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Abstract.   In current study, natural frequency response of fiber metal laminated (FML) fibrous composite 
panels is optimized under different combination of the three classical boundary conditions using particle 
swarm optimization (PSO) algorithm and finite strip method (FSM). The ply angles, numbers of layers, 
panel length/width ratios, edge conditions and thickness of metal sheets are chosen as design variables. The 
formulation of the panel is based on the classical laminated plate theory (CLPT), and numerical results are 
obtained by the semi-analytical finite strip method. The superiority of the PSO algorithm is demonstrated by 
comparing with the simple genetic algorithm. 
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1. Introduction 

 

Panel structures are widely used as structural components in various branches of engineering 

such as aerospace, civil and marine engineering. The usage of fiber metal laminates (FML) in 

these panel structures is increasing day to day and taking the place of traditional composites, due 

to their superior mechanical characteristics. FMLs consist of alternating layers of reinforced 

polymeric composites and metal sheets (aluminium, magnesium and/or titanium) in a way that 

metal sheets are outer layers protecting the inner composite layers without taking the poor fatigue 

strength of metal sheets and the poor impact strength of carbon fibers (or some composites). 

Advantages of FML can be listed as excellent fatigue behavior, superior impact resistance, 

inherent resistance to corrosion and environmental conditions, good fire resistance, low moisture 

absorption, weight reduction and improved damage tolerance characteristics (Aksoylar et al. 2012, 

Shooshtari and Razavi 2012, 2010, Ghashochi Bargh and Sadr 2011). In view of this, lay-up 

sequence optimization of inner composite layers has a significant role in improving the specific 

design objectives. 

Also the concept of design and optimization of the constitutive material is established as a 

fundamental step in the process of design and optimization of composite structure (Gürdal et al. 

1999). In this area, several researches have contributed with various partial results and/or 
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characteristics of lamination parameters. Among these, the first to mention should naturally be 

(Tsai and Pagano 1968) who introduced the lamination parameters. (Fukunaga and Sekine 1992) 

determined the relationship between the four in-plane parameters and also for the four out-of-plane 

parameters. (Grenestedt and Gudmundson 1993) also determined that the application of lamination 

parameters as design variables in stiffness related optimization would produce a convex design 

space. (Bloomfield et al. 2009) developed an efficient method for optimization of composite 

structures in such a way that the non-convex nature of the problem is overcome. They established 

the feasibility constraints of the lamination parameters for a set of laminates with homogenous 

material but different angular orientations of each layer. Among first works on optimization of 

natural frequency in laminated composite materials, one can refer to Bert (1977), where presented 

results for the maximum fundamental frequency of a simply supported symmetric balanced 

laminate with a lay-up configuration of [±θ]S. Bert (1978) also proposed a suitable equation to 

determine the fundamental frequencies of composite plates with clamped boundaries. When 

considering four plies, he found that the optimal fiber orientation varied from 0 to 90 with increase 

in the plate aspect ratio. Kam and Chang (1993) traced the optimal lamination arrangement of 

thick composite plates for maximum buckling load and vibration frequency. Mateus et al. (1991) 

studied the optimal design of thin laminated plates and obtained results for maximum fundamental 

frequency and minimum elastic strain energy using finite element method to determine the 

frequency response. Narita (2003) offered a Ritz-based layerwise optimization approach for the 

symmetrical composite plates with respect to fiber orientation. Reiss and Ramachandran (1987) 

obtained the optimum design using a closed-form solution for the laminate frequency. Apalak et 

al. (2008) determined the optimal layer sequences of the symmetrical composite plates using 

Genetic Algorithm, artificial neural networks and finite element method. Fundamental frequency 

optimization of laminated composite panels is studied by Ghashochi and Sadr (2010, 2011, 2012) 

using Elitist-Genetic algorithm, particle swarm optimization algorithm and finite strip method. 

They (2011) also studied the optimal design of FMLs plate and obtained results for maximum 

fundamental frequency using Elitist-Genetic algorithm. 

The objective of the present study is to find the optimum stacking sequence of inner composite 

layers of FML plates that gives the maximum natural frequency using particle swarm optimization 

(PSO) algorithm and finite strip method (FSM). The geometry of a typical finite strip of layered 

fiber metal is shown in Fig. 1 indicating the coordinate axes system pertaining to the strip  

 

 

 
Fig. 1 Strip geometry of a layered fiber metal and coordinate axes system 
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displacements u, v and w with a length of ɑ and width of bs. The classical laminated plate (CLPT) 

theory is used for the finite strip formulation of the laminated plates. Finally, the effect of different 

panel aspect ratio, ply angles, number of layers and boundary conditions on the optimal designs is 

investigated. 

 

 
2. Formulation 
 

In the present study, we consider a rectangular FML plate with uniform total thickness h 

composed of n isotropic and orthotropic layers. The FML composite plate is assumed to be thin (h/ 

ɑ=0.01) so that the classical laminated plate theory (CLPT) is employed to analyse the problem 

and the following displacement field is assumed (Jones 1975, Vinson and Sierakowski 1986) 
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where  vu ,  and w  are the displacement components along the (x, y, z) coordinate directions of a 

point on the midplane, respectively. 

The membrane strains   and the bending curvatures ψ are defined as follows 
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Here, a subscript after the comma denotes differentiation with respect to the variable following 

the comma. The stress resultants Nx, Ny and Nxy and the moment resultants Mx, My and Mxy are 

defined as follows 
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(3) 

where [A],[B] and [D] are the matrices of extensional, coupling and bending  stiffness coefficients 

defined by 
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The panel stiffness coefficients in Eq. (3) are determined by 
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Because of the symmetry condition about the mid surface of the subject laminates, the in plane 

and out of plane coupling stiffness coefficients (Bij) are zero. 

According to the Hamilton principle, among possible motions of a system of particles which 

are consistent with constraints, the motion which gives a stationary value to the following integral 

will be happened 

1

0
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t

t

T U dt                                                                   (5) 

where T is the kinetic and U is the potential energy of the system. The governing equations are 

obtained by applying Lagrange equations of motion as (Apalak et al. 2008) 
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where L=T-U, d is the nodal displacement and d is the nodal velocity. Here, the strain energy per 

unit volume is 

 T

sU
2

1
                                                                  (7)  

using  Eqs. (3)-(7) and integrating through the thickness of the structure with respect to z gives an 

expression for the strain and kinetic energies of each finite strip of the structure which was divided 

into S strips can written as 
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where ρ  is a mean mass per unit area of the plate. 

For the complete panel, the total strain energy and kinetic energy are obtained by summations 

of the corresponding energy components of all strips. In this way, the whole structural matrices are 

generated by following the standard FEM assembly procedure and the structural equation of 

motions can be obtained by applying the Lagrange equations as (Apalak et al. 2008) 
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Therefore, eigenvalue problem for the vibration analysis can be obtained as 

}0{}]]{[][[ 2  MK                                                (11) 

where ω  and {Θ} are the natural frequency in rad/sec and the vibration mode shape, respectively. 

Normalized natural frequency is 
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where the reference bending rigidity is 

)1(12 2112

3

2
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The main objective in the optimization problem is to determine the optimal layer sequences 

which maximize the normalized frequency Ω for the first natural mode of the FML composite 

panel. It should be observed that the symmetry requirement it easily enforced by optimizing only 

one half of the laminate and deriving from symmetry conditions the other half. The optimization 

problem can be defined as 
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where k is half of the inner composite layers number. The optimal stacking sequences and ply 

angles are searched with the particle swarm optimization algorithm. 

The assumed in-plane displacement and out-of-plane displacement in the full-energy semi-

analytical finite strip method are (Sadr and Ghashochi Bargh 2010, 2011, 2012) 
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 Where u1i, u2i, v1i and v2i  are the undetermined in-plane nodal displacement parameters and w1i, 

w2i, θ1i and θ2i are the undetermined out-of-plane nodal displacement parameters along the edges of 

the strip and η=y/bs and ξ=π∕ɑ. The investigation on the sensitivity of the full-energy FSM 

analysis to the number of harmonic terms revealed that the fundamental frequency of FML 

plates can be predicted with a very good accuracy by using three first harmonic terms (i.e. i =1,2,3 

in Eq. (15)). 

 

 

3. Particle swarm optimization algorithm 
 

Eberhart and Kennedy (1995) first presented a standard PSO algorithm, which is inspired by 

the social behavior of bird flocks or fish schools. Similar to GAs, a PSO algorithm is a population-

based algorithm. A population of candidate solutions is called a particle swarm. This method is 

used to search for the global optimum of wide variety of arbitrary problems. In a GA, each of the  
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(a) 

 
(b) 

Fig. 2 Comparison of the PSO and GA results for SCSC and SCSF edge conditions for symmetrically 

FML 10-layered rectangular (a/b=2) panels with the same generations. 

 

 

three main classes of operations (selection, crossover, and mutation) can be implemented in a 

number of ways. PSO does not label its operations in the same way as GAs, but analogies exist. 

These analogies depend, of course, on the implementation of the GA operation. In PSO, instead of 

using more traditional genetic operators, each particle (individual) adjusts its "flying" according to 

its own flying experience and its companions' flying experience. Complicating any comparisons is 

the fact that the effects of the various operations often vary over the course of a run (Eberhart and 

Shi 1998). PSO is initialized with a group of random particles and then searches for optima by 

updating generations. 

In each iteration, the swarm is updated using the following equations
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where x
i
 and v

i
 represent the current position and the velocity of the i

th
 particle respectively; p

i
 is 

the best previous position of the ith particle (called pbest) and p
g
 is the best global position among 

all the particles in the swarm (called gbest); r1 and r2 are uniformly distributed random numbers in 

the interval [-1 1], c1 and c2 are the acceleration constants and w is the inertia weight for velocities 

that control the impact of the previous history of velocities on the current velocity, thereby 

influencing the trade-off between global (wide-ranging) and local (fine-grained) exploration 

abilities of the flying points. A larger inertia weight facilitates global exploration (searching new 

areas) while a smaller inertia weight tends to facilitate local exploration to free-tune the current 

search area. Suitable selection of the inertia weight provides a balance between global and local 

exploration abilities and thus requires fewer iterations on average to find the optimum. In this 

work, c1=c2=1 and w=0.75 are chosen which give better optimal results in lesser iterations, and 

the results also are rounded to nearest integer values after optimization. A simply way to 

understand this updating procedure is depicted by Hassan et al. (1897). Also the performance of 

the PSO algorithm can be improved by using modification strategies or hybrid techniques (Sepehri 

et al. 2012, kaveh and Talatahari 2012, Erdal et al. 2013). 
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(a) 

 
(b) 

Fig. 3 Comparison of the PSO and GA results for SCSC and SCSF edge conditions for symmetrically 

FML 10-layered rectangular (a/b=2) panels with the same initial populations. 

 

 

The performance of the PSO is shown in Fig. 2(a) and (b) in comparison with the simple GA 

with the same generations and it shows the good efficiency of the PSO algorithm. In the 10 layered 

cases, the optimal values for PSO and GA converge in around the initial population of 37 and 90, 

respectively. Also in the 6 layered cases, the optimal values converge in around the initial 

population 22 and 34 for PSO and GA, respectively The GA parameters such as crossover rate and 

mutation rate are selected to be 0.6 and 0.02, respectively.  

Also the convergence rate of objective function with the number of generations for PSO and 

GA for symmetrically FML 10-layered rectangular (a/b=2) panels is shown in Fig. 3(a) and (b). It 

is clear from Fig. 3(a) and (b) that, for the optimization problem considered, PSO converges at a 

faster rate (around 10 generations) compared to that for GA (around 13 generations) with the same 

initial populations. In the FML 6 layered cases, the optimal values converge in the around 

generation of 5 and 7 for PSO and GA, respectively. In addition, it is concluded that using of PSO 

provides a much higher convergence and reduced the CPU time in comparison with the GA. 

The training phase elapsed a CPU time of 3–5 min. on a Intel Core i3 2.13GHz CPU speed and 

4 Gbyte RAM for the FML 6 layered cases. This time was 15-20 min for the 10 layered cases. 
 

 

4. Results and discussions 
 

The fundamental frequency of hybrid laminates is maximized for different panel aspect ratio, 

ply angles, number of layers and boundary conditions. The laminates are symmetric and made of 

AS/3501 graphite/epoxy material (Vinson and Sierakowski 1986) (inner composite layers) and 

aluminum alloy 2024-T3 (Shooshtari and Razavi 2010) (outer aluminum layers). The material 

properties of the laminas are given as below: 

Composite layers: E1=138 GPa, E2=8.96 GPa, G12=7.1 GPa, υ 12=0.3 

Aluminum layers: E=72.4 GPa, υ=0.33 

Each of the lamina is assumed to be same thickness. 

In the previous work (Ghashochi Bargh and Sadr 2012) optimization of composite laminated  
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Table 1 Dimensionless frequencies of rectangular Glare 3 hybrid composite (h/ ɑ =0.01) 

BCs ɑ /b 
Ω  

Shooshtari and Razavi 2010 Present study 

SSSS 1 19.4723 19.541 

 4/3 26.9917 27.135 

 2 48.5124 48.597 

 

 

panels using PSO algorithm is validated by Narita (2003). The validated code is employed for 

FML panel structures optimization. It is also seen in Table 1 that there is a very good agreement 

between results of present approach and the published paper (Shooshtari and Razavi 2010), for the 

fundamental frequency of symmetric FML panels (Glare 3). The layup and material properties of 

this hybrid composite (Glare 3) are (Shooshtari and Razavi 2010): 

Al(2024-T3)/[0
0
/90

0
]GFRC/Al(2024-T3)/[90

0
/0

0
]GFRC/Al(2024-T3) 

Glass fiber reinforced composite layers (0.2 mm thickness each): E1=55.8979 GPa, E2=13.7293 

GPa, G12=5.5898 GPa, υ 12=0.277, ρ=2550 kg/m
3 

Aluminum alloy 2024-T3 layers (0.3 mm thickness each): E=72.4 GPa, υ=0.33, ρ=2700 kg/m
3
 

Dimensionless fundamental frequency of Glare 3 is obtained by using the following equation 

2 1/20

11

( )
I

a
D

                                                            (18) 

where I0=
2

2

h

h dz
  is the mass moment of inertia. 

The present optimal stacking sequences and corresponding maximal natural frequencies are 

compared with those of typical stacking sequences of symmetrical ten-layered FML composite 

plates, namely [Al/0/0/0/0]S, [Al/30/-30/30/-30]S, [Al/45/-45/45/-45]S, and [Al/0/90/0/90]S in Fig. 

4 and 5. Comparisons demonstrate the present optimal solutions for all various aspect ratios have 

higher frequencies than the panels with other lay-ups. As inferred from the results, PSO predicts 

successfully the maximal natural frequency parameters and optimal layered sequences. The natural 

frequencies of the fiber metal laminated panels are increased with increasing a/b ratios. 

The optimal layered sequences and maximal natural frequency parameters of symmetric FML 

panels are searched using PSO for the various combinations of free (F), simply supported (S) and 

clamped (C) edge conditions, the panel length/width ratios (a/b=1,2,3,4), the layer number (n= 

6,10), and are given in Tables 2 and 3. The fiber angle of each inner ply in the FML composite 

panels is changed with a step of  Δθ=1
0
 between (-90

0 θn  90
0
).  As seen, the optimal fiber 

orientations vary from 0
0
 to 90

0
 or 0

0
 to -90

0
 with increase in a/b ratios and are associated with a 

smooth transitional region for the case of simply supported panels, such as SSCF. For the case of 

clamped panels, the optimal fiber orientations change from 0
0
 to 90

0
 or 0

0
 to -90

0
 in a sudden 

manner which occurred at ɑ /b ratio of unity, such as CCCC. As inferred from the results, the edge 

conditions play an important role on the natural frequency parameter of the FMLs. As the number 

of the clamped panel edges is increased an evident increase in the natural frequency parameters is 

observed, such as Ω=75.870  for the edge condition CFCF whereas the Ω=102.103  for the edge 

condition CCCC in 6-layerd panel (a/b=1). This can be explained that the clamped edges provide 

less degrees of freedom and it is effective to stiffen the plates.  
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(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  

Fig. 4 Comparison between the optimal natural frequency parameters Ωopt and natural frequency parameter 

of symmetric FML ten-layered panels for various stacking sequences, a/b ratios and edge conditions: (a) 

SFSF, (b) SFCF, (c) CFCF, (d) SSSF, (e) SCSF, (f) SSCF, (g) SCCF, (h) CSCF. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  

Fig. 5 Comparison between the optimal natural frequency parameters Ωopt and natural frequency parameter 

of symmetric FML ten-layered panels for various stacking sequences, a/b ratios and edge conditions: (a) 

CCCF, (b) SSSS, (c) SSSC, (d) SSCC, (e) SCSC, (f) CCCS, (g) CCCC 
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Table 2 Optimum solutions for symmetric 6-layered fiber metal laminated panels  

BCs ɑ /b [Al/θ1/ θ2]S,opt Ωopt BCs ɑ /b [Al/θ1/ θ2]S,opt Ωopt 

SFSF 

1 [Al/0/0]S 33.014 

CCCF 

1 [Al/0/0]S 79.418 

2 [Al/0/0]S 32.961 2 [Al/0/0]S 92.713 

3 [Al/0/0]S 32.925 3 [Al/-90/89]S 132.564 

4 [Al/0/0]S 32.913 4 [Al/89/90]S 215.705 

SFCF 

1 [Al/0/0]S 52.810 

SSSS 

1 [Al/-45/-46]S 56.777 

2 [Al/0/0]S 52.621 2 [Al/-89/90]S 154.116 

3 [Al/0/1]S 52.585 3 [Al/90/88]S 343.068 

4 [Al/0/0]S 52.552 4 [Al/-89/89]S 552.521 

CFCF 

1 [Al/0/-1]S 75.870 

SSSC 

1 [Al/60/60]S 69.144 

2 [Al/0/-1]S 75.694 2 [Al/88/-90]S 222.937 

3 [Al/0/0]S 76.011 3 [Al/-90/-89]S 520.766 

4 [Al/0/0]S 75.914 4 [Al/90/90]S 858.658 

SSSF 

1 [Al/0/0]S 36.893 

SSCC 

1 [Al/-40/-41]S 76.384 

2 [Al/37/-39]S 47.796 2 [Al/87/90]S 229.119 

3 [Al/42/-46]S 65.772 3 [Al/90/-90]S 521.075 

4 [Al/43/-44]S 83.184 4 [Al/89/-90]S 859.639 

SCSF 

1 [Al/0/1]S 38.748 

SCSC 

1 [Al/89/-89]S 88.997 

2 [Al/58/64]S 65.319 2 [Al/89/-90]S 312.400 

3 [Al/90/-89]S 128.007 3 [Al/90/90]S 742.618 

4 [Al/90/-90]S 206.413 4 [Al/90/90]S 1218.994 

SSCF 

1 [Al/-4/-4]S 54.965 

CCCS 

1 [Al/0/0]S 93.772 

2 [Al/-19/18]S 64.810 2 [Al/87/90]S 231.590 

3 [Al/-29/46]S 77.339 3 [Al/-90/90]S 522.109 

4 [Al/-38/-40]S 95.021 4 [Al/88/89]S 855.732 

SCCF 

1 [Al/-5/-5]S 56.814 

CCCC 

1 [Al/0/2]S 102.103 

2 [Al/-32/-30]S 75.361 2 [Al/-90/90]S 320.992 

3 [Al/87/88]S 136.010 3 [Al/90/-88]S 745.334 

4 [Al/-88/-90]S 212.980 4 [Al/89/90]S 1223.418 

CSCF 

1 [Al/0/1]S 80.116 

2 [Al/0/0]S 85.218 

3 [Al/22/-21]S 97.479 

4 [Al/34/-32]S 106.101 

 

 

Tables 2 and 3 also show the effect of number of layers on the optimum design for various 

panel edge conditions and a/b ratios. As seen, the maximum natural frequency and the optimum 

fiber orientations are not influenced substantially and approach a limiting value with an increasing 

layer number. 

Also fiber orientation angles in the direction with less degree of freedom stiff the plates and 

increase the fundamental frequency parameters. This is reason that why [Al/0/0]s or [Al/0/0/0/0]s  

are the optimum lay-ups for the edge conditions SFSF, SFCF and CFCF and [Al/90/90]s or 

[Al/90/90/90/90]s are the optimum lay-ups for the edge condition SCSC. 

Table 4 presents the optimal layered sequences and maximal natural frequency parameters of 

symmetric 6-layered FML panels with the double-thickness of aluminum layers and the same layer 

thickness for composite layers as given in Table 2. As inferred from the results, the optimum fiber 

orientations are not influenced substantially and approach a limiting value with an increasing  
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Table 3 Optimum solutions for symmetric 10-layered fiber metal laminated panels  

BCs ɑ /b [Al/θ1/ θ2/θ3/ θ4]S,opt Ωopt BCs ɑ /b [Al/θ1/ θ2/θ3/ θ4]S,opt Ωopt 

SFSF 

1 [Al/0/0/1/0]S 34.557 

CCCF 

1 [Al/0/0/0/0]S 82.867 

2 [Al/0/0/0/2]S 34.380 2 [Al/0/0/0/1]S 93.006 

3 [Al/0/0/0/0]S 34.442 3 [Al/90/-90/89/-90]S 132.688 

4 [Al/0/0/0/0]S 34.317 4 [Al/-90/-88/89/89]S 217.115 

SFCF 

1 [Al/0/0/0/1]S 55.951 

SSSS 

1 [Al/-45/-45/-45/44]S 56.229 

2 [Al/0/0/0/0]S 55.837 2 [Al/90/90/-90/90]S 154.807 

3 [Al/0/0/0/0]S 55.818 3 [Al/90/-88/90/-87]S 346.044 

4 [Al/0/0/0/-1]S 55.922 4 [Al/90/-90/89/88]S 561.070 

CFCF 

1 [Al/0/0/0/-1]S 79.366 

SSSC 

1 [Al/60/60/60/59]S 69.331 

2 [Al/0/0/0/0]S 79.214 2 [Al/89/-90/90/88]S 230.922 

3 [Al/0/0/0/3]S 79.600 3 [Al/90/90/89/87]S 525.538 

4 [Al/0/0/0/1]S 79.483 4 [Al/89/-90/-88/88]S 867.609 

SSSF 

1 [Al/0/0/0/0]S 38.003 

SSCC 

1 [Al/-40/-40/-41/44]S 76.390 

2 [Al/37/37/-37/-37]S 48.376 2 [Al/90/88/-90/90]S 232.683 

3 [Al/-41/44/-44/43]S 67.801 3 [Al/90/90/89/89]S 525.755 

4 [Al/44/-44/45/45]S 88.031 4 [Al/90/90/90/-90]S 870.410 

SCSF 

1 [Al/0/0/0/-2]S 39.323 

SCSC 

1 [Al/90/90/-89/-88]S 89.114 

2 [Al/58/58/63/67]S 66.118 2 [Al/90/-90/-87/90]S 325.548 

3 [Al/90/-88/-90/90]S 129.554 3 [Al/-90/90/-90/-89]S 747.503 

4 [Al/90/90/90/-88]S 208.195 4 [Al/90/89/-88/-90]S 1232.896 

SSCF 

1 [Al/-4/-4/-5/-8]S 58.120 

CCCS 

1 [Al/0/0/0/-2]S 93.988 

2 [Al/-19/19/17/18]S 64.936 2 [Al/-90/90/88/90]S 236.130 

3 [Al/-32/42/41/-33]S 79.866 3 [Al/90/90/-90/88]S 526.663 

4 [Al/-40/40/-39/38]S 98.107 4 [Al/90/90/90/89]S 868.865 

SCCF 

1 [Al/-5/-5/-7/-6]S 59.774 

CCCC 

1 [Al/0/0/1/1]S 100.866 

2 [Al/-32/-32/-31/-30]S 75.655 2 [Al/90/-90/89/88]S 331.749 

3 [Al/88/-89/87/88]S 137.202 3 [Al/-90/-90/90/87]S 749.668 

4 [Al/90/-89/89/-90]S 214.233 4 [Al/90/90/89/89]S 1238.084 

CSCF 

1 [Al/0/0/1/3]S 81.896 

2 [Al/0/0/0/1]S 86.510 

3 [Al/22/-22/23/-22]S 97.007 

4 [Al/-34/35/35/33]S 108.890 
 

Table 4 Optimum solutions for symmetric 6-layered fiber metal laminated panels with double-thickness 

aluminum layers 

BCs ɑ /b [Al/θ1/ θ2]S,opt Ωopt BCs ɑ /b [Al/θ1/ θ2]S,opt Ωopt 

SFSF 

1 [Al/0/0]S 26.107 

SFCF 

1 [Al/0/0]S 42.184 

2 [Al/0/0]S 25.790 2 [Al/0/0]S 42.167 

3 [Al/0/0]S 25.868 3 [Al/0/0]S 42.153 

4 [Al/0/1]S 25.844 4 [Al/0/0]S 42.131 

CFCF 

1 [Al/0/0]S 60.240 

SSSF 

1 [Al/0/0]S 30.697 

2 [Al/0/0]S 60.117 2 [Al/37/-38]S 40.355 

3 [Al/0/0]S 60.395 3 [Al/41/-44]S 56.968 

4 [Al/0/0]S 60.288 4 [Al/43/-43]S 71.037 

SCSF 

1 [Al/0/0]S 32.947 

SSCF 

1 [Al/-4/-4]S 45.793 

2 [Al/58/63]S 55.868 2 [Al/-19/17]S 54.666 

3 [Al/90/90]S 104.706 3 [Al/-30/44]S 65.911 

4 [Al/90/-90]S 171.053 4 [Al/-38/-41]S 82.542 
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Table 4 Continued 

SCCF 

1 [Al/-5/-4]S 47.453 

CSCF 

1 [Al/0/1]S 69.887 

2 [Al/-31/-31]S 60.832 2 [Al/0/0]S 73.089 

3 [Al/-87/90]S 106.709 3 [Al/22/-23]S 84.113 

4 [Al/89/-90]S 175.956 4 [Al/34/-34]S 93.485 

CCCF 

1 [Al/0/0]S 69.005 

SSSS 

1 [Al/45/45]S 47.389 

2 [Al/0/0]S 81.243 2 [Al/90/-90]S 129.499 

3 [Al/-89/89]S 103.332 3 [Al/89/88]S 263.052 

4 [Al/-90/-90]S 177.401 4 [Al/-89/-90]S 450.223 

SSSC 

1 [Al/60/60]S 59.256 

SSCC 

1 [Al/-41/-42]S 67.758 

2 [Al/90/90]S 184.473 2 [Al/-88/89]S 188.109 

3 [Al/90/-90]S 392.975 3 [Al/88/90]S 392.822 

4 [Al/88/-90]S 685.330 4 [Al/89/-90]S 686.034 

SCSC 

1 [Al/-90/90]S 75.618 

CCCS 

1 [Al/1/0]S 81.854 

2 [Al/-89/-90]S 255.547 2 [Al/-87/89]S 189.660 

3 [Al/88/88]S 558.274 3 [Al/87/90]S 393.267 

4 [Al/-90/89]S 982.570 4 [Al/88/89]S 685.143 

CCCC 

1 [Al/0/0]S 90.008     

2 [Al/90/89]S 261.240     

3 [Al/90/90]S 559.717     

4 [Al/-90/-90]S 986.016     

 
 
aluminum layers thickness. Also as seen, with increase in the aluminum layers thickness, the 

fundamental frequency decreases for a symmetric FML panel. 

 
 
5. Conclusions 
 

In this study, the layer optimization was carried out for maximizing the fundamental (first) 

frequency of symmetrical FML panels by the PSO algorithm, and it was numerically demonstrated 

that the present optimum fundamental frequencies are actually higher than panels with any of 

typical lay-ups and are equivalent to the global solutions. The natural frequencies of the FML 

composite panels also were calculated using the finite strip technique for various plate edge 

conditions, length/width ratios, thickness of metal sheets and layer number. The present method 

finds optimal design maximizing the natural frequency of the FML composite panels without 

yielding a local optimum for all edge conditions and design parameters whereas this possibility is 

experienced in the Ritz-based layerwise optimization method. In addition, the maximum 

fundamental frequency and the optimum stacking sequences were substantially influenced for edge 

conditions and a/b ratios. As seen, the maximum fundamental frequency and the optimum fiber 

orientations were not substantially influenced and approach a limiting value with an increasing 

layer number. 
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