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Abstract.   In the present paper, a coaxial rotating smeared crack model is proposed for mass concrete in 
three-dimensional space. The model is capable of applying both the constant and variable shear transfer 
coefficients in the cracking process. The model considers an advanced yield function for concrete failure 
under both static and dynamic loadings and calculates cracking or crushing of concrete taking into account 
the fracture energy effects. The model was utilized on Koyna Dam using finite element technique. Dam-
water and dam-foundation interactions were considered in dynamic analysis. The behavior of dam was 
studied for different shear transfer coefficients considering/neglecting fracture energy effects. The results 
were extracted at crest displacement and crack profile within the dam body. The results show the importance 
of both shear transfer coefficient and the fracture energy in seismic analysis of concrete dams under high 
hydrostatic pressure. 
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1. Introduction 

 

Many of structures such as buildings, bridges, dams, and nuclear power plants are constructed 

from either mass or reinforced concrete material. Investigation of the cracking mechanism of 

concrete structures under both static and dynamic loads is important for safety operation of 

existing structures during their service life. Complex models are required in order to capture the 

pre- and port cracking behavior of concrete mortar. Several researchers have introduced 

approaches in order to modeling the nonlinear behavior of concrete under time-varying loads. The 

methods based on continuum crack model, discrete crack model, interface crack approach and the 

method of constrains are some of the most favorite methods for numerically modeling of concrete 

material. Numerical methods such as finite element, finite difference, finite volume, extended 

finite element, and mesh free approaches are also common methods for simulation of structural 

systems and their behavior (Yu et al. 2008). 

The discrete crack model requires monitoring the response and modifying topology of the mesh 
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corresponding to the current crack configurations at each state of loading. This approach explicitly 

represents the crack as a separation of nodes, which is a more realistic representation of the opened 

crack. This model is useful when the location and direction of the cracks are recognizable before 

loading the structure. The methods based on continuum crack model are divided into two major 

groups, i.e., damage mechanics and smeared crack approaches. In the smeared crack approach, 

cracks and joints are modeled in an average sense by appropriately modifying the material 

properties at the integration points of regular finite elements. Smeared cracks are convenient when 

the crack orientations are not known beforehand, because the formation of a crack involves no re-

meshing or new degrees of freedom.  

Some researchers applied continuum damage mechanics to investigate the concrete behavior 

among them Mirzabozorg et al. (2004), Labadi and Hannachi (2005), Grassl and Jirásek (2006), 

Cicekli et al. (2007), Voyiadjis et al. (2009), Al-Rub and Kim (2010), Xue and Yang (2013). 

Failure based on the smeared crack approach and classification of its branches studied by Malvar 

and Fourney (1990), Weihe et al. (1998), Moslera and Meschke (2004), Phama et al. (2006), 

Mirzabozorg et al. (2007), Suryanto et al. (2010), Broujerdian and Kazemi (2010), Heinrich and 

Waasy (2012). 

Seismic failure analysis of concrete gravity dams, especially Koyna Dam, studied by several 

researchers. Bhattacharjee and Leger (1994) studied nonlinear response of Koyna Dam based on 

smeared crack approach and compared results with those obtained from laboratory test. Ghaemian 

and Ghobarah (1999) investigated the application of a two-dimensional smeared crack model for 

seismic assessment of gravity dams. Two-dimensional seismic fracture behavior of Koyna Dam 

was examined by Guanglun et al. (2000) using smeared crack model. Calayir and Karaton (2005) 

used fracture mechanics approach for seismic analysis of Koyna Dam using Lagrange-Lagrange 

formulation for the fluid-structure interaction. Mirzabozorg and Ghaemian (2005) used smeared 

crack model for crack analysis of gravity and arch dams. They used a simplified model for 

concrete failure and modeled the reservoir using the fluid finite elements. Lohrasbi and Attarnejad 

(2008) used fracture mechanics in conjunction with smeared crack and discrete crack models for 

analysis of concrete dams.  

The specific fracture energy, Gf, as defined by the RILEM (RILEM TC-50 FMC 1985) is one 

of the most well-known, frequently measured and used fracture properties of concrete. While the 

simplicity in its definition and experiment has certainly contributed to its broad acceptance, the 

position of Gf in fracture mechanics of concrete is really cemented by its inherent relationship with 

the widely-accepted fictitious crack model (Duan et al. 2007). The area under the common tensile 

softening curve or the curve of cohesive stress and crack opening of a fictitious crack determines 

the specific fracture energy. The original intention of the RILEM definition of fracture energy as 

given in RILEM TC-50 FMC (1985) was that the material constant Gf, determined by the tensile 

softening curve as stated by the fictitious crack model, could also be measured from the load and 

load-point displacement curve of concrete. However, size effect on Gf typically measured from 

specimens less than 0.5m is overwhelming, and the phenomenon is possibly just as well-known as 

Gf itself. Both the application and validity of the fictitious crack model require a constant Gf as the 

tensile softening relationship together with Gf is treated as a fundamental material property for 

each element according to its dimensions. The accuracy of the results in smeared crack model 

would be compromised if the size effect on Gf and its effect on each element of model were not 

correctly implemented (Duan et al. 2003). Ayari and Saouma (1990), Saouma and Milner (1996), 

and Saouma and Morris (1998) presented detailed case studies and investigated different aspects of 

the fracture mechanics approach and its application on concrete dams. Ghrib and Tinawi (1995) 
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used fracture energy in nonlinear seismic response of concrete gravity dams. Duan et al. (2007) 

studied size effects in concrete gravity dams considering appropriate fracture energy in numerical 

models. Hu and Duan (2004) investigated the effects of fracture process zone height on fracture 

energy of concrete.  

In the present paper, a coaxial smeared crack model is introduced in 3D space and the 

importance of the size effect and its corresponding fracture energy is investigated for seismic 

failure analysis of a concrete gravity dam. An advanced three-parameter yield criterion is utilized 

in finite element formulation. The effect of reservoir water is considered for calculation of 

hydrodynamic pressure on the upstream face.  

 

 

2. Modeling of concrete 
 

The present model is able to simulate the behavior of the concrete material in various states as 

following: pre-softening behavior; fracture energy conservation; nonlinear behavior during the 

softening phase and finally crack closing/reopening behavior. The contribution of authors is to 

developing a three-dimensional coaxial rotating smeared crack model and implementing the 

fracture energy effects in the finite element model for dynamic analysis of concrete structures. 

Also the three-parameter Menetrey and Willam (1995) yield criterion is utilized for the first time 

in conjunction with rotating smeared crack for the concrete structures under the high hydrostatic 

pressure. The following sub-sections represent a brief review on general concepts of these stages.  

 

2.1 Pre-softening phase 
 

Generally, the relationship of the stress and strain vectors at the pre-softening phase is given by 

              
elastic

D   (1) 

where [D]elastic is the elastic modulus matrix; {σ} and {ε} are the vectors of stress and strain 

components respectively. The modulus matrix in elastic condition can be defined for isotropic, 

orthotropic or anisotropic materials. However, in most cases the isotropic material is assumed for 

mass concrete at the pre-softening phase. 

 

2.2 Softening phase 
 
During the softening phase, the elastic stress-strain relationship is substituted with an 

anisotropic modulus matrix, which corresponds to the stiffness degradation level in the three 

principal directions. In the present study, the secant modulus stiffness approach, SMS, is unitized 

for the stiffness formulation in which the constitutive relation is defined in terms of total stresses 

and strains, shown in Fig. 1. In this figure, σn and εn are the total normal stress and strain on 

fracture plane, respectively. σ0 and ε0 are the apparent tensile strength and its corresponding strain, 

respectively. εmax and εf
 
are the maximum strain in stiffness formulation and the fracture strain, 

respectively. In addition, E, E
s
 and E

t
 are the elastic Young’s modulus, softened Young’s modulus 

in the direction normal to the fracture plane, and the tangent modulus, respectively. The stiffness 

modulus matrix based on the smeared crack propagation model is given in Eq. (2). It is noteworthy 

that the extracted modulus matrix is coaxial with the principal strains in the considered location 

within the cracked element. Details of the formulation and the utilized algorithm including 
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Fig. 1 SMS formulation of stiffness modulus matrix 

 

 

unloading/reloading path and the residual strain in the closed cracks can be found in Mirzabozorg 

and Ghaemian (2005). 

The total secant modulus matrix in local coordinates is given as 

          

 

local
t

local crack
localcrack r

crack

D
D

D

    
    

0

0
 (2) 

where 

11 12 13 44

22 23 55

33 66

0 0

, 0

. .

local local
t r

crack crack

D D D D

D D D D D

sym D sym D

   
   

          
               

 (3) 

Components of the abovementioned matrices are as follow 

     
     2 2 2

11 1 1 2 3 22 2 1 2 3 33 3 1 2 3
, ,

E E E
D D D                

  
 

     
     2 2 2

12 1 2 1 2 3 23 2 3 1 2 3 13 1 3 1 2 3
, ,

E E E
D D D                 

  
 

      44 12 55 23 66 13
, ,D G D G D G      

(4) 

where, η1, η2 and η3 
are the ratio of the softened Young's modulus in the three principal directions 

and the initial isotropic elastic modulus and β12, β23 and β13 are shear transfer coefficients 

corresponding to the principal directions given as 

 
3 1 2 3 21 1 2 2

12 1 2 1 2 3

1 2 1 2

1
2

      
    

   

 
    
   
 

 

εn

σn

ε0 εf

Stiffness 

fourmulatio

εmax

σ0

E
s

E
t

E
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 
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 

 

       
2 2 2 3

1 2 2 3 1 3 1 2 3
1 2                

(5) 

The constitutive matrix given in Eq. (2) is transformed to the global coordinate system as 

following 

     
       

global T local

crack crack
D T D T  (6) 

where, [T] is the strain transformation matrix in three-dimensional space. Based on the maximum 

strain reached in each principal direction, the secant modulus matrix is determined. Increasing the 

normal strain in each principal direction leads to reduction of the corresponding softened Young's 

modulus. Finally, when the maximum strain reaches the fracture strain, the considered Gaussian 

point within the element in the corresponding direction is fully cracked and its contribution in the 

stiffness matrix of the element is eliminated. Based on Eq. (2) to Eq. (6), any change in principal 

strains or their directions in each Gaussian point leads to an update requirement of the global 

constitutive matrix,  
global

crack
D . In the proposed model, there is residual strain even when the crack is 

close. The shear retention factors are not zero and are determined based on the Eq. (5) in terms of 

principal strain and softened Yong's Modulus in each direction (Mirzabozorg and Ghaemian 

2005). Satisfying the energy conservation principle in each Gaussian point leads to the fracture 

strain under static and dynamic loads 

         0 0

2 2
,

f f

f f

c c

G G

h h
 

 


 


 (7) 

where, hc is the characteristic dimension of the considered Gaussian point and is assumed equal to 

the cubic root of the Gaussian point's volume contribution; σ0 is the stress corresponding to the 

softening strain and Gf is the specific fracture energy. The primed quantities show the dynamic 

constitutive parameters. The strain-rate sensitivity of fracture energy is applied through a dynamic 

magnification factor, DMFf, so that 

       f f f
G DMF G   (8) 

 

2.3 Conservation of fracture energy 
 
It should be noted that the fracture energies GF, obtained by the work-of-fracture method, and 

Gf, obtained by the size effect method, are two different material characteristics (Einsfeld and 

Velasco 2006). Parameter GF represents the area under the complete load-defection curve while Gf 

represents the area under the initial tangent of the softening curve and determines the maximum 
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load of most concrete structures in practice. The area under the average stress-strain curve of a 

finite element that experiences cracking is defined in a way that the dissipated fracture energy 

stays independent of the element characteristics dimension. In order for the fracture energy to be 

conserved, the softening branch should be modified using the following relationship (Bazant 2002) 

2

2 2

t t

t f c

f E
E

f E G h




 
      

 (9) 

Fracture energy is the key parameter that is combined with elastic modulus and tensile strength 

to define the entire constitutive behavior of concrete in the nonlinear fracture mechanics models. 

Usually, the tensile strength beyond which a strain softening process is assumed to take place is 

determined from uniaxial or split cylinder tests and the fracture energy, Gf from wedge splitting 

tests (Briihwiler and Wittmann 1990). 

 

2.4 Failure criterion 
 
The strength of concrete under multi-axial stresses is a function of the state of stress and cannot 

be predicted by limitation of simple tensile, compressive and shearing stresses independently of 

each other. In the elasticity based models, a suitable failure criterion is incorporated for a complete 

description of the ultimate strength surface. Criteria such as yielding, load carrying capacity and 

initiation of cracking have been used to define failure (Babu et al. 2005). Many failure criterions 

have been proposed for brittle material as well as mass concrete. The most commonly used failure 

criteria are defined in stress space using some independent constant parameters varying from one 

to seven (Bigoni and Piccolroaz 2004). Generally using the higher-order failure criteria can leads 

to better results while it requires more experimental tests in order to determination of the material 

constant parameters. In the present study, an advanced three-parameter Menetrey and Willam 

(1995) failure criterion is used for initiation and propagation of cracks in mass concrete. This 

criterion was obtained by modifying the well-known Hoek and Brown criterion for rock masses. 
The criterion is different from the other formulations in its ability to handle physical changes like 

crack closure, and is not restricted to any particular shape of hardening/softening laws. In the 

general form this yield function can be expressed as follow 

   

   

2

3
, , , 0

2 6 3
c c c

f m r e c
f f f

  
   

  
      

       

 (10) 

where (ξ, ρ, θ) are Heigh-Vestergaard coordinates; ξ is hydrostatic stress invariant, ρ is deviatory 

stress invariant, θ is deviatory polar angle. r(θ, e) is an elliptic function, e describes the shape of 

the deviatory trace. The failure surface has sharp corners if e = 0.5 and is fully circular around the 

hydrostatic axis if e = 1.0. The parameter m represents the frictional resistance of material, c is 

cohesion of material, and f’c and f’t are uniaxial compressive and tensile strength of concrete, 

respectively. The main parameters in the above equation are defined as follow 

1 31

3/22

2

1 2 3

1 3 3
, 2 , cos

3 23

1 1
, ,

2 3ii ij ji ij jk ki
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J
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
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Fig. 2 Elliptic function of Menetrey and Willam (1995) failure criterion 

 

 

in which, I1 is the first invariant of the Cauchy stress tensor; J2 and J3 are the second and third 

invariants of the deviatory part of the Cauchy stress tensor; σii is principal stress; Sij, Sji, Sjk and 

Skiare deviatory stresses. In addition, the elliptic function (Fig. 2) and the frictional resistance of 

material are given as 

 
   

     

22 2

1/ 2
2 2 2 2

4 1 cos 2 1
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e e
r e

e e e e e
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  

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 (12) 
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3. Verification of proposed model 
 

3.1 Three-point bending test of a notched beam 
 
A simple notched beam under three-point bending test is used for verifying of the proposed 

model. Fig. 3(a) shows the general view of the three-point bending test based on Malvar and 

Warren (1988). The material properties are as follow: E=21.7GPa, υ=0.2, f’t=2.4MPa, 

f’c=29.0MPa, and Gf=35N/m. Fig. 3(b) compares the load versus load-point deflection curves 

resulted from Malvar and Warren (1988) experimental test and the finite element model based on 

smeared crack model with variable shear transfer coefficient in the present study, Hariri-Ardebili 

et al. As seen, there is good agreement between the numerical model and the experimental test 

through all loading stages: elastic, hardening, and softening; which demonstrates the soundness of 

the present algorithm. For the comparison purpose, the result of the elastic-plastic-damage model 

proposed by Voyiadjis and Taqieddin (2009) also presented in this figure. As seen, both the 

numerical models have close estimation of the experimental test before the softening point; 

however, Hariri-Ardebili et al. model provides closer result. Generally in the softening phase, 

Voyiadjis and Taqieddin (2009) model estimates higher deflection than the experimental test for a  
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(a) (b) 

Fig. 3 (a) Geometry of single-edge-notched beam subjected to three point bending test; (b) Load versus 

load-point deflection 

 

  

(a) (b) 

Fig. 4 (a) Experimental monolith the scaled typical concrete gravity dam; (b) Load versus CMOD of the 

notch for experimental test and numerical model 

 

 

certain applied load, while Hariri-Ardebili et al. model predicts lower deflection than the test. It 

should be noted that the finite element mesh of the beam in Hariri-Ardebili et al. model is finer 

than Voyiadjis and Taqieddin (2009) model.  

 

3.2 Experimental test on a gravity dam 
 
The model of a typical concrete gravity dam scaled to 1:40 subjected to equivalent hydraulic 

lateral loads is analyzed applying incremental lateral loads using indirect displacement control 

algorithm (Carpenteri et al. 1992). The controlling parameter was selected to be crack mouth 

opening displacement (CMOD) of the notch and the adjusted incremental parameter due to the 

analysis was limited to 0.00002mm. Lateral hydraulic loads simulating the hydrostatic pressure on 

the upstream face are applied using four concentrated loads acting directly on the upstream 

through steel plates. Fig. 4(a) shows the geometry of the model and the percentage of lateral loads 

simulating the hydrostatic pressure. Totally 750 eight-node solid elements were used in finite  
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Fig. 5 Finite element model, dimensions and boundary conditions in dam-foundation-reservoir coupled 

system 

 

 

element model of the scaled typical gravity dam. The material properties are as follow: 

E=35.7GPa, υ=0.1, f’t=3.6MPa and Gf=184N/m. The crack band within the Gaussian points is 

assumed coaxial rotating crack. Load versus CMOD of the notch for the considered dam resulted 

from experimental test (Carpenteri et al. 1992) and the finite element model is depicted in Fig. 

4(b). As seen, the theoretical results are in good agreement with those obtained from experimental 

test.  

 

 

4. Finite element model of case study 
 

In order to investigate the ability of the proposed method in dynamic analysis of mass concrete 

structures, Koyna gravity dam in India was selected as case study. This dam is one of a few 

concrete dams that have experienced a destructive earthquake. The finite element model of dam-

foundation-reservoir coupled system is shown in Fig. 5. In this model, 3D eight-node solid 

elements were used for modeling the dam body and foundation rock and the fluid elements were 

used for simulation of the reservoir water. Only stiffness of the foundation was considered in total 

coupled equation of motion and the far-end boundaries of massless foundation were restricted in 

all translational directions. Fluid and solid elements are in interaction with each other at interface 

of dam-reservoir and also reservoir-foundation. Appropriate wave reflection coefficient was 

assumed in reservoir-foundation interface in order to modeling the bottom sediment effect. Far-end 

boundary of the reservoir was modeled in a way that absorbs all outgoing waves, while zero 

pressure boundary condition was applied at reservoir free surface. Detailed fluid-structure coupled 

equations and the mathematical representation of the fluid boundary conditions are summarized in 

Appendix (1). 

Applied loads on the coupled system are dam body self-weight, hydrostatic pressure and 

seismic load (Hariri-Ardebili and Mirzabozorg 2012). The system was excited at foundation 

boundaries and Newmark-β time integration method was utilized to solve the coupled problem of 

dam-reservoir-foundation model. Moreover, structural damping was taken to be 5% of critical 

damping in both linear and nonlinear cases. Material properties of mass concrete and the 

foundation rock are as follow; Ec and υc are 31.03MPa and 0.2 in static condition (Chopra and 

Chakrabarti 1973), and 35.68MPa and 0.14 in dynamic condition, respectively. f’t and f’c are  
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(a) (b) 

Fig. 6 The Koyna earthquake accelerogram record: (a) longitudinal component, (b) vertical component 

 

 

2.4MPa and 24MPa in static condition (Guanglun et al. 2000), and 3.6MPa and 36MPa in dynamic 

condition, respectively. It is noteworthy that the material properties in dynamic condition were 

calculated based on USACE (2007) and FEMA (1999) recommendation considering the rate 

dependence of the mechanical and strength properties of mass concrete. Density of mass concrete 

is 2643kg/m
3
 and the fracture energy is 300N/m. In addition modulus of elasticity and Poisson’s 

ratio of rock were assumed to be 31MPa and 0.33, respectively. The acceleration time-histories of 

Koyna ground motion are shown in Fig. 6.  

 

 

5. Results 
 

5.1 Considering fracture energy 
 
In this section, application of the proposed smeared crack model is investigated for the problem 

of fluid-structure interaction considering the fracture energy effects. Three types of nonlinear 

models and a linear model (as a reference one) were prepared. The geometry of dam, finite 

element model, material properties and the sequence of loading are the same in all models. The 

nonlinear models are different only in the values of the shear transfer coefficients. These three 

models are named as NL1, NL2 and NL3 and defined as follow: 

• NL1: Constant values are assumed for shear transfer coefficients; 0.1 in open crack condition 

and 0.9 in closed crack condition. It shows the state of the crack in which the crack face is 

completely rough in closed and completely smooth in open condition.   

• NL2: Constant values are assumed for shear transfer coefficients; 0.3 in open crack condition 

and 0.7 in closed crack condition. It shows the state of the crack in which the crack face is 

relatively rough in closed and relatively smooth in open condition. 

• NL3: Variable values are considered for shear transfer coefficients in open and closed 

conditions which are updated in each load step of the analysis. 

Fig. 7 represents time-history of crest displacement in stream direction for linear and three 

nonlinear models. As seen, all nonlinear models have almost the same behavior up to t=4.3s. The 

first model which is failed under the seismic loads is NL3 and the last one is NL1. It shows that 

using constant shear transfer coefficients for concrete behavior instead of variable coefficient 

overestimates the strength and stability of the dam and can leads to mis-interpretation of the results 

in dam safety related projects. Fig. 8 shows the crack profile in dam body under the seismic loads 

at different times and also final crack profile of Koyna Dam at failure time corresponding to large  
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Fig. 7 Time-history of the crest displacement in stream direction; considering fracture energy 
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Fig. 8 Crack propagation in dam body and the final crack profile at failure time; considering fracture energy 
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drift as shown in Fig. 7. As it is clear, in all models cracking starts in heel of dam at dam-

foundation interface while final cracking and failure of dam is due to continuous cracking in neck 

area which connects upstream and downstream of dam together. Using variable shear transfer 

coefficient leads to less diffusion of the cracked area in neck which is more real based on the 

observed crack profiles from shake table test. Also comparing NL1 and NL2 models shows that 

using 0.1 for open cracks and 0.9 for closed cracks leads to closer behavior to those obtained from 

variable shear transfer coefficients.  

 

5.2 Neglecting fracture energy 
 
Fig. 9 shows time-history of the crest displacement for linear and nonlinear models neglecting 

fracture energy effects. Although variable shear transfer coefficient model fails earlier than the 

others, there are no meaningful differences between three models (variable and constant shear 

transfer coefficients). It can be concluded that neglecting fracture energy effect leads to almost the 

same behavior in all nonlinear models in crack analysis of gravity dams. It means that, neglecting 

fracture energy effect covers the effects of the shear transfer coefficient. Fig. 10 shows the 

propagation of crack profile for nonlinear models neglecting fracture energy effects. Cracking 

starts at heel of dam in all models and propagate toward downstream. In addition, crack appears at 

the point of slope discontinuity on the downstream face and extends through the width of the neck 

toward upstream. The final crack profiles are close together while using variable shear transfer 

coefficient leads to lower cracked area than two other models. Neglecting fracture energy extends 

cracking through the entire dam-foundation interface at the final crack profile. Total stability of the 

coupled system due to base movement and overturning of the dam body should be checked in this 

condition. 

 

 

6. Discussion 
 

6.1 Input ground motion effect 
 
The presented results in the previous section are subjective to Koyna earthquake. In order to 

generalizing the findings of the present research over the other earthquake scenarios, four other 

 

 

 

Fig. 9 Time-history of the crest displacement in stream direction; neglecting fracture energy 

-0.05

0.00

0.05

0.10

0.15

0 1 2 3 4 5 6 7 8 9 10

D
is

p
la

ce
m

en
t 

(m
)

Time (s)

Linear

NL1

NL2

NL3 -0.05

0.00

0.05

0.10

3.5 4 4.5

28



 

 

 

 

 

 

A smeared crack model for seismic failure analysis of concrete gravity dams 

 
 

 

N
L

1
N

L
2

N
L

3

à à à  Crack propagation during the seismic analysis  à à à 

 

Fig. 10 Crack propagation in dam body and the final crack profile at failure time; neglecting fracture energy 

 
 

ground motions with different fault mechanisms were selected (Hariri-Ardebili and Mirzabozorg 

2012). Considering that there was no accessible design response spectrum for the Koyna Dam, the 

smoothed horizontal and vertical acceleration response spectrums of the Koyna ground motion 

were used as target spectrums as shown in Fig. 11(a). PEER ground motion database (2010) was 

used for selection of the other ground motions which matches reasonably with the target spectrum 

based on the general site characteristics of Koyna Dam. Fundamental characteristics of these 

ground motions are summarized in Table 1. Also the response spectrums of these four scaled 

ground motions are compared with the target one in Fig. 11(b). It should be noted that the effects 

of the spatial varying ground motions are not considered in the present study (Mirzabozorg et al. 

2012). 
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(a) (b) 

Fig. 11 (a) Original and smoothed target response spectrums of Koyna earthquake; (b) Scaled response 

spectrums of the selected ground motions 

 
Table 1 Characteristics of the selected ground motions  

Abbreviation Event Year Station M
*
 

Fault 

Mechanism 

Rrup
**

 

(km) 

VS30
***

 

(m/s) 

D5-95
†
 

(s) 

MOH 
Morgan 

Hill 
1984 

Gilroy- Gavilan 

Coll. 
6.19 Strike-Slip 14.8 729 8.6 

SAF 
San 

Fernando 
1971 Lake Hughes # 9 6.61 Reverse 22.6 670 9.4 

LOP 
Loma 

Prieta 
1989 UCSC 6.93 

Reverse-

Oblique 
18.5 714 8.5 

IRP 
Irpinia, 

Italy 
1980 Brienza 6.90 Normal 22.6 500 9.7 

*
 moment magnitude  

**
 closest distance to rupture plane 

***
 average shear wave velocity of top 30 meters of the site 

†
 significant duration of the record (the time needed to build up between 5% and 95% of the total Arias 

intensity)  

 

 

Effect of the fracture energy is investigated only for the model with variable shear transfer 

coefficient (NL3) because this one is the most accurate model over the three nonlinear models. 

Fig. 12 shows the final crack profile of the dam body under the four scaled ground motions 

with/without the fracture energy effect. As it is clear, in all cases neglecting the fracture energy 

effect leads to more cracked elements within the dam body. Cracking starts at the heel of the dam 

when the effects of the fracture energy is considered and propagates toward downstream. There is 

no entire cracking at the dam base in this condition. Neglecting the fracture energy effect leads to 

more cracked element at the dam-foundation interface as well as complete base for IRP ground 

motion. In addition, the numbers of cracked elements at the neck area increase when the fracture 

energy effect is neglected. It should be noted that the effective duration of the ground motions is 

almost the same in all cases and so the final crack profile is not highly sensitive to input ground 

motion duration (Hariri-Ardebili and Mirzabozorg 2013).  
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Fig. 12 Comparison of the final crack profile for different ground motion scenarios; variable shear 

transfer coefficient model 
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Fig. 13 Comparison of the final crack profile in dam body resulted from numerical models, experimental 

test and the real dam cracking 

 

 

6.2 Experimental test and model comparison  
 

Analyzing the results of the previous section reveals that the neck area and also dam-foundation 

interface near the heel are most crack-prone areas. Fig. 13 compares the final crack profile of the 

dam based on variable shear transfer coefficient under Koyna earthquake with real dam cracking 

and also experimental test. As seen, neglecting fracture energy leads to start of the cracking at the 

slope-change-point in downstream of the neck and propagation of cracks toward upstream face and 

lower parts, while considering its effects leads to propagation of cracks along the specific line  
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Table 2 Summary of the finite element models characteristics for crack analysis of Koyna Dam 

Model (year) Characteristics Description/Comparison 

Omidi et al. 

(2013) 

Material properties 
f′t=2.9MPa, fc=24.1MPa, Gt=200N/m, Gc=20000N/m, 

C0=1440m/s, α=0.85 

FSI model Eulerian-Lagrangian approach 

Foundation model Rigid foundation 

Constitutive model Plastic-damage model in 3D context 

Damping Constant and damage-dependent damping mechanism 

Load combination Self-weight + hydrostatic pressures + Seismic loading 

Guanglun et 

al. (2000) 

Material properties 
Ec=31.6GPa, f′t=2.46MPa, fc=24.6MPa, υ=0.2, Gf=250N/m, 

γc=26.4kN/m
3
 

FSI model Neglected 

Foundation model Rigid foundation 

Constitutive model Nonlinear fracture mechanics 

Damping Stiffness proportional damping, ξ=5% 

Load combination Self-weight + hydrostatic pressures + Seismic loading 

Calayir and 

Karaton 

(2005) 

Material properties 
Ec=31.027GPa, f′t=1.5MPa, (f′t)dyn=1.8MPa, υ=0.2, Gf=150N/m, 

(Gf)dyn=180N/m, ρc=2643kg/m
3
, κ=2070MPa 

FSI model Lagrangian-Lagrangian approach 

Foundation model Rigid foundation 

Constitutive model Coaxial rotating crack model with biaxial failure envelope 

Damping Stiffness proportional damping, ξ=5% 

Load combination Self-weight + hydrostatic pressures + Seismic loading 

Calayir and 

Karaton 

(2005) 

Material properties 
Ec=31.027GPa, f′t=2.0MPa, υ=0.2, Gf=200N/m, ρc=2643kg/m

3
, 

κ=2070MPa 

FSI model Lagrangian-Lagrangian approach 

Foundation model Rigid foundation 

Constitutive model Orthotropic damage model 

Damping Stiffness proportional damping, ξ=5% 

Load combination Self-weight + hydrostatic pressures + Seismic loading 

Pan et al. 

(2011) 

Material properties Ec=31GPa, f′t=2.9MPa, fc=28.9MPa, υ=0.2, Gf=250N/m 

FSI model Westergaard added mass 

Foundation model Rigid foundation 

Constitutive model plastic-damage model + Drucker-Prager elasto-plastic model 

Damping Rayleigh damping, ξ=5% 

Load combination Self-weight + hydrostatic pressures + Seismic loading 

 

 

from downstream neck to upstream face. Also neglecting fracture energy effects leads to complete 

cracking of the base in vicinity of the foundation.  

Fig. 13 shows shaking table test on the 1:150 scaled model of Koyna Dam (performed at the 

University of California, Berkeley) and resulted cracks at the elevation of the downstream slope-

change (Hall 1988). Also this figure shows the real crack profile in Koyna Dam as reported by 

Saini and Krishna (1974). Comparing the real crack profile, the experimental results and the 

proposed numerical model reveals that this model is able to capture the crack propagation in mass 

concrete structures with the good accuracy.  
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Fig. 14 Comparison of the final crack profile of Koyna Dam subjected to 1967 Koyna earthquake 

obtained by different researchers 

 
 
6.3 Comparison among various numerical models 
 

In the present subsection, the final crack profile of Koyna Dam under Koyna ground motion is 

compared with the results obtained by the other researchers. First the basic assumptions in each 

one is described and then the similarities and differences between then will be discussed. Table 2 

summarizes the basic assumptions, material properties and the numerical modeling in each case.  

Omidi et al. (2013) studied the behavior of Koyna Dam based on damage plasticity model. 

They considered two damping mechanism models, i.e., constant and damage dependent. They 

found that in the case of the constant damping, the diffused damage penetrates more at the slope 

change on the downstream face (Fig. 14(a)) while in the case of damage-dependent damping the 

whole neck area cracks (Fig. 14(b)). In the case of using reduced material properties (f’t=1.5MPa 

and Gf=150N/m) the resulted crack profile is shown in Fig. 14(c) which leads to more damage. 

Guanglun et al. (2000) studied 2D nonlinear seismic fracture behavior of Koyna Dam. They 

reported that crack appears initially at the point of slope discontinuity on the downstream face and 

extends about two-thirds through the width of the neck, and then upstream crack starts propagating 

horizontally to reach the downstream crack (Fig. 14(d)). Calayir and Karaton (2005) studied the 

seismic behavior of Koyna Dam using coaxial rotating crack model. They found that cracked 

elements are extended over the entire the neck and also about 60% of the base of the dam. The 

cracks at the downstream face are initially horizontal and propagate deeper inside of the dam. At 

the same time, previously initiated cracks in the heel of the dam propagate from the heel to the toe 

as shown in Fig. 14(e). Also Calayir and Karaton (2005) investigated Koyna Dam behavior based 

on orthotropic damage model for mass concrete. Due to the infinite rigidity of the foundation, 

crack propagates at the base of the dam. The final crack pattern at the neck area in this case is 

different from their previous study (Fig. 14(f)). Pan et al. (2011) investigated the crack behavior of 
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Koyna Dam using damage plastic (Fig. 14(g)) and Drucker-Prager elasto-plastic (Fig. 14(h)) 

models. They found that cracking starts from downstream face at the point of slope discontinuity 

and propagates towards upstream. Also when the dam oscillates to the downstream direction and 

reaches the first large downstream displacement, cracks begin to initialize near the middle of the 

upstream face.  

 

 

7. Conclusions 
 

A coaxial rotating smeared crack model was introduced for nonlinear behavior of mass 

concrete in three-dimensional space which was able to utilize variable shear transfer coefficient, an 

advanced three-parameter yield criterion, and simulation of cracking process in concrete with high 

accuracy. Finite element model of Koyna gravity dam-reservoir-foundation system was provided 

in order to investigation of the nonlinear dynamic behavior of large concrete specimens 

considering fluid-structure-interaction. The system was excited using Koyna ground motion 

recorded during Koyna earthquake. In addition, four other ground motions with different 

mechanisms were applied to the coupled system in order to generalizing the results. The results 

were compared for constant and variable shear transfer coefficients considering and neglecting the 

fracture energy effects.  

It was found that the proposed model is capable of crack analysis of large concrete specimens 

under the high hydrostatic pressure. Generally shear transfer coefficient affects the results of the 

dynamic analysis while fracture energy effects are considered. Considering fracture energy effects 

lead to creation of crack profiles with less diffusion especially in neck area of dam which is more 

close to reality. It was observed that neglecting fracture energy effects lead to failure of models 

(with different shear transfer coefficients) almost in the same time. Considering the fracture energy 

leads to failure of the models in various times. Finally it was concluded that the proposed model 

can be used for seismic crack analysis of concrete gravity dams considering the effects of fluid-

structure interaction. 
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Appendix 1 
 

Hydrodynamic pressure distribution in reservoir is governed by pressure wave equation. 

Assuming that water is compressible and neglecting viscosity, small-amplitude irrotational motion 

of water is governed as: (Mirzabozorg et al. 2012) 

2
2

2

1

( )
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P
P

f t


 


 (a-1) 

where ( )
F

f   can be defined as 

2 2

0 0
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C when P C
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P when P C


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


 

 
 

  

 (a-2) 

where P  is hydrodynamic pressure, 
0

C  is velocity of pressure wave in water, 
F

  is density of 

fluid and P


 is vapor pressure of water. The relation between the pressure and density is constant 

for non-cavitating fluids such that 2

0 F
P C   (present study). However, for a cavitating fluid, the 

pressure-density relationship takes the nonlinear form. Under dynamic excitation, condition at 

boundaries on dam-reservoir (
FSI

 ), reservoir-foundation (
FRI

 ), reservoir-far-end (
F

 ) and 

reservoir-free-surface (
0F

 ) for a non-cavitating fluid are governed as (Fig. 15) 

At fluid-structure interface, there must be no flow across the face because the concrete dams 

are impermeable (Hariri-Ardebili et al. 2013). In the following equation, superscript “s” refers to 

structure 

     
0s

F n FSI

P
a on

n



  


 (a-3) 

where s

na  is normal acceleration of dam body on upstream face and n  is normal vector on 

interface of dam-reservoir outwards the body. Reservoir-foundation boundary condition 

considering the bottom sediments can be written as 
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Fig. 15 Boundary conditions for dam-reservoir-foundation system 
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where q  is admittance coefficient and the relation between q  and   (wave reflection coefficient 

at the reservoir bottom and sides) is expressed as 

      

0
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1
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qC



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
 (a-5) 

In high reservoirs, surface waves are negligible and hydrodynamic pressure on free surface is set 

to be zero. 

     00 FP on   (a-6) 

For modeling the far-end truncated boundary, viscous boundary condition is utilized to absorb 

completely the outgoing pressure waves given as: 

     0
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The coupled equations of the dam-foundation-reservoir take the form (Hariri-Ardebili et al., 2013) 
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

 (a-8) 

where [M], [C] and [K] are the mass, damping and stiffness matrices of the structure including the 

dam body and its foundation media and [G], [C′] and [K′] are representing the mass, damping and 

stiffness equivalent matrices of the reservoir, respectively. The matrix [Q] is the coupling matrix; 

{f1} is the vector including both the body and the hydrostatic force; {P} and {U} are the vectors of 

hydrodynamic pressures and displacements, respectively and {Ǖg} is the ground acceleration 

vector. A detailed definition of matrices and vectors used in Eq. (a-8) has been provided in Hariri-

Ardebili et al. (2013).  
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