance frequency is mainly controlled by the dynamic load parameter rather than the 

static load parameter. Same behaviors can also be observed in the laminated plates with different 

fiber volume fractions and hygrothermal conditions. It is attributable to that the excitation 

frequency ratio is independent of material and hygrothermal conditions.  

 

 
Table 7 Effect of static load parameters on excitation frequency ratio (a/b=1, a/h=10, S =0)  

αD  
αs 

0 0.1 0.2 0.3 0.4 0.5 

0 

U
nf/  2 1.8974 1.7889 1.6733 1.5492 1.4142 

L
nf/  2 1.8974 1.7889 1.6733 1.5492 1.4142 

0.2 

U
nf/  2.0976 2.0000 1.8974 1.7889 1.6733 1.5492 

L
nf/  1.8974 1.7889 1.6733 1.5492 1.4142 1.2649 

0.4 

U
nf/  2.190 2.0976 2.0000 1.8974 1.7889 1.6733 

L
nf/  1.7889 1.6733 1.5492 1.4142 1.2649 1.0954 

0.8 

U
nf/  2.3664 2.2803 2.1909 2.0976 2.0000 1.8974 

L
nf/  1.5492 1.4142 1.2649 1.0954 0.8944 0.6325 

 

 
Fig. 1 Effect of static load types on excitation frequency ratio (a/b=1, a/h=10, αD/|αs|=0.3, S=0) 

112



 

 

 

 

 

 

Hygrothermal effects on dynamic instability of a laminated plate under an arbitrary pulsating load  

 


D

0.0 0.2 0.4 0.6 0.8 1.0




nf

0.0

0.5

1.0

1.5

2.0

2.5

3.0


s
=-0.4


s
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
s
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Fig. 2 Effect of dynamic load parameters on excitation frequency ratio (a/b=1, a/h=10, S =0) 

 
Table 8 Hygrothermal effects on the dynamic stability of a laminated plate with various compressive static 

loads (a/b=1, a/h=10, Vf=0.5, S=0, αD/αs =0.3)  

 C  T  
αs 

0 0.2 0.4 0.6 0.8 

  

0 0 0 1.3502 3.1214 5.7643 11.3836 

1 0 0 1.2944 2.9926 5.5264 10.9138 

2 0 0 1.2399 2.8665 5.2936 10.4540 

3 0 0 1.1867 2.7435 5.0664 10.0053 

3 50 0 1.1793 2.7264 5.0347 9.9428 

3 100 0 1.1712 2.7077 5.0003 9.8747 

3 150 0 1.1624 2.6873 4.9626 9.8003 

DI
  

0 0 0 0.1940 0.4485 0.8283 1.6357 

1 0 0 0.2111 0.4880 0.9011 1.7796 

2 0 0 0.2300 0.5318 0.9821 1.9396 

3 0 0 0.2511 0.5806 1.0722 2.1174 

3 50 0 0.2543 0.5879 1.0857 2.1442 

3 100 0 0.2578 0.5961 1.1008 2.1738 

3 150 0 0.2618 0.6052 1.1175 2.2069 

 
 

In hygrothermal environmental conditions, the effects of static load parameter αs on the 

instability region and the dynamic instability index of laminated plates (Vf=0.5) are shown in 

Tables 8-9. The static load parameter varies from 0 to 0.8 and the ratio of αD/αs is kept as 0.3. 

Increasing the static load will increase instability region and dynamic instability index. The 

temperature or/and moisture rise decrease instability region, but increase dynamic instability 

index. It can also be seen that the laminated plate under compressive static load (αs >0) is more 

dynamically unstable than that under tensile load (αs <0). In a uniform hygrothermal condition, the  
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Table 9 Hygrothermal effects on the dynamic stability of a laminated plate with various tensile static loads 

(a/b=1, a/h=10, Vf =0.5, S=0, αD/αs =0.3)  

 C  T  
αs 

0 -0.2 -0.4 -0.6 -0.8 

  

0 0 0 1.1023 2.0414 2.8648 3.6018 

1 0 0 1.0568 1.9571 2.7465 3.4532 

2 0 0 1.0123 1.8747 2.6308 3.3077 

3 0 0 0.9688 1.7942 2.5179 3.1657 

3 50 0 0.9628 1.7830 2.5022 3.1459 

3 100 0 0.9562 1.7708 2.4850 3.1244 

3 150 0 0.9490 1.7574 2.4663 3.1009 

DI
  

0 0 0 0.1584 0.2933 0.4116 0.5176 

1 0 0 0.1723 0.3191 0.4478 0.5631 

2 0 0 0.1878 0.3478 0.4881 0.6137 

3 0 0 0.2050 0.3797 0.5329 0.6700 

3 50 0 0.2076 0.3845 0.5396 0.6784 

3 100 0 0.2105 0.3898 0.5471 0.6878 

3 150 0 0.2137 0.3958 0.5554 0.6983 

 

 
Fig. 3 Effect of dynamic load parameters on the instability region for various static load 

parameters (a/b=1, a/h=10, ∆T=150 Co , ∆C=3%, Vf=0.5) 

 

 

effects of static and dynamic load parameter on the instability region and dynamic instability index 

of laminated plates are shown in Figs. 3-4. As the dynamic load parameter increases, the width of 

the instability region zone and dynamic instability index increase. The instability region and 

dynamic instability index becomes much wider at higher dynamic load parameter. The influence of 

the dynamic load parameter on dynamic instability index is more apparent than the static load 

parameter. 
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Fig. 4 Effect of dynamic load parameters on the dynamic instability index for various static 

load parameters (a/b=1, a/h=10, ∆T=150 Co , ∆C=3%, Vf=0.5) 

 
Table 10 Hygrothermal effects on the dynamic stability of a laminated plate with various dynamic loads 

(a/b=1, a/h=10, S=0, αs=0.3) 

 Vf

 
∆C ∆T 

αD 

0 0.4 0.8 1.2 1.6 

  

0 0 0 0 3.4339 6.9803 10.8040 15.2791 

0.1 0 0 0 5.0922 10.3512 16.0215 22.6578 

0.3 0 0 0 6.8632 13.9511 21.5933 30.5376 

0.5 0 0 0 8.0904 16.4457 25.4545 35.9981 

0.5 1 0 0 7.7565 15.7670 24.4039 34.5124 

0.5 2 0 0 7.4297 15.1028 23.3759 33.0585 

0.5 3 0 0 7.1109 14.4546 22.3727 31.6397 

0.5 3 50 0 7.0664 14.3642 22.2327 31.4418 

0.5 3 100 0 7.0180 14.2658 22.0804 31.2264 

0.5 3 150 0 6.9651 14.1584 21.9142 30.9913 

DI
  

0 0 0 0 7.9317 16.1231 24.9551 35.2917 

0.1 0 0 0 3.4488 7.0107 10.8510 15.3456 

0.3 0 0 0 1.7456 3.5484 5.4922 7.7671 

0.5 0 0 0 1.1625 2.3631 3.6576 5.1727 

0.5 1 0 0 1.2648 2.5710 3.9793 5.6276 

0.5 2 0 0 1.3785 2.8021 4.3370 6.1335 

0.5 3 0 0 1.5048 3.0590 4.7346 6.6958 

0.5 3 50 0 1.5239 3.0976 4.7945 6.7804 

0.5 3 100 0 1.5450 3.1405 4.8608 6.8743 

0.5 3 150 0 1.5685 3.1883 4.9348 6.9789 

 

 

In hygrothermal conditions, the effects of static load on the instability region and dynamic 

instability index of laminated plates with various fiber volume fractions are shown in Figs. 5-6. It 

can be seen that as the fiber volume fraction increases, the instability region and the dynamic 

instability index decreases. It is due to that increasing fiber volume fraction will increase the 
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vibration frequency and critical buckling load, but decrease the value of dynamic instability index. 

For laminated plates with various fiber volume fractions, the compressive static load parameters 

produce a greater influence than the tensile load on the instability region and dynamic instability 

index. Thus, the dynamic instability of laminate plates is significantly affected by the fiber volume 

fraction, static and dynamic load parameters. The effect of fiber volume fraction and hygrothermal 

condition on instability region and dynamic instability index is shown in Table 10. The region of 

instability becomes much wider at higher dynamic load parameter, and without moisture and 

temperature (Vf =0.5, ∆T=0 Co , ∆C= 0%), however, the dynamic instability index is smaller at the 

same conditions. A higher moisture or/and temperature rise leads to a smaller instability region and 

larger dynamic instability index, but higher fiber volume fraction has a reverse effect. Laminated 

plates become more dynamically unstable as moisture or/and temperature increases in the larger 

dynamic load parameters.  

 

 

 
Fig. 5 Effect of static load on the instability region for different fiber volume fractions (a/b=1, 

a/h=10, ∆T=0, ∆C=0, S=0) 

 

 
Fig. 6 Effect of αs static load on the dynamic instability index for different fiber volume 

fractions(a/b=1, a/h=10, ∆T=0, ∆C=0, S=0) 
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Table 11 Effect of static load on the instability regions ∆Ω of a laminated plate under various hygrothermal 

conditions. (a/b=1, a/h=10, Vf=0.5, S=0) 

S
  C  T  

D
  

0 0.4 0.8 1.2 1.6 

0.1 

0 0 0 8.5384 17.4298 27.2482 39.7486 

1 0 0 8.1860 16.7104 26.1236 38.1081 

3 0 0 7.5046 15.3195 23.9492 34.9361 

3 50 0 7.4577 15.2237 23.7994 34.7176 

3 150 0 7.3508 15.0056 23.4584 34.2202 

0 

0 0 0 8.0904 16.4457 25.4545 35.9981 

1 0 0 7.7565 15.7670 24.4039 34.5124 

3 0 0 7.1109 14.4546 22.3727 31.6397 

3 50 0 7.0664 14.3642 22.2327 31.4418 

3 150 0 6.9651 14.1584 21.9142 30.9913 

-0.1 

0 0 0 7.7070 15.6193 24.0168 33.4325 

1 0 0 7.3889 14.9746 23.0256 32.0527 

3 0 0 6.7739 13.7282 21.1091 29.3848 

3 50 0 6.7315 13.6424 20.9770 29.2010 

3 150 0 6.6351 13.4469 20.6765 28.7826 

 
Table 12 Effect of static load on the dynamic instability index of a laminated plate with various 

hygrothermal conditions. (a/b=1, a/h=10, Vf=0.5, S=0) 

S
  C  T  

αD 
0 0.4 0.8 1.2 1.6 

0.1 

0 0 0 1.2269 2.5045 3.9154 5.7116 

1 0 0 1.3348 2.7248 4.2597 6.2139 

3 0 0 1.5882 3.2420 5.0683 7.3934 

3 50 0 1.6082 3.2830 5.1323 7.4868 

3 150 0 1.6553 3.3791 5.2826 7.7060 

0 

0 0 0 1.1625 2.3631 3.6576 5.1727 

1 0 0 1.2648 2.5710 3.9793 5.6276 

3 0 0 1.5048 3.0590 4.7346 6.6958 

3 50 0 1.5239 3.0976 4.7945 6.7804 

3 150 0 1.5685 3.1883 4.9348 6.9789 

-0.1 

0 0 0 1.1074 2.2444 3.4510 4.8040 

1 0 0 1.2048 2.4418 3.7545 5.2265 

3 0 0 1.4335 2.9053 4.4672 6.2186 

3 50 0 1.4517 2.9420 4.5237 6.2972 

3 150 0 1.4942 3.0281 4.6561 6.4816 

 

 

The effects of static loading type and fiber volume fraction on the dynamic instability of 

laminated plates are presented in Tables 11-12. It shows that increasing fiber volume fraction will 

increase instability region and decrease dynamic instability index. The moisture or/and 

temperature has a soften effect on instability region and strengthen effect on dynamic instability 

index for any static loading type. The effects of dynamic load parameters and hygrothermal 

conditions on instability region and dynamic instability index are demonstrated in Figs. 7-8. The 

results are similar to those in Tables 11-12, the dynamic instability is mainly affected by the 
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dynamic load parameter in high moisture and temperature condition. The instability region and 

dynamic instability index increase when the moisture or/and temperature increases. The laminated 

plate becomes dynamically unstable at high moisture, temperature and dynamic load. The effects 

of bending stress ratio on the instability region and dynamic instability index of laminate plates are 

presented in Tables 13-16. The compressive static load has a strengthen effect on the instability 

region and dynamic instability index, but tensile static load has a reverse influence. The influence 

of dynamic load on dynamic instability is similar to compressive static load. A large bending stress 

slightly reduces the instability region and dynamic instability index.  
 

 
Table 13 Effect of bending stress ratio on the instability regions of a laminate plate with various fiber 

volume fractions (a/b=1, a/h=10, ∆T=150 Co , ∆C=3%, αD/αS=0.3) 

S
  f

V  
S 

0 10 20 30 40 

0.4 

0 0.6018 0.6029 0.6062 0.6118 0.6196 

0.2 1.9541 1.9596 1.9760 2.0036 2.0425 

0.4 2.4807 2.4863 2.5031 2.5313 2.5710 

-0.4 

0 0.3935 0.3930 0.3913 0.3884 0.3844 

0.2 1.2780 1.2752 1.2667 1.2525 1.2325 

0.4 1.6224 1.6195 1.6108 1.5963 1.5759 

 
Table 14 Effect of bending stress ratio on the dynamic instability index of a laminate plate with various fiber 

volume fractions (a/b=1, a/h=10, ∆T =150 Co , ∆C =3%, αD/αS =0.3) 

S
  f

V  
S 

0 10 20 30 40 

0.4 

0 14.8333 14.8605 14.9424 15.0793 15.2716 

0.2 1.2886 1.2922 1.3030 1.3212 1.3468 

0.4 0.7376 0.7393 0.7443 0.7526 0.7645 

-0.4 

0 9.7007 9.6866 9.6444 9.5738 9.4749 

0.2 0.8427 0.8408 0.8352 0.8259 0.8127 

0.4 0.4824 0.4815 0.4790 0.4746 0.4686 

 
Table 15 Effect of the bending stress ratio on the dynamic instability under various dynamic loads S (a/b=1, 

a/h=10, ∆T=150 Co , ∆C=3%, αs=-0.4) 

D
  f

V  
S 

0 10 20 30 40 

0.2 

0 0.6562 0.6552 0.6524 0.6476 0.6409 

0.2 2.1308 2.1261 2.1120 2.0884 2.0552 

0.4 2.7051 2.7003 2.6858 2.6617 2.6277 

0.4 

0 1.3149 1.3130 1.3074 1.2979 1.2847 

0.2 4.2699 4.2606 4.2326 4.1858 4.1199 

0.4 5.4206 5.4111 5.3825 5.3346 5.2672 

0.6 

0 1.9788 1.9760 1.9677 1.9537 1.9342 

0.2 6.4258 6.4121 6.3708 6.3015 6.2040 

0.4 8.1575 8.1434 8.1012 8.0304 7.9306 
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Table 16 Effect of the bending stress ratio on the dynamic instability index under various dynamic loads S 

(a/b=1, a/h=10, ∆T=150 Co , ∆C=3%, αs=-0.4) 

D
  f

V  
S 

0 10 20 30 40 

0.2 

0 16.1745 16.1511 16.0807 15.9634 15.7989 
0.2 1.4051 1.4020 1.3927 1.3771 1.3552 
0.4 0.8043 0.8029 0.7986 0.7914 0.7813 

0.4 

0 32.4115 32.3651 32.2257 31.9931 31.6670 
0.2 2.8156 2.8094 2.7910 2.7601 2.7167 
0.4 1.6117 1.6089 1.6004 1.5862 1.5661 

0.6 

0 48.7765 48.7080 48.5022 48.1587 47.6769 
0.2 4.2372 4.2282 4.2009 4.1553 4.0909 
0.4 2.4255 2.4214 2.4088 2.3878 2.3581 

 

 
Fig. 7 Hygrothermal effects on the instability region for various dynamic load parameters 

(a/b=1, a/h=10, Vf=0.5, αs=-0.4, S=0) 

 

 
Fig. 8 Hygrothermal effects on the dynamic instability index for various dynamic load 

parameters (a/b=1, a/h=10, Vf =0.5, αs=-0.4, S=0) 
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5. Conclusions 
 

The hygrothermal dynamic stability of laminate plates subjected to periodic loads is described 

and discussed in this paper. The dynamic instability is sensitive to the hygrothermal load and 

periodic dynamic loads. Based on above discussions, the preliminary results are summarized as 

follows:  

• The buckling load and vibration frequency of laminated plates are affected by the moisture, 

temperature and fiber volume fraction. The buckling load and vibration frequency decrease as 

moisture and temperature increase, or fiber volume fraction decreases. 

• The excitation frequency ratio and the onset of instability are affected by static loads, but they 

are independent of material and hygrothermal conditions. Compressive loads reduce the excitation 

frequency ratio and the onset of instability, but tensile loads increase them.  

• The instability region and dynamic instability index are significantly affected by temperature, 

moisture, fiber volume fraction, static load and dynamic load, but they are slightly affected by 

bending stress. The temperature or/and moisture rise decrease instability region and increase 

dynamic instability index, but higher fiber volume fraction has a reverse effect. The compressive 

static load has a strengthen effect on the instability region and dynamic instability index, but 

tensile static load has a reverse influence. The laminated plate with various fiber volume fractions 

under compressive static load is more dynamically unstable than that under tensile static load. The 

instability region and dynamic instability index increase with the dynamic load, and the influence 

of the dynamic load on dynamic instability index is more apparent than the static load. 
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Appendix 
 

1L =
11A xx,u +

16A (
yx,u +

xy,u )+
12A yy,u +

11B xx, +
16B (

xy,yx, + )+
12B yy ,
  

2L =
16A xx,u +

26A yy,u +
66A (

xy,yx, u+u )+
16B xx ,
 +

66B (
xy,yx,

+ )+
26B yy ,
  

3L =
12A xx,u +

26A (
xy,yx, u+u )+

22A yy,u +
12B xx, +

26B (
xy,yx, + )+

22B yy ,
  

4L =
55A (

xx, +w  )+
45A (

yy, +w  ) 

5L =
45A (

xx, +w  )+
44A (

yy, +w  ) 

6L =
xx,11B u +

16B (
yx,u +

xy,u )+
yy,12  B  +

xx,11D  +
16D (

yx, +
xy, )+

yy,12  D   

7L =
16B xx,u +

66B (
xy,yx, + uu )+

26B yy,u +
16D xx, +

66D (
xy,yx, + )+

22D yy,  

8L =
45A (

yy, +w  )+
55A (

xx, +w  ) 

9L =
xx,12B u +

yy,22  B u +
26B (

xy,yx, u+u )+
12D xx, +

26D (
xy,yx, + )+

22D yy,  

10L =
44A (

yy, +w  )+
45A (

xx, +w  ) 

1P =
xxxx

uN
,

+
xxxx

M
,

 +
xzxzyxxyyxxy

uNMuN
,,,

   

2P =
yxyy

uN
,

+
yxyy

M
,

 +
xxxy

uN
,

+
xxxy

M
,

 +
xzyz

uN
,

 

3P =
xyxx

uN
,

+
xyxx

M
,

 +
yyxy

uN
,

+
yyxy

M
,

 +
yzxz

uN
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,

+
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M
,

 +
xyxy

uN
,

+
xyxy

M
,

 +
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uN
,

 

5P =
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wN
,

+
yxy

wN
,

 

6P =
xxy

wN
,

+
yyy

wN
,

 

7P =
xxxx

uM
,

+
xxxx

M
,

* +
yxxy

uM
,

+
yxxy

M
,

* +
xzxz

uM
,

 

8P =
yxyy

uM
,

+
yxyy

M
,

*  +
xxxy

uM
,

+
xxxy

M
,

* +
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uM
,

 

9P =
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uN
,

+
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M
,

 +
xzz
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yxzy

uN
,

+
yxzy

M
,

  

10P =
xyxx
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,

+
xyxx

M
,

* +
yyxy

uM
,

+
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M
,

* +
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uM
,

 

11P =
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uM
,

+
yyyy

M
,

*  +
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M
,

 +
xyxy

uM
,

* +
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uM
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12P =
xyxz

uN
,

+
xyxz

M
,

 +
yzz

N  +
yyzy

uN
,

+
yyzy

M
,

  

1T =
xxXX

uN
,

T +
xx

T

xx
M

,
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yx

T

xy
uN

,
+

yx

T

xy
M

,
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yx

T

yy
uN

,
+
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T
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M

,
 +

xx

T

xy
uN

,
+

xx

T

xy
M

,
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3T =
xy

T

xx
uN

,
+

xy

T

xx
M

,
 +
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T

xy
uN

,
+
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T

xy
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,
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xx
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xy
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T

xy
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T
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7T =
xx

T

xx
uM

,
+

xx

T

xx
M

,

* +
yx

T

xy
uM

,
+

yx

T

xy
M

,

*  

8T =
yx

T

yy
uM

,
+

yx

T
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,
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,
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,
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xy
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,
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,
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,
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,
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where 

(
ijijij

D,B,A )  ij
C= ( 2zz,1, ) dz  ( i, j = 1, 2, 4, 5, 6 ) 

( *,
ijijij

MM,N )  ij
=  ( 2zz,1, ) dz  ( i, j = x, y, z ) 

( *, T

ij

T

ij

T

ij
MM,N )  TC

ijij
-= ( 2zz,1, ) dz  ( i = x, y) 

( *, H

ij

H

ij

H

ij
MM,N )  CC

ijij
-= ( 2zz,1, ) dz  ( i = x, y) 

(
31

I,I )= )(z ( 2z1, ) dz 


h//2

h/2-

i
  =f (

ii
X+X  ) -

zi

+

zi
-+dz    ( i = x, y ) 


h//2

h/2-

z
=f (

zz
X+X  ) +dz ( -

zx

+

zx
- ) +w

x,
( -

zy

+

zy
- ) -

zz

+

zzy,
-+w   


h//2

h/2-

i
=m (

ii
X+X  ) h+zdz ( -

zi

+

zi
- )/2    ( i = x, y ) 

Here 
ij

C ’s are the elastic constant of the stiffness matrix;  is the mass density; 
ijA , 

ijB  and 
ijD are the 

laminate stiffness coefficients; 
ij

N , 
ij

M  and *

ij
M  are arbitrary initial stress resultants. The T

ij
N , T

ij
M  

and *T

jj
M  are thermal stresses, The H

ij
N , H

ij
M  and *H

jj
M  are humid stresses resultants. 

x
f , 

y
f , 

z
f , 

x
m  and 

y
m  are the loads comprising lateral loads at the top and bottom face of the plate and the body 
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force. The superscripts ‘+’ and ‘-’ denote the stresses evaluated at the top and bottom face of the plate, 

respectively. Meanwhile, all the integrations are performed through the thickness of the plate from -h/2 to 

h/2. 
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