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Abstract.  We present a semi-rigid connection estimation method by using cross modal strain energy 
method. While rigid or pinned assumptions are adopted for steel frames in traditional modeling via finite 
element method, the actual behavior of the connections is usually neither. Semi-rigid joints enable 
connections to be modeled as partially restrained, which improves the quality of the model. To identify the 
connection stiffness and update the FE model, a newly-developed cross modal strain energy (CMSE) 
method is extended to incorporate the connection stiffness estimation. Meanwhile, the relations between the 
correction coefficients for the CMSE method are derived, which enables less modal information to be used 
in the estimation procedure. To illustrate the capability of the proposed parameter estimation algorithm, a 
four-story frame structure is demonstrated in the numerical studies. Several cases, including Semi-rigid 
joint(s) on single connection and on multi-connections, without and with measurement noise, are 
investigated. Numerical results indicate that an excellent updating is achievable and the connection stiffness 
can be estimated by CMSE method. 
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1. Introduction 

 

In modern analysis of structural dynamics, much effort is devoted to the derivation of accurate 

models. These accurate models are used in many applications of civil engineering structures like 

response prediction, damage detection and vibration control. A typical way to establish a 

mathematical model for a civil structure or mechanical system is via the use of the finite element 

(FE) method. The FE model of a structure is constructed on the basis of highly idealized 

engineering blueprints and designs that may or may not truly represent all the physical aspects of 

an actual structure (Cunha et al. 2008).  

Structural modeling errors cannot be completely avoided in any analytical procedure that relies 

on finite-element models; these errors originate from many aspects such as simplified materials, 

boundary conditions, as well as connections. In the field of civil engineering, beam-to-column 

connections play an important role in dynamic and stability analysis of frame structures, where FE 

models are usually not modeled with sufficient accuracy (Hadianfard and Razani 2003, Hasan 

2010). In modeling the connection, one of the basic assumptions of conventional finite element 

models is that joints are either perfectly rigid or idealized hinged. Although the adoption of such 
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idealized joint behavior simplifies the modeling process, it by no means represents the actual 

behavior of the structure. These non-ideal connections are often referred to as flexible connections, 

semi-rigid connections, spring hinged joints, etc. That is to say, the connection stiffness is 

somewhere in between. Under such circumstances, errors may be present if this simplified model 

is used for further analysis such as response prediction, damage detection, and so on.  

Common ways to consider the semi-rigid joints include analytical procedure and/or 

experimental study (Fan et al. 2012, Loureiro et al. 2010, Alfonsas and Kestutis 2008, Loureiro et 

al. 2012). In addition, model updating is usually used to obtain an accurate model which is more 

representative of the real structure when field dynamic measurements are available. Model 

updating is defined as the process of correcting the numerical values of individual parameters in a 

mathematical model using data obtained from an associated experimental model such that the 

updated model more correctly describes the dynamic properties of the subject structure. 

A number of model updating methods have been proposed. In general, these methods can be 

classified into two major groups: non-iterative (direct matrix methods) and iterative method 

(Ewins 2000, Friswell and Mottershead 1995, Mottershead and Friswell 1993, Hu et al. 2007). The 

former was based on computing changes made directly to the mass and stiffness matrices. Such 

changes may have succeeded in generating modified models which had properties close to those 

measured in the tests, but do not generally maintain structural connectivity and the corrections are 

not always physically meaningful. The iterative methods are generally of indirect physical 

property adjustment methods which involve using the sensitivity of the parameters to update the 

model. And they are in many ways more acceptable in that the parameters which they adjust are 

much closer to physically realizable quantities. 

Hu et al. (2006), Wang et al. (2007) developed cross modal strain energy (CMSE) method for 

damage localization and severity estimation. The method is so named because it involves solving a 

set of linear simultaneous equations for the physically meaningful correction coefficients, in which 

each equation is formulated based on the product terms from two same/different modes associated 

with the mathematical and experimental models, respectively. The advantages of the CMSE 

method include: (1) no need scaling and pairing of mode shapes; (2) being a non-iterative solution 

method; (3) requiring very few measured modes to implement the method.  

The objective of this paper is for extending the CMSE method to incorporate the localization of 

semi-rigid connections and estimation of the connection stiffness. In particular, the relations 

among the correction coefficients for different kinds of semi-rigid connection cases are derived 

which enables less measured modes to be used in the updating. The rest of the paper is arranged as 

follows. In section 2, the stiffness matrix of a beam member with semi-rigid joints on both ends is 

formulated. Next, the CMSE method is illustrated in section 3. The relationships among the 

correction coefficients for different kinds of end connections are formulated in section 4. 

Meanwhile, relationships between the correction coefficients and the rotational connection springs 

are derived. Section 5 demonstrated a four-story frame structure for verifying the capability of the 

proposed method for model updating and connection estimation. Finally, a conclusion was drawn 

in section 6. 

 

 

2. Beam member with semi-rigid joints 
 

Semi-rigid joints can be modeled using a rotational spring which separates a member from its 

surrounding environment. To incorporate semi-rigid end connection, the effects of connection  
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Fig. 1 Beam member with rotational springs 

 

 

flexibility are modeled by attaching rotational springs at the two ends of a beam member, as shown 

in Fig. 1. A so-called end-fixity factor r defines the stiffness of the connection to the attached 

beam-column member (Monforton and Wu 1963).
 

The end-fixity factor is defined as 

r=1/(1+3EI/kL) where k denotes for the rotational stiffness of the spring connections at either end i 

or j; L is the length of the beam-column member, I the moment of inertia, and E the Young’s 

modulus. For pinned connections, the rotational stiffness of the connection is idealized as zero and 

thus the value of the end-fixity factor is zero (r = 0). For rigid connections, the end-fixity factor 

has a value of one (r = 1), because the connection rotational stiffness is taken to be infinite. A 

semi-rigid connection has an end-fixity factor between zero and one (0 < r < 1). 

When a moment is applied to a beam-column connection, the connected beam and column 

rotate relative to each other by an amount of r. The relationship between end-moments and end 

rotations of a beam can be written by replacing the end-rotations i and j by i −ri and j −rj 

respectively. Then the following stiffness matrix of a semi-rigid beam member with 6 degrees of 

freedom in local coordinates can be obtained, after considering the vertical displacements of the 

ends and the axial loading (Chen and Lui 1991, Wang 2013b). 
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where sii=(4+12EI/Lkj)/R*, sij=2/R*, sjj=(4+12EI/Lki)/R*, R*=(1+4EI/Lki) (1+4EI/Lkj) - (2EI)
2 

/L
2
kikj in which ki and kj are the rotational stiffness of the spring connections at ends i and j, 

respectively. A is the cross-sectional area of the member. Applying the known steps of the matrix 

displacement method, this matrix is obtained in global coordinates for each member and structural 

stiffness matrix can be constituted. 

The stiffness matrix of Eq. (1) for ki = and kj =  converges to the stiffness matrix 

corresponding to rigid connections at both ends. Similarly, Eq. (1) leads to the stiffness matrix 

associated with pinned connections at both ends for ki = 0 and kj = 0. Combinations (ki = , kj = 0) 

or (ki = 0, kj = ) results in the stiffness matrix of an element with one end rigidly constrained and 
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the other released. For 1 > ki and/or kj > 0, the stiffness matrix is algebraically a nonlinear function 

of ki and/or kj and I, which must be considered during parameter estimation. 

When ki =  and kj = K, the stiffness matrix converges to the partially restrained frame (PRF) 

element (Sanayei 1999), as shown in Eq. (2). 


















































































































LKEI

EIK

LKEIL

EIK

LKEI

EIK

LKEIL

EIK

LKEI

LKEI

L

EI

LKEI

LKEI

L

EI

LKEI

LKEI

L

EI
L

EA

L

EA

LKEI

LKEI

L

EI

LKEI

LKEI

L

EI

LKEI

LKEI

L

EI

sym
L

EA

k s

4

4

)4(

6
0

4

2

)4(

6
0

4

12
0

4

26

4

12
0

00

0
4

34

4

26
0

4

12
0

323

2

3

       (2) 

 

 

3. Cross modal strain energy method 
 

This section briefly summarizes the cross modal strain energy (CMSE) method, to update an 

initial baseline model with measured information from actual structure which is assumed to have 

semi-rigid joint(s), and to estimate the rotational connection stiffness of semi-rigid joint(s).  

It is assumed that the stiffness K and mass M matrices of the structure are obtained from a 

finite-element model, with rigid connections. It is intended to “correct” or “update” the stiffness K 

and mass M matrices by measured modal measurements, including a few mode shapes and their 

corresponding frequencies, from actual structure with semi-rigid joints. 

The ith eigenvalue and eigenvector associated with K and M is expressed as 

iii MK                                   (3) 

where i and i denote the ith eigenvalue and eigenvector, respectively. Assume that the stiffness 

matrix K* of the actual (experimental) model with semi-rigid joints is a modification of K to be 

formulated as 





KN

n

nnKKK
1

*                               (4) 

where Kn is the stiffness sub-matrix chosen for correction; NK is the total number of stiffness 

sub-matrix to be corrected; and n are the corresponding correction coefficients to be estimated. 

How to chose the sub-matrix Kn for semi-rigid joints updating will be presented in detail in section 

4. For simplicity, it is assumed that the semi-rigid joints don’t change the mass matrix of the 

baseline.  

Express the jth eigenvalue and eigenvector associated with K*and M* as 

*****

jjj MK                                 (5) 
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where j
*
  and j* denote the jth eigenvalue and eigenvector measured from actual structures, 

respectively. Premultiplying Eq. (5) by i
T 

and substituting Eq. (4) into it yields 

*
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Define the structural cross modal strain energy Cij and the corresponding elemental cross modal 

strain energy Cn,ij between the ith mode of the baseline structure and the jth mode of the measured 

structure as 

*

j

T

iij KC  ,  *

, jn

T

iijn KC                           (7) 

After introducing a new index m to replace ij, Eq. (6) becomes 





KN

n

mmnn bC
1

,                               (8) 

where bm=(j
*
/i-1) i

T
 Kj*. When Ni and Nj modes are available for the baseline structure and 

measured structure respectively, totally Nq = Ni ×Nj equations can be formed from Eq. (8). Written 

in a matrix form, one has 

bC                                   (9) 

in which C is an Nq-by-NK matrix,  and b are column vectors of size NK and Nq, respectively. 

When Nq is greater than NK, a least-squares approach can be taken to solve for . The estimate is 

written as 

  bCCC TT 1
                              (10) 

After  is estimated, it can be substituted into Eq. (4) to obtain the updated stiffness matrix of 

actual structure with semi-rigid joints. It is worthy to mention that those Ni and Nj modes of the 

baseline and actual structures can be arbitrary modes in the sense that they are not required to start 

from the first mode. In practice, it is easy to obtain the analytical modes of the baseline structure, 

but difficult or expensive to extract the measured modes of the actual structure, therefore one may 

choose a much larger Ni than Nj. It should also be noted that spatially-complete mode shapes are 

required for conducting the CMSE method. When the measured mode shapes are spatially 

incomplete, model reduction or modal expansion techniques could be used to overcome the spatial 

incompleteness (Wang 2013a). 

 

 

4. Estimation of rotational connection stiffness 
 

In this section, the relationships among the correction coefficients for different types of end 

connections are formulated. Formulas of rotational stiffness of spring connections with correction 

coefficients are derived. These formulas can be used to estimate the rotational stiffness of the 

semi-rigid joints when the correction coefficients have been obtained by applying CMSE method. 

 

4.1 Relationships of correction coefficients for different types of end connections 
 

As mentioned earlier, the beam member is generally modeled as a frame element. For a beam 
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member with rotational end connections, there are three categories, namely, connection at the left 

end, connection at right end or connections at both ends. The relationships among the correction 

coefficients for these three categories are formulated below. One generally updates an initial model 

which is often obtained via finite element method. Here we assume that all joints of the initial 

model are rigid connections, with stiffness matrix for an Euler-Bernoulli uniform beam element in 

2-dimension as follows. 
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Comparing Eq. (11) with Eq. (1), one can find that the connection stiffness changed the element 

entries corresponding to vertical and rotational degree of freedoms (DoFs). Therefore updating Eq. 

(11) requires focusing on these elements. One can select each individual Kn corresponding to one 

set of the connection stiffness. Denoting kn as the counterpart of Kn in a 6 × 6 matrix form 

associated with the connection, one has the sub-matrices chosen 

as 
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 )6,6(6 k . The digital pairs in the parentheses of each sub-matrix denote the associated entries 

which are chosen from the stiffness matrix as shown in Eq. (11). For example, (2, 2) in k1 denotes 

the entry of row 2, column 2 of kr. In this way, k1 is chosen as 
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and other sub-matrices are formed similarly. Hereby, one sets NK=6 for semi-rigid corrections of a 

single beam. And it seems that one needs six correction coefficients to update the stiffness matrix 

of rotational connection at both ends. However, these six correction coefficients aren’t independent 

to each other, as shown in Task 1 of the numerical example. 

By a theoretical analysis, one finds that the correction coefficients have the following 

relationships by comparing Eq. (11) with Eq. (1) via Eq. (4). 

sii+2sij+sjj=12(1+1)                          (13a) 

sij+sjj=6(1+2)                             (13b) 
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sii =4(1+3)                              (13c) 

sij=2(1+4)                              (13d) 

sii+sij=6(1+5)                             (13e) 

sjj=4(1+6)                               (13f) 

From these equations, one finds there are only three independent coefficients. If 1, 2 and 3 are 

chosen as the independent variables, 4, 5 and 6 can be expressed as. 

32162153214 33,2,236            (14) 

By the same token, one can formulate that only one independent correction coefficient is needed 

for single end rotational connection. If 1 is chosen as the independent variable to be corrected, the 

relations are as follows 

1615141312
3

4
,

3

2
,

3

4
,

3

1
,
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4
                 (15) 

for a right rotational connection case; and 

1615141312
3

1
,

3

4
,

3

4
,

3

4
,

3

2
               (16) 

for a left rotational connection case. Eqs. (14), (15) and (16) can be used to reduce the number of 

correction factors, furthermore the measured modal information in the model updating procedure. 

 

4.2 Estimation of the rotational connection stiffness 
 

Once the stiffness sub-matrices are chosen and the correction coefficients for the stiffness 

matrix are correctly estimated, one can compute the stiffness of the rotational connection, after 

some manipulations. With Eq. (13c), Eq. (13d) and Eq. (13f), the left and right rotational 

connection stiffness yield Eq. (17a) and Eq. (17b), respectively, for the case with rotational 

connections at both ends. 
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For one end, either the left or the right, connection case, the rotational connection stiffness is 

equivalent and yields 
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Fig. 2 Sketch of the four story frame structure 

 
 
5. Numerical study 
 

In this numerical example, the CMSE method for updating the model and estimating 

connection stiffness will be illustrated and verified on a four-story frame structure, as shown in 

Fig. 2, where each structural member is modeled as an Euler-Bernoulli uniform beam element. In 

Fig. 2, a circled number denotes a finite element while a number without a circle denotes a node. 

The essential geometrical and material properties of the frame structure are given below. The 

length of all members is 2 m. The cross-sectional area and the associated moment of inertia for all 

members are A=0.05m
2
 and I=1.66×10

4
m

4
, respectively. The density and elastic modulus of the 

material of the members are =7800 kg/m
3
 and E=2.1×10

11
 N/m

2
, respectively. 

Finite element model with rigid connections is formed as the baseline. Modal analysis is carried 

out by developing a program in Matlab environment to get the FE frequencies and mode shapes. 

For simulating an “actual” structure with semi-rigid joint (connection stiffness), it is assumed that 

the selected beam element(s) is/are connected with the associated column(s) by rotational 

spring(s). Four tasks are considered in this example. Throughout this numerical example, the 

baseline model is defined as the finite element model with rigid connections. The “actual” 

structure is defined as the finite element model with semi-rigid joints at the end(s) of selected 

beam member(s). 

 
5.1 Task 1-Right end of a single beam is connected with rotational spring 
 

In task 1, the semi-rigid joint is assumed to be located at the right end of beam element 1. And 

the connection stiffness is assumed to be 1.0×10
7
 N.m/rad. The modal analysis is again carried out 

to get the assumed “measured” modal parameters for the new model with this semi-rigid joint. The 
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modal frequencies, relative errors, and modal assurance criterion (MAC) of the first six modes are 

shown in Table 1. It can be seen that the maximum error that appeared in frequency is 7.94% in the 

third mode and minimum value of MAC is 89.55% in the third mode as well. 

When taking six correction coefficients, applying the CMSE method with any three measured 

modes from actual structure, one can obtain the correction coefficients. From the point of view of 

application, the lower modes of the first several orders may be preferable. The results are shown in 

Fig. 3 when the first three modes are utilized. The updating is exact, i.e., the frequencies and mode 

shapes of the updated model are identical to those measured from the “actual” structure with the 

semi-rigid joints and the MACs are unity. From Fig. 3, one can find that these six correction 

coefficients do relate to each other, as formulated in Eq. (13). For example, 1=−0.6562, 

2=4=6=4/31, 3=1/31=−0.2187, 5=2/31=−0.4375. If only one correction coefficient 1 is 

chosen as the independent variable to be corrected, only taking one measured mode can update the 

joint stiffness exactly. For task 1, the following three cases are investigated. 

• Case 1: The exact location of the semi-rigid joint is known a priori. 

• Case 2: The exact beam element which has the semi-rigid joint is known a priori. 

• Case 3: The location information of the semi-rigid joint is totally unknown. 

 

 
Table 1 Frequencies and MAC of the frame structure without and with flexible joint in task 1 

Modes Baseline(Hz) With joint stiffness(Hz) Relative error (%) MAC(%) 

1 8.0686 7.9949 0.9213 99.880 

2 26.302 24.829 5.9343 95.896 

3 49.185 45.569 7.9361 91.454 

4 72.336 69.736 3.7276 93.362 

5 121.62 119.62 1.6779 89.550 

6 135.90 132.59 2.5005 94.322 
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Fig. 3 The six correction coefficients for case 1 of task 1 
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Fig. 4 The correction coefficients for case 3 of task 1 

 

 

For case 1, if the exact location of the semi-rigid joint is known a priori, only one independent 

correction coefficient 1 needs to be estimated. Using any single measured mode can obtain 1= 

-0.6562 and the rotational spring can be estimated exactly, being kj=1.0×10
7
 N.m/rad. 

In case 2, the exact location of the flexible joint isn’t known beforehand. However, the beam 

element with this flexible joint is presumably known. In this case, one should assume that both 

ends of the beam member 1 may be semi-rigid connections. Therefore three independent 

correction coefficients (1, 2, 3) need to be estimated. Using any three measured modes can 

obtain 1 = −0.6562, 2 = −0.875, 3 = −0.2187. The rotational springs computed by using the 

estimated  are ki = 6.2×10
16

 N.m/rad and kj=1.0×10
7
 N.m/rad, respectively. It is obvious that the 

left estimated stiffness is far larger than the linear stiffness EI/L and can be assumed to be rigidly 

connected (ri=1). The right estimated joint spring is identical to the preset one.  

For case 3, since one doesn’t know the exact location of semi-rigid joint, all the beam elements 

are assumed to be subset whose ends are rotationally connected with springs. Therefore 12 

correction coefficients, with each element three coefficients, are to be estimated. When the first 

two measured modes are utilized in the CMSE procedure, the correction coefficients are shown in 

Fig. 4. From Fig. 4, it is obvious that only the first element has been updated, with the correction 

coefficients identical to those estimated in case 2. Other correction coefficients are left to be zeros. 

The estimated connection stiffness are ki = 4.2×10
17

 N.m/rad and kj=1.0×10
7
 N.m/rad, respectively. 

That is to say, one can still identify the connection location and estimate the spring stiffness 

exactly. 

 
5.2 Task 2-Both ends of a single beam are connected with rotational springs 
 

In task 2, both ends of a single beam (element 1) are connected with rotational springs, with the 

left rotational stiffness 5.0×10
7
 N.m/rad and with right rotational stiffness 1.0×10

7
 N.m/rad, 

respectively. The corresponding end-fixity factors are ri=0.4878 and rj=0.16, respectively. The 

modal frequencies, relative errors, and MAC of the first six modes are listed in Table 2. The 

maximum error that appeared in frequency is 11.245% in the third mode and minimum value of 

MAC is 87% in the 5th mode. 
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Table 2 Frequencies and MAC of the frame structure without and with flexible joints in task 2 

Modes Baseline (Hz) With joint stiffness(Hz) Relative error (%) MAC(%) 

1 8.0686 7.9533 1.4493 99.732 

2 26.302 24.060 9.3186 92.542 

3 49.185 44.213 11.245 88.105 

4 72.336 69.061 4.7411 92.642 

5 121.62 118.05 3.0314 87.005 

6 135.90 131.44 3.3975 95.291 

 

 

Fig. 5 The correction coefficients for case 6 in task 2 

 

 

Similarly to task 1, three cases are studied too. For not confusing, they are ordered as cases 4 to 6. 

• Case 4: Only one end, either the right or the left, of the beam is assumed to be spring 

connected. 

• Case 5: Both ends of the beam element are assumed to be spring-connected. 

• Case 6: All the beam elements in the model are assumed to spring connected for both ends. 

For case 4, if only one end, either the right or the left, of the beam is assumed to be connected 

with a rotational spring, no correct results can be obtained. For example, if one assumes the right 

end of the beam to be spring-connected, the estimated results for the left and right rotational 

stiffness are ki =  and kj = −3.6833×10
6
 N.m/rad, respectively. 

For case 5, if both ends of the beam element are assumed to be spring-connected, one needs 

three independent correction coefficients to be estimated. By applying CMSE with any three 

measured modes, one estimates 1 = −0.8149, 2 = −0.8985, 3 = −0.6269. Then the left and right 

spring stiffness are computed as ki = 5.0×10
7
 N.m/rad and kj = 1.0×10

7
 N.m/rad. In this case, one 

can estimate the spring stiffness properly.  

For case 6, all the beam elements are assumed to be subset whose ends are rotationally 

connected with springs. Therefore 12 independent correction coefficients, with each element three 

coefficients, are to be estimated and the results are shown in Fig. 5. From Fig. 5, it is obvious that 

only the first element has been updated, with the correction coefficients identical to those 

estimated in case 5. Other correction coefficients are left to be zeros. The estimated connection  
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Table 3 Frequencies and MAC of the frame structure without and with flexible joint in task 3 

Modes Baseline (Hz) With joint stiffness(Hz) Relative error (%) MAC(%) 

1 8.0686 7.7488 4.1267 99.477 

2 26.302 23.053 14.093 95.237 

3 49.185 45.333 8.4977 91.974 

4 72.336 69.401 4.2292 93. 003 

5 121.62 119.53 1.7556 88.941 

6 135.90 131.28 3.5213 95.564 

 

 

stiffnesses are ki = 5.0×10
7
 N.m/rad for left end and kj = 1.0×10

7
 N.m/rad for right end of beam 1, 

respectively. The estimated connection stiffnesses for beams 2 to 4 are very large numbers of 

magnitude 10
18

. The corresponding end-fixity factors are all unity for these beams. From these 

results, it can obviously be seen that the rotational springs for both ends of beam 1 can be 

identified and estimated correctly. 

 

5.3 Task 3-Different ends of two beams are connected with rotational springs 
 

In task 3, semi-rigid joints located at different ends of two different beams are simulated and 

investigated. In this task, one flexible joint is located at the right end of element 1 with a 

connection stiffness 1.0×10
7
 N.m/rad and the other is located at the left end of element 2, with a 

rotational stiffness 5.0×10
7
 N.m/rad, respectively. The modal frequencies, relative errors, and 

MAC of the first six modes are listed in Table 3. The maximum error that appeared in frequency is 

14.09% in the 2nd mode and minimum value of MAC is 88.94% in the 5th mode. 

The following three cases are studied in task 3, named as cases 7 to 9.  

• Case 7: Only one end, either the right or the left, of beam 1 or beam 2, is assumed to be spring 

connected. 

• Case 8: Both ends of the beam elements 1 and 2 are assumed to be spring-connected. 

• Case 9: All the beam elements in the model are assumed to be spring connected for both ends. 

Case 7 investigates the case where only partial information of the flexible joints locations is 

known. Under this condition, no correct results can be estimated. For example, if only the right 

end of element 1 is assumed to be spring-connected, the estimated correction coefficients is 1 = 

−0.7431 and the rotational stiffness is kj = 6.5115×10
7
 N.m/rad for beam 1. However, if only the 

left end of element 1 is assumed to spring-connected, the estimated correction coefficients is 1 = 

−0.8908 and the rotational stiffness is kj = −1.1063×10
7
 N.m/rad for beam 1. The negative stiffness 

indicates that one sets wrong end of element 1. 

In case 8, both ends of the beam elements 1 and 2 are assumed to be spring-connected. Six 

independent correction coefficients need to be estimated. The results are 1 = −0.6562, 2 = 

−0.875, 3 = −0.2187 for beam 1 and 1 = −0.4375, 2 = −0.2917, 3 = −0.5833 for beam 2, 

respectively. The identified spring stiffness are ki =  (ri=1) and kj= 1.0×10
7
 N.m/rad for beam 1 

and ki = 5.0×10
7
 N.m/rad and kj =  (rj=1) for beam 2. Correct results could be obtained. 

In case 9, all the beam elements in the model are assumed to be spring connected for both ends. 

Therefore 12 independent correction coefficients, with each element three coefficients, are to be 

estimated and the results are shown in Fig. 6. In Fig. 6, the first three correction coefficients are for 

beam 1 and the next three for beam 2. From Fig. 6, it is obvious that only elements 1 and 2 have  
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Fig. 6 The correction coefficients for case 9 in task 3 

 

 

been updated, with the correction coefficients identical to those estimated in case 8. Other six 

correction coefficients for beams 3 and 4 are left to be zeros. The estimated connection stiffness 

are ki =  with end fixity factor ri=1 and kj =1.0×10
7
 N.m/rad for beam 1, ki = 5.0×10

7
 N.m/rad and 

kj =  for beam 2, respectively. The estimated stiffnesses for beam 3 and 4 are all of magnitude of 

10
18

. From these results, it is obvious that the rotational springs for right end of beam 1 and left 

end of beam 2 can be identified and estimated exactly. 

 
5.4 Task 4-investigation of noise effect on the estimation of semi-rigid joints 
 

In practice, modes measured from experimental modal testing always contain noise or error. 

For studying the influence due to the measurement noise to the model updating and flexible joints 

estimation, the measured mode shapes are simulated by adding Gaussian noises to the noise-free 

modes. The measurement of the polluted j-th mode of the structure with flexible joints at the k-th 

DoF, has been simulated by adding a Gaussian random error to the corresponding true value, jk* 

)1(ˆ **

jkjkjk n                             (19) 

where n denotes a noise level, and jk is a Gaussian random number with zero mean and unit 

standard deviation. 

For space limitation, only the first case in task 1 is investigated for the noise-polluted 

measurements in task 4. In this case, a Gaussian noise of 0.5% noise level was added to the 

noise-free mode shapes. Using the first noise-polluted measured mode for model updating and 

flexible joints estimation, the first six modal frequencies and MAC of the updated model are 

shown in Table 4. Compared with Table 1, one can see that the maximum relative error has 

reduced to 0.12% in the third mode. And all the MACs have increased to near unity. The estimated 

flexible stiffness is kj = 0.947×10
7
 N.m/rad, with a 5.6% error compared to the true value kj = 

1.0×10
7
 N.m/rad. When more modes are used in the CMSE method, a pretty good result can still 

be estimated for a higher noise level. For instance, the flexible stiffness is estimated to be ki =  
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Table 4 Frequencies and MAC of the frame structure under 0.5% noise level 

Modes Baseline (Hz) With joint stiffness(Hz) Updated model(Hz) MAC(%) 

1 8.0686 7.9949 7.9935 100.00 

2 26.302 24.829 24.801 99.999 

3 49.185 45.569 45.513 99.998 

4 72.336 69.736 69.703 99.999 

5 121.62 119.62 119.58 99.998 

6 135.90 132.59 132.54 99.999 

 

 

1.062×10
7
 N.m/rad when using the first three modes for a 2% noise level. And the relative error is 

about 5.9%. 
 

 

6. Conclusions 
 

This article introduced the concept of semi-rigid joints where a beam is/are connected to 

column(s) by rotational spring(s), and developed an efficient cross modal strain energy (CMSE) 

method to update the initial baseline by solving a set of linear equations for the correction 

coefficients associated with the connection stiffness using a few of measured modes. The 

relationships between the correction coefficients and the connection stiffness for different cases are 

derived. The relationships could be used to reduce the correction coefficient numbers so that fewer 

measured mode shapes will be applied in the updating procedure. The estimated correction 

coefficients can be used to estimate the connection stiffness of the semi-rigid joints. 

Numerical example related to a four story frame structure using synthesized data were carried 

out to illustrate the effectiveness of the CMSE solution procedure, as well as to demonstrate the 

achievability of locating the connection springs and estimating the stiffness. Four tasks are 

considered, in which different cases are investigated for each task. In task 1, only the right end of a 

single beam is connected to column with rotational spring. In task 2, both ends of a single beam 

are connected to columns with rotational springs. While tasks 1 and 2 focus on semi-rigid joints of 

single beam, semi-rigid joints located at different ends of two beams are considered in task 3. Task 

4 investigates the influence of measurement noise on the updating and estimation of the semi-rigid 

joints.  

From the four tasks, one can draw the following conclusions. If the exact location (end) of 

semi-rigid joint is known a priori, one can update the model correctly with one measured mode, 

and the estimated connection stiffness is exact. If the exact location of semi-rigid joints is not 

known, one should enlarge the subset suspectable to be semi-rigid joints. By applying the CMSE 

method with more measured modes, one can still identify the exact location of flexible joints and 

estimate the connection stiffness correctly. 
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