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Abstract.  It is still inadequate for investigating the highly nonlinear and complex mechanical behaviors of 
single-layer latticed domes by only performing a force-based demand-capacity analysis. The energy-based 
balance method has been largely accepted for assessing the seismic performance of a structure in recent 
years. The various factors, such as span-to-rise ratio, joint rigidity and damping model, have a remarkable 
effect on the load-carrying capacity of a single-layer latticed dome. Therefore, it is necessary to determine 
the maximum load-carrying capacity of a dome under extreme loading conditions. In this paper, a 
mechanical model for members of the semi-rigidly jointed single-layer latticed domes, which combines fiber 
section model with semi-rigid connections, is proposed. The static load-carrying capacity and seismic 
performance on the single-layer latticed domes are evaluated by means of the mechanical model. In these 
analyses, different geometric parameters, joint rigidities and roof loads are discussed. The buckling 
behaviors of members and damage distribution of the structure are presented in detail. The sensitivity of 
dynamic demand parameters of the structures subjected to strong earthquakes to the damping is analyzed. 
The results are helpful to have a better understanding of the seismic performance of the single-layer latticed 
domes. 
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1. Introduction 

 

The single-layer latticed dome is one of the widely used dome systems due to offering a larger 

space, free design shapes and light weight. The members in a dome mainly carry the axial forces 

and moments. The mechanical behaviors are highly nonlinear and the load-carrying capacity is 

affected by various factors, such as geometric shape of a dome, supporting condition, span-to-rise 

ratio, joint rigidity and damping model (Yuan and Dong 2002, Masayoshi et al. 2003). For this 

reason more attention should be paid to the stability of the system in designing.  
Many researchers have investigated the nonlinear behaviors of single-layer latticed domes 

through both numerical simulations and experiments. The critical load of a single-layer latticed 

dome could be estimated by means of the results of the buckling theory of a statically equivalent 

solid shell, by assuming rigid connections between the members (Dulácska and Kollár 2000). 
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Gioncu (1995) considered that material nonlinearities, whilst often observed in double-layer 

domes, were not likely to occur in single-layer latticed domes. The effects of geometrical 

imperfections on the behaviors of single-layer latticed domes are complex and important and the 

initial imperfections can give rise to an apparent reduction of the axial stiffness of a member. 

Therefore, the nonlinear buckling behaviors of single-layer latticed domes with geometrical 

imperfections were studied and an analytical solution was obtained on the basis of a theoretical 

model proposed by Nie (2003). Bǎlut and Gioncu (2000) studied the effects of initial imperfections 

on the behaviors of domes and suggested the use of particular devices for the control of the correct 

geometry.  
However, the behaviors of single-layer latticed domes are greatly affected by the rigidity of the 

joint, and it is difficult to model. The semi-rigidity of the connections and the geometric 

imperfections of members leading to the reductions of the critical load of a dome were investigated 

by Kato et al. (1998). Lopez (2007a) studied the nonlinear behaviors of single-layer latticed domes 

with different geometric parameters and joint rigidities and proposed a new formula for rapidly 

estimating the buckling loads of the semi-rigidly jointed single-layer latticed domes. Kim et al. 

(2008) investigated experimentally the effects of the various parameters on the flexural 

performance of the proposed welded jointing system. 
In recent years, the researches on dynamic performance of single-layer latticed domes 

subjected to earthquake loading have been conducted by Kim et al. (1997), Li and Shen (2001), Li 

and Chen (2003), Zhi et al. (2007). However, it is still inadequate for investigating the highly 

nonlinear and complex mechanical behaviors of the single-layer latticed domes. In the last few 

years, the energy-based analysis has been largely accepted for assessing the seismic capacity of 

existing structures (Akiyama 2010, Gaetano 2001, Zhang and Wang 2012). The use of the energy-

based analysis for seismic design is more realistic and rational. However, the seismic researches 

based on energy balance concept on single-layer latticed domes are less found in previous papers. 
An ultimate limit state analysis of a single-layer latticed dome subjected to earthquake ground 

motions is necessary to determine the maximum dynamic load-carrying capacity. In the present 

paper, a mechanical model for members in semi-rigidly jointed single-layer latticed domes is 

proposed. The static load-carrying capacity and energy-based seismic performance at the ultimate 

limit state are investigated by means of the proposed model, in which the material and geometric 

nonlinearities are taken into account. Finally, the sensitivity of the seismic demands to the 

damping is assessed. 

 

 

2. Elasto-plastic mechanical model of a member 
 

2.1 Joint-tube-joint model  
 

A member in the single-layer latticed dome is connected to solid steel balls by means of high 

strength bolts, which are tightened by two nuts. The single-layer latticed dome is regarded as 

being composed of members and joints. The detailed model is illustrated in Fig. 1(a). 

A member consists of a tube with joints at ends, which is called as a joint-tube-joint group. In 

the nonlinearly numerical analysis, the following approximations are proposed for the model. The 

stiffness of the balls is considered to be infinite and the bolt is an elasto-plastic cylinder located 

between the tube and the ball, as illustrated in Fig. 1(b). The two parts are considered as an 

integrated component having the semi-rigid joint behaviors with the bending capacity. The tube is  
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Fig. 1 Mechanical model of joint-tube-joint group and fiber cross-section 
 

 

modeled with fiber section model. In such a case, the distributed plasticity of a member is taken 

into account. The local buckling of a member in a single-layer latticed dome generally occurs at its 

middle. In order to capture the nonlinear behavior the use of two elements per physical member is 

enough. The mechanical model of the joint-tube-joint group is shown in Fig. 1(c). The section 

fibers are shown in Fig. 1(d). 
Geometric and material nonlinearities are taken into account in the mechanical model. The 

elasto-plastic behaviors in the model are modeled in two types: (1) fiber elements, it is modeled by 

accounting for spread-of-plasticity effects in the section and along the member and (2) semi-rigid 

connections, the inelastic behaviors are concentrated at ends of a member. The proposed model 

can capture the spreading of plasticity with computational efficiency and the necessary degree of 

accuracy. 

 

2.2 Modeling of a joint  
 

Joint rigidity is a particularly key factor to the behaviors of single-layer latticed domes, whose 

flexibility often makes them unsuitable for spanning large distance. There were numerous studies 

on semi-rigid connections in previous literatures (Kato et al. 1998, Hiyama et al. 2000). The joint 

was modeled as a rotational spring component in these studies, and the properties of the spring 

component were considered to be elasto-plastic, while the tube was regarded as an elastic one.  

The mechanical behaviors of semi-rigid joints are described by means of moment-rotation 

curve. In the present paper, the M-θ curve is obtained from the previous literature. Here, it is 

assumed that the axial force has no effect on the bending capacity of semi-rigid connection due to 

the small length of the bolt. The bending behavior about axis 2 is considered to be elastic and the 

strength loss in one direction of axis 3 causes the same amount of strength loss in the opposite 

direction. The effect of strength loss is illustrated in Fig. 2 (CSI 2006). 
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Fig. 2 Loop with different strength loss interaction (CSI 2006) 

 

 

2.3 P-M-M interaction for fiber section element 
 

The members in single-layer latticed domes subjected to strong earthquakes are simultaneously 

subjected to both axial force and moments. The axial force usually reduces the bending capacity of 

a member. Therefore, the combined effect due to P-M-M interaction should be taken into account. 

The fiber section model can well consider the effect. The shear and torsion of a section are 

assumed to be elastic in this paper. The equations of the yield surface are as follows (El-

Tawil and Deierlein 2001a, b). In each P-M plane (P-M2 and P-M3) 

0 0( / ) ( / )pm y yf P P M M                             (1) 

where fpm = yield function value, =1.0 for yield, P = axial force, M = bending moment, Py0 = yield 

force at M = 0, and My0 = yield moment at P = 0. The effects of the exponents α and β on P-M 
curves are illustrated in Fig. 3. For any value of P, Eq. (1) defines the M value at which yield 

occurs, in both the P-M2 and P-M3 planes. 

  The yield function in the M2-M3 plane is then 

2 2 3 3( / ) ( / )mm yP yPf M M M M                           (2) 
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Fig. 3 The yield surfaces in P-M interaction Fig. 4 The yield surfaces in M-M interaction 
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where fmm = yield function value, = 1.0 for yield, M2 and M3 = bending moments, MyP2 = yield 

moment at M3 = 0, and MyP3 = yield moment at M2 = 0. The effect of the exponent γ on M-M 
curves is illustrated in Fig. 4. 
 

 

3. Discussion on damping in a single-layer latticed dome 
 

The damping is a significant property in the design of structures, especially, in problems 

involving mechanical resonance and fatigue under cyclic stress. In general, it was difficult to 

quantify all damping sources in a dome, such as hysteresis, friction at joints and boundary effects, 

etc. 
The viscous damping model is commonly used in dynamic analysis, and in this model the 

damping is associated with the vibration reduction through energy dissipation. The available 

sources of energy dissipations in a structure require to be carefully considered and whether these 

are captured in dynamic analysis. For instance, fiber-type component models, due to capturing the 

initiation and spread of yielding through the cross section and along the member, will tend to 

describe the hysteretic energy dissipation at small deformation levels than lumped plasticity hinge 

models (NEHRP 2010). 
Because the damping is difficult to quantify, the experiment method is used to determine the 

damping characteristics of a structure. For damping models, the complex stiffness damping model 

is a good alternative (Clough and Penzien 1995). At present there is no clear consensus as to how 

to resolve damping issues. Therefore, the assessment of the sensitivity of the dynamic demands to 

the damping is necessary. 
In the paper, the classical Rayleigh damping model is used, but it is modified for the dynamic 

analysis. As a structure is within the plastic range, its effective vibration periods increase. A 

ductility ratio of n corresponds roughly to a period increase of n
0.5

. The mass and stiffness damping 

coefficients, αm and βk, in Rayleigh damping model can be defined by providing a percentage of 

critical damping at two different periods of vibration. Reasonable periods to specify these damping 

values are 0.2T1 and 1.5T1, where T1 is the fundamental period of vibration of a structure (NEHRP 

2010). Based on observations and guidance in various documents (Charney and McNamara 2008, 

Charney 2008), it is suggested to specify the equivalent viscous damping ratios in the range of 1% 

to 5% of critical damping over the range of periods from 0.2T1 to 1.5T1. 
 

 

4. Numerical models 
 

The single-layer latticed dome with a span of D = 60m and the ratios of D/H = 4, 5 and 6 is 

shown in Fig. 5. The tubular section sizes are listed in Table 1. 

The yield stress, ultimate stress and strain and Young’s modulus of material are set at fy = 

207MPa, fu = 320MPa, εu = 0.15 and E = 2*10∧11N/m∧2, respectively. The σ-ε curve of material  

 

 
Table 1 Cross-sections of members 

Ridge member Hoop member Diagonal member 

Φ=152; t=5.5mm Φ=152; t=5.5mm Φ=146; t=5mm 
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Fig. 5 Single-layer latticed dome model 
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with strength loss is shown in Fig. 6. Two M-θ curves for semi-rigid connections in the single-

layer latticed dome, which are from the experiment results (Fan et al. 2009), are presented in Fig. 7. 

The strength loss and fracture properties are considered and the ultimate rotations of 0.25 rad and 

0.12 rad are assumed for semi-rigid connection (1) and (2), respectively. 

The cross-section of tube is divided into 8 fibers, as shown in Fig. 8. Fig. 9 shows the moment-

curvature curves of cross-sections under different axial force levels, which are obtained by 

performing a section analysis with UCFyber software (Chadwell 1998). UCFyber is a fully 

interactive software for analyzing moment-curvature and axial force-moment interactions for 

concrete, steel and composite structural cross sections (even with holes) with nonlinear materials.  
The nonlinear time history analyses are carried out by means of the Northridge (1994) and Kobe 

(1995) ground motion records that are considered as the representatives of many ground motions. 

These ground motions and different roof loads applied to joints of the structure are shown in Table 

2. These analyses are carried out in Perform 3D program. The damping ratio is set at 3% for both 

0.2T1 and 1.5T1 in the ultimate limit state analyses. In these analyses, the gravity loads are applied 

first and then hold constant while the ground motions are applied. 
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Table 2 Earthquake ground motions and roof loads 

Earthquakes 

Northridge (1994) Kobe (1995) 

E-W, PGA N-S, PGA UP, PGA E-W, PGA N-S, PGA UP, PGA 

0.5165g 0.4158g 0.3265g 0.6934g 0.6936g 0.4333g 

Roof load kg/m
2
 60,120,180 
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Fig. 10 Load-displacement curves under vertical static load 

 

 

5. Results 
 

5.1 Effects of joint rigidity and span-to-rise ratios on static stability 
 

In the static load-deformation curve of a single-layer latticed dome, the first upper ultimate 

point is most meaningful for practical design, which is far higher than others, and the structure 

completely loses its stability in case of exceeding the point.  
Fig. 10 shows the load-deformation curves of the domes. A buckling criteria based on the 

structural response was proposed by Budiansky and Roth (1962), called B-R criteria, which meant 

that the buckling occured when a small increase of load led to a suddenly large increase of 

displacement of a node. According to the criteria and curves, the critical loads, Pcr, of the 
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structures are obtained. When the semi-rigid connection (1) is used for the joint bending 

performance, these loads are 698kg/m
2
, 606kg/m

2
 and 507kg/m

2 for D/H = 4,5 and 6, respectively; 

when the semi-rigid connection (2) is used, these values are 674 kg/m
2
, 589 kg/m

2
 and 425 kg/m

2
, 

respectively. It shows that the load-carrying capacity of the structure greatly decreases with the 

increase of the ratio, D/H; while it increases with the increase of joint rigidity, especially for the 

structure with larger span-to-rise ratio, such as D/H = 6. In these analyses, it is found that the 

instability of the structure begins with a joint of a ridge member, where there is a large local 

concave and then some joints near the joint begin to lose stability; finally, the entire structure 

suddenly loses the load-carrying capacity. 

 

5.2 Energy components at the ultimate limit state only under vertical ground motions 
 

For ordinary buildings, the horizontal response is dominantly governed by the first vibration 

mode and the vertical earthquake component is not applied to structures in dynamic analysis. 

However, the vertical earthquake component has the dominant effect on large-span single-

layerlatticed domes and should be specially considered (Moghaddam 2000). In previous 

literatures, the force-based analysis was carried out for investigating the single-layer latticed 

domes. However, new trends in the seismic design methodologies are oriented to the definition of 

performance-based methods for the design of new facilities and for the assessment of the seismic 

capacity of existing facilities (Gaetano 2001). In this paper the energy-based balance analysis is 

conducted. The relative input energy, EI, hysteretic energy, Eh, and viscous damping energy, Eξ, are 

the key indicators in the energy balance method. The first indicator, EI, represents the energy 

intensity of a ground motion imparting to a structure and the latter two indicators, Eh and Eξ, 
represent energy dissipation capacity by hysteretic action and damping in a structure.  

The energy components have the following approximate relationship at the end of an 

earthquake 

h IE E E                                     (3) 

The damage potential is associated with the maximum hysteretic energy demand during an 

excitation. Likewise, the hysteretic energy value represents the degree of damage of a structure 

subjected to a ground motion. In order to describe the indicators, Akiyama (2010) expressed EI in 

terms of the equivalent pseudo-velocity, VE, as following 

2 I
E

E
V

M
                                 (4) 

where EI = input energy; M = total mass. The equivalent pseudo-velocities of other energy 

components can also be written as the above expression. These parameters can be used for design 

purposes. 
The acceleration values of the vertical ground motion component are multiplied by a scaling 

factor, which increases until the structure subjected to the scaled ground motion nearly collapse, 

and the case is defined as the ultimate limit state in this paper. The energy components at the 

ultimate limit state and their equivalent pseudo-velocities are shown in Tables 3 and 4, where Rm,y 

and RN,y are the ratios of yielding members to total members and yielding joints to total joints, 

respectively. 

These demands, such as the input energy, hysteretic energy, their equivalent pseudo-velocities 
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Table 3 Energy components under Northridge ground motion (Roof load = 120kg/m
2
) 

D/H Connection EI (kN*m) Eh (kN*m) Eh/EI Rm,y RN,y VE Vh 

4 
(1) 861.9 251.9 0.29 39% 0 2.0 1.1 

(2) 447.5 59.5 0.13 19% 0 1.45 0.53 

5 
(1) 149.2 37.4 0.25 4% 0 0.87 0.44 

(2) 97.9 12.1 0.12 2% 0 0.7 0.25 

6 
(1) 67.5 0 0 0 0 0.6 0 

(2) 32.6 0 0 0 0 0.42 0 

 
Table 4 Energy components under Kobe ground motion (D/H = 5) 

Connection Load (kg/m
2
) EI (kN*m) Eh (kN*m) Eh/EI Rm,y RN,y VE Vh 

(1) 

60 109.1 24.7 0.23 3% 0 1.05 0.5 

120 101.5 10.9 0.11 2% 0 0.72 0.24 

180 80.9 5.2 0.06 2% 0 0.52 0.13 

(2) 

60 79.3 0 0 0 0 0.9 0 

120 70.5 0 0 0 0 0.6 0 

180 65 0 0 0 0 0.47 0 

 

 

and damage ratios of the structure, remarkably decrease with the increase of the ratio, D/H. When 

the ratio is larger, for example, D/H = 6, the elastic instability is the only failure mode and all 

members in the structure do not yield.  
The semi-rigid joint stiffness has a significant effect on these demand parameters. The demands 

remarkably decrease with the reduction of joint stiffness. The decrease of joint rigidity will 

accelerate the instability of the structure, and furthermore, the instability tends to be an elastic one. 

Through Table 4, it is found that these values obviously decrease with the increase of the roof load 

for the structure with the span-to-rise ratio, D/H = 5. 
 

5.3 Behaviors of domes subjected to multidimensional earthquake loads 
 

The following contents show the nonlinear mechanical behaviors of the structure with D/H=5 

and roof load 120kg/m
2
 at the ultimate limit state under three dimensional earthquake loads. 

 

5.3.1 Energy components 
The input energy components become gradually steady after reaching the maximum value, 

while the hysteretic energy components continuously increase, which reach the maximum values 

at the end of earthquakes. But for the input energy components or the hysteretic energy 

components, these dynamic demands are remarkably different at the ultimate limit state. The 

difference is caused by the dynamic properties of a structure and the characteristics of ground 

motions. The ultimate input energy components are 544kN*m and 260kN*m under the two ground 

motions when the semi-rigid connection (1) is used, while these values are 366kN*m and  
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Fig. 11 Energy components of structure 

 

 

193kN*m for the semi-rigid connection (2). The hysteretic energy components are 150kN*m and 

33kN*m for the semi-rigid connection (1) and 80kN*m and 3kN*m with the semi-rigid connection 

(2). The hysteretic energy ratios, Eh/EI, are less than 30% under Northridge and Kobe earthquakes. 

Compared to ordinary buildings, in which the hysteretic energy ratios can reach 50%-70% at the 

ultimate limit state (Zhang and Wang 2012), the hysteretic energy demands of single-layer latticed 

domes are smaller. Therefore, according to Eq. (3), the viscous damping is the main energy 

dissipation source in a single-layer latticed dome. 

The semi-rigid joint rigidity has a considerable effect on the hysteretic energy dissipation 

capacity and the input and hysteretic energy components increase with the increase of joint 

rigidity. Evidently, for the semi-rigidly jointed single-layer latticed domes, the hysteretic energy 

dissipation capacity due to members or joints yielding is of lack and the ductility is relatively low. 

 

5.3.2 Damage distribution  
The damage distribution can exhibit the relatively weak part in a structure subjected to ground 

motions, it is useful for modifying the tentative design. The damage distributions of the single-

layer latticed domes at the ultimate limit state are shown in Fig. 12 and Fig. 13 and it is found that 

the damage distributions are different under different excitations. Generally, the structure easily 

loses the stability under Kobe ground motion. 

The damage of the structure subjected to Northridge ground motion mainly concentrates on the 
hoop members located on almost every ring except the outside first ring, several ridge members at 

top and a few of diagonal members. In the structure, there are several joints exceeding the yield 

moment. When the structure is subjected to the Kobe ground motion, some diagonal members 

have been damaged and very few of joints yield, and the damage degree of the structure is slighter 

than that of the one subjected to Northridge ground motion. The reason is that the serious local 

failure of a few members early occurs under Kobe ground motion, which results in the reduction 

of load carrying capacity of the structure, the plasticity capacity of most members is not fully 

developed in this case. 
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(a) Semi-rigid connection (1) (b) Semi-rigid connection (2) 

Fig. 12 Damage distribution of structures subjected to Northridge ground motion 

 

  
(a) Semi-rigid connection (1) (b) Semi-rigid connection (2) 

Fig. 13 Damage distribution of structures subjected to Kobe ground motion 

 

 

Semi-rigid connection rigidity has a significant effect on the load-carrying capacity and damage 

in the structure. When the structures are subjected to Northridge ground motion, the ratios of 

yielding members to total members are about 24% for semi-rigid connection (1) and 9% for semi-

rigid connection (2), while the ratios under Kobe ground motion are 8% and 2.5%, respectively. In 

general, the larger the rigidity of joint is, the more hysteretic energy is and the better the stability 

is. 
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(a)Damage distribution
(Ground motion:Kobe, semi-rigid connection (1))

element 2element 1element 2

both element 1 and 2 yielding

element 2element 1element 1

element 1 yielding element 2 yielding
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(b)Damage distribution
(Ground motion:Kobe, semi-rigid connection (2))
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The failure modes of the single-layer latticed dome reaching the ultimate limit state mainly include 

three cases: (a) plastic failure, (b) elasto-plastic failure and (c) elastic instability. In plastic failure 

mode, it means that the plasticity of a lot of members can be fully developed and some joints reach 

the yielding moment, the ratio, Eh/EI, has a relatively larger value, as shown in Fig. 12(a) and 

12(b). In elasto-plastic failure mode, it means that a few members reach the yielding strength and 

very few joints reach the yielding moment, the serious local failure results in the structural 

instability and the ratio, Eh/EI, has a very small value, as shown in Fig. 13(a). In the elastic 

instability mode, it means that almost all of members and joints are elastic when the structure loses 

the global stability, and the ratio, Eh/EI, is close to zero, as shown in Fig. 13(b). 

 

5.3.3 Dynamic behaviors 
Dynamic response 
The dynamic demands of some members are shown in Figs. 14 to 17. It can be observed that 

the displacements of the members begin to nonlinearly increase, the instability occurs at their 

middle, and the members continue to work at new balance position, as shown in Fig.14(a) to 

Fig.17(a). The instability processes of members subjected to the interaction between the axial force 

and moments are also captured by the nonlinear behaviors of sections, as shown in Figs. 14(b)-

17(b) and Figs. 14(c)-17(c). After the buckling of members, the structure has a redistribution of the 

internal forces and some joints begin to yield due to the bending, as shown in Figs. 14(d)-16(d), 

indicating that the failure of members is ahead of that of joints. 

 
Failure modes of a tube 
According to the results in this paper, it is found that the moment, M2, is very small. Evidently,  
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(c) Axial force and strain at middle of member (1) (d) Moment-Rotation curve of joint 1 

Fig. 14 Force-Deformation curves of member (1) and joint 1 (Northridge, Semi-rigid connection (1)) 
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(c) Axial force and strain at middle of member (2) (d) Moment-Rotation curve of joint 2 

Fig. 15 Force-Deformation curves of member (2) and joint 2 (Northridge, Semi-rigid connection (2)) 
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(c) Axial force and strain at middle of member (3) (d) Moment-Rotation curve of joint 3 

Fig. 16 Force-Deformation curves of member (3) and joint 3 (Kobe, Semi-rigid connection (1)) 
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(c) Axial force and strain at middle of member (4) 

Fig. 17 Force-Deformation curves of member (4) (Kobe, Semi-rigid connection (2)) 

 

 

the members lose the stability due to the compression-bending buckling in 1-3 plane. The failure 

mode of a member with  = 152mm, t = 5.5mm and length 5m is further investigated with shell 

elements. The member is fixed at both ends. If ignoring the small moment, M2, the member is a 

unidirectional eccentric compression member, as shown in Fig. 18(a). In this analysis, the axial 

force is kept as a constant while an increasing rotation is applied, and the transverse gravity of the 

member is also taken into account.  

When applying the rotation, the member will first be subjected to a global elastic deformation. 

After the elastic limit of the tube material has been reached the tube will have a permanent 

deformation after unloading, but the deformation will still be global. If the rotation is further 

increased, the local buckling occurs and the global deformation will continue, but most of the 

applied bending energy will be accumulated in the local buckling region until the ultimate moment 

capacity is reached. At this point, a geometrical collapse will occur if the rotation is additionally 

increased. The collapse mode is shown in Fig. 18(b), which is the most common failure of a 

member in single-layer latticed domes before the structures lose the global stability (Lopez 

2007b).  
The moment-rotation relationships of the member under different axial compression forces are 

illustrated in Fig. 18(c). It can be seen that the axial compression force significantly reduces the 

resistance-bending capacity of the member and results in a low ductility. After reaching the 

maximum moment, the load-carrying capacity rapidly decreases and the elastic limit is far not 

reached. For a pure bending case, the moment-rotation relationship taking into account material 

and geometric nonlinearities consists of 4 stages: (I) elastic stage, (II) elasto-plastic stage, (III) 

plastic stage and (IV) collapse stage. If the joint between members is considered ideally pinned the 

member is only subjected to the axial force, P, and transverse gravity. The failure mode is shown 
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in Fig. 19(a). With the increase of the axial force, when the elastic limit has been reached the tube 

begins to bend, accompanied with the stress increasing, and the local buckling occurs. Finally, the 

member loses the load-carrying capacity. The force-deformation curve is illustrated in Fig. 19(b). 

However, for the members with larger slenderness ratio, they easily lose the stability before the 

elastic limit is reached.  
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Fig. 18 Buckling of pipe under the interaction between P and M 
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Fig. 19 Buckling of pipe under the axial force, P 
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(a) Vertical displacement at middle of member (5) (b) Moment-Rotation curves of joint 4 and 5 

Fig. 20 Effect of damping on dynamic demands 
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Fig. 21 Energy components under Northridge ground motion 

 

 
5.4 Sensitivity of dynamic demands to damping 

 

The sensitivity of the dynamic demands to the damping is investigated in this paper. The 

structure with D/H = 5 and roof load 120kg/m
2
 under three dimensional seismic loads (scale factor 

= 1) in Table 2 is discussed. 

 

5.4.1 Response parameters 
The displacements at middle of member (5) and moment-rotation curves of joint 4 and 5 under 

Kobe ground motion are shown in Fig. 20(a). When the damping ratio is set at 1% the 

displacement response is divergent and the structure fails at 7.5s; at the same time, the joints are 

fractured, as illustrated in Fig. 20(b). If the damping ratio of 2% is selected, it can be found that 

the member loses the stability and the maximum displacement reaches 0.12m, while the 

displacement reaches 0.06m in the case of the damping ratio of 3%. But the joints in the two cases 

still are elastic. Therefore, the selection of the damping ratio is a key factor for obtaining the 
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reliable demands in dynamic analysis. The increase of damping has an inhibited effect on the 

response and it is favorable for the stability. 

 

5.4.2 Energy parameters 
The seismic input energy imparted to a structure is dissipated by hysteretic behavior and other 

non-yielding mechanisms usually represented by the equivalent viscous damping. It is generally 

realized that there is a strong correlation between the energy dissipated by hysteretic action and the 

induced level of damage.  
The energy components under Northridge ground motion are illustrated as Fig. 21. It can be 

observed that the energy components, such as the input and hysteretic energy, increase with the 

decrease of the damping ratio. The ratios, Eh/EI, are 8%, 1% and 0, respectively. It is clear that the 

effect of the selection of the damping ratio on these dynamic demand predictions is remarkable. 

The increase of damping has an inhibited effect on the damage. 

 

 

6. Conclusions 
 

In this study, a mechanical model combining fiber section model with semi-rigid joints for 

members in a single-layer latticed dome is proposed, which can give a more exact analysis for the 

semi-rigidly jointed single-layer latticed domes. The energy-based seismic analysis is included in 

this work, which enables engineers deeply to understand the seismic performance of this kind of 

structures from another point of view. The following conclusions can be drawn for design 

purposes. 

• The span-to-rise ratio, roof load and joint rigidity have a significant effect on the static and 

dynamic load-carrying capacities, which decrease with the increase of span-rise ratio and roof load 

and increase with the increase of joint connection rigidity. When the span-to-rise ratio is larger or 

joint rigidity is lesser the elastic instability tends to occur in a single-layer latticed dome. It is also 

found that the failure of a member is ahead of those of joints. 

• From the point of view of the energy balance, compared with ordinary structures, the 

hysteretic energy and hysteretic energy ratio are smaller when a single-layer latticed dome reaches 

the ultimate limit state, indicating that the plasticity of the members is not fully developed. 

Therefore, the equivalent pseudo-velocity of input energy, VE, can be considered as a seismic 

design parameter because the energy dissipation of the single-layer latticed dome mainly depends 

on the viscous damping other than hysteretic damping. The decrease of joint rigidity results in the 

reduction of the hysteretic energy dissipation. 

• The dynamic demands are sensitive to the damping ratios. The increase of damping in a 

structure is favorable for stability. The viscous damping is the main energy dissipation source, 

which is associated with the non-yielding mechanisms, thus, the correct selection of the viscous 

damping ratio becomes very important, which rests with carefully considering whether all energy 

dissipation sources are captured in the dynamic analysis. 
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