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Abstract.  This paper presents a theory concerning the beam element subjected to an eccentric rolling disk 
(or simply called the eccentric-disk-loaded beam element) such that the dynamic responses of a beam 
subjected to an eccentric rolling disk with its inertia force, Coriolis force and centrifugal force considered 
can be easily determined. To this end, the property matrices of an eccentric-disk-loaded beam element are 
firstly derived by means of the Lagrange’s equations. Then, the overall property matrices of the entire 
vibrating system are determined by directly adding the property matrices of the eccentric-disk-loaded beam 
element to the overall ones of the entire beam itself. Finally, the Newmark direct integration method is used 
to solve the equations of motion for the dynamic responses of a beam subjected to an eccentric rolling disk. 
Some factors relating to the title problem, such as the eccentricity, radius and rotating speed of the rolling 
disk, and the Coriolis force and centrifugal force induced by the rolling disk are investigated. Numerical 
results reveal that the influence of last factors on the dynamic responses of the pinned-pinned beam is 
significant except the centrifugal force. 
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1. Introduction 

 

Moving-load-induced vibration problem is an important research topic in civil and mechanical 

engineering. Therefore, the literature in this field is numerous. For instant, Wu and Dai (1987), Wu 

et al. (1987), Cifuentes (1989), Frỳba (1999), Wu and Chiang (2003), Kim (2005), Kidarsa (2008), 

Zhai and Song (2010), Bamford (2010), Cao et al. (2010), Charles (2010), Wu and Law (2010), 

and Law and Zhu (2011) have studied the dynamic characteristics of structures (e.g., beams, 

plates, bridges, etc.) due to moving loads by means of various analytical and numerical methods. 

In addition, Wu (2005) has presented the theory of moving mass element to investigate the 

horizontal and vertical dynamic characteristics of a portal frame under the action of a moving 

distributed mass. From the foregoing literature review, it is found that the effect of eccentricity of 

the moving mass is not considered in the existing literature. For the above reason, this paper 

presents a concept of eccentric-disk-loaded beam element such that the effect of eccentricity of the 

moving mass can be easily taken into consideration. To this end, the beam element subjected to an 

eccentric rolling disk is considered as an eccentric-disk-loaded beam element and then the property  
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Fig. 1 A beam element subjected to an eccentric rolling disk with mass me 

 

 

matrices of the element are derived by means of the Lagrange’s equations. It has been found that, 

by using this concept, one can easily take account of the effects of inertia force, Coriolis force and 

centrifugal force of the eccentric rolling disk by directly adding the last property matrices of the 

eccentric-disk-loaded beam element to the overall ones of the entire beam itself. It is noted that the 

property matrices of the eccentric-disk-loaded beam element are dependent on the instantaneous 

position of the rolling disk, thus, they are time-dependent and so are the overall mass, damping 

and stiffness matrices of the entire vibrating system. In addition, it is assumed that the rolling disk 

is always in close contact with the beam, in this paper. 

For validation, the dynamic responses of a pinned-pinned beam subjected to a rolling disk with 

eccentricity e = 0.0 m are determined and compared with those of the same beam subjected to a 

concentrated mass and good agreement is achieved. Some pertinent factors, such as the 

eccentricity, radius and rotating speed of the rolling disk, and the Coriolis force and centrifugal 

force induced by the rolling disk are investigated. It has been found that the influence of last 

parameters on the dynamic responses of the pinned-pinned beam is significant except the 

centrifugal force. 

 

 

2. Equations of motion for the eccentric-disk-loaded beam element 
 

Fig. 1 shows a beam element subjected to an eccentric rolling disk me, i.e., the 

eccentric-disk-loaded beam element. If, at any instant of time t, the velocities for center of gravity 

(c.g.) and center of geometry of the eccentric rolling disk are ev


 and gv


, respectively, then the 

following relation can be obtained. 

gege vvv /


         (1) 

where gev /


 is the velocity of c.g., of the eccentric rolling disk relative to its center of geometry, 

i.e. 

)( / jeiekv yxge


        (2) 
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In the last Eq., ω is the rotating speed of the eccentric rolling disk; i


, j


 and k


 are the unit 

vectors, in x, y and z directions, respectively; while ex and ey are respectively the distances between 

the geometric center and c.g., of the eccentric rolling disk in horizontal (x) and vertical (y) 

directions given by (cf., Fig. 1) 

) sin( teex                                (3a) 

) cos( teey                               (3b) 

where e is the eccentricity of the rolling disk. 

If the eccentric rolling disk is moving on the beam in the x direction and is always in close 

contact with the beam and without slip, one has (cf., Fig. 1) 

juivuv cycxcxg








 )(                           (4) 

where cxu  and cyu  are the velocities of the contact point C between the eccentric rolling disk 

and the beam, due to beam vibrations, in the x and y directions, respectively, while vcx is the 

moving speed of the eccentric rolling disk in the x direction. 

Substituting Eqs. (2) and (4) into Eq. (1), one obtains 

jeuievuv xcyycxcxe








) () (                       (5) 

The kinetic energy of the eccentric rolling disk is 

)(
2

1
eee vvmT

                               (6) 

Introducing Eq. (5) into Eq. (6) yields 

xcyecxcxeycxeycxe

yxecycxcxe

eumvumevmeum

eemuvumT

                     

)]([
2

1
)(

2

1 222222












            (7) 

The potential energy of the eccentric rolling disk, with respect to the horizontal x -axis, is  

)] cos([ terugmV cye                           (8) 

where ucy represents the vertical displacement of the contact point C. 

Substituting Eqs. (7) and (8) into the following Lagrange’s Equations. (Clough and Penzien 

1993) 

0)( 


















cxcxcx u

V

u

T

u

T

t 
                         (9a) 

0)( 


















cycycy u

V

u

T

u

T

t 
                        (9b) 

one obtains 
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0
) (

 cxe

y

ecxe vm
dt

ed
mum 


                     (10a) 

0
) (

 gm
dt

ed
mum e

x
ecye


                       (10b) 

Substituting Eqs. (3a) and (3b) into Eqs. (10a) and (10b) yields 

0) sin( 2  cxeecxe vmtemum                       (11a) 

0) cos( 2  gmtemum eecye                      (11b) 

The above two expressions represent the equations of motion of the eccentric rolling disk. For 

the eccentric-disk-loaded beam element as shown in Fig. 1, if the effects of eccentricity and 

rotation of the rolling disk me are neglected, then the horizontal (x) and vertical (y) force 

components at the contact point C are respectively given by (Cifuentes 1989) 

)2( 2

0, cxcxcxcxcxeecx uvuvumf 
                      (12a) 

)2( 2

0, cycxcycxcyeecy uvuvumf 
                      (12b) 

In the last expressions, ucx ≡ ucx(x, t) and ucy ≡ ucy(x, t), respectively, represent the horizontal (x) 

and vertical (y) displacements of the beam at position x and time t, while cxu  represents the 

acceleration of the beam in the horizontal (x) direction. Moreover, cxeum   and cyeum  , cxcxe uvm 2  

and cycxe uvm 2 , and cxcxe uvm 2

 
and cycxe uvm 2

, represent the inertia forces, Coriolis forces and 

centrifugal forces in the horizontal (x) and vertical (y) directions, respectively, due to the rolling 

disk. Note that the centrifugal forces are due to the fact that the rolling disk is moving along the 

deformed shape of the beam.  

It is evident that, if the effects of eccentricity and rotation of the rolling disk me as shown in 

Fig. 1 is considered, then the element forces for the eccentric-disk-loaded beam element in the x 

and y-directions are determined by superposing the force components appearing in Eqs. (11a) and 

(11b) on Eqs. (12a) and (12b), respectively, except the inertial forces cxeum   and cyeum   that have 

already been considered in Eqs. (12a) and (12b). The results are 

cxeecxcxcxcxcxecx vmtemuvuvumf   ) sin( )2( 22              (13a) 

gmtemuvuvumf eecycxcycxcyecy  ) cos( )2( 22              (13b) 

Therefore, the equivalent nodal forces, fi (i = 1 − 6), for the eccentric-disk-loaded beam element as 

shown in Fig. 1 are given by 

]) sin( [)2( 22

cxeeicxcxcxcxcxeii vmtemuvuvumf     ( i =1 and 4)      (14a) 

]) cos( [)2( 22 gmtemuvuvumf eeicycxcycxcyeii     ( i =2, 3, 5, 6)      (14b) 
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where ϕi ( i =1 to 6) are shape functions given by (Yang 1986) 

 11
                               (15a) 

32

2 231                              (15b) 

)2( 32

3                             (15c) 

 4
                                (15d) 

32

5 23                                (15e) 

)( 32

6                               (15f) 

with 


cx

                                  (16) 

where ℓ is the length of the beam element and xc is the distance between the location of the contact 

point C and the left end of the beam element, at time t, as one may see from Fig. 1. 

According to the definition of shape functions and the concept of superposition, one has 

4411  uuucx                               (17) 

66553322  uuuuucy                         (18) 

where ui ( i =1 to 6) are the nodal displacements for the two nodes of the beam element shown in 

Fig. 1. 

Substituting Eqs. (17)-(18) into Eqs. (14a) and (14b) and writing the resulting expressions in 

matrix form, one obtains 

}{}{}]{[}]{[}]{[ ffukucum e                       (19) 

where 

Tuuuuuuu ][}{ 654321                      (20) 
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
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emm                  (21) 
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Tfffffff ][}{ 654321                      (25) 

Eq. (19) is the equations of motion of the eccentric-disk-loaded beam element, [m], [c] and [k] 

are the mass, damping and stiffness matrices of the eccentric-disk-loaded beam element, 

respectively, {fe} is the external force vector induced by the eccentric rolling disk, while {f} is the 

equivalent nodal force vector. 

 

 

3. Equations of motion of the entire structural system 
 

The equations of motion of a multiple-degree-of-freedom damped structural system are given 

by 

)}({)}()]{([)}()]{([)}()]{([ tFtytKtytCtytM  
             

(26) 

In the last equation, )]([ tM , )]([ tC  and )]([ tK  are respectively the instantaneous overall 

mass, damping and stiffness matrices; )}({ ty , )}({ ty and )}({ ty  are respectively the 

acceleration, velocity and displacement vectors; while )}({ tF  is the instantaneous external force 
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vector. In Eq. (26), )]([ tM , )]([ tC  and )]([ tK  are the instantaneous matrices because they are 

composed of the constant overall mass and stiffness matrices of the entire beam itself and the 

time-dependent element property matrices of the eccentric-disk-loaded beam element. In addition, 

because the external force vector induced by the rolling disk em  and its position vary with time, 

)}({ tF  is also a time-dependent vector. The instantaneous overall mass matrix )]([ tM , damping 

matrix )]([ tC , stiffness matrix )]([ tK  and the instantaneous external force vector )}({ tF  are 

determined as follows: 

 

3.1 Overall mass and stiffness matrices 
 

In order to take the effects of inertia force and centrifugal force of the eccentric rolling disk into 

account, the contribution of the mass and stiffness matrices of the eccentric-disk-loaded beam 

element, (i.e., [m] and [k] respectively given by Eqs. (21) and (23)) must be added to the overall 

corresponding ones of the entire beam itself, [Mb] and [Kb], i.e. 

66][][][   mMM nnbnn                         (27a) 

66][][][   kKK nnbnn                          (27b) 

In the last equations 

ijbij MM ,    ( i, j = 1 to n)                        (28a) 

ijbij KK ,    ( i, j = 1 to n)                        (28b) 

except 

ijssbss mMM
jiji
 ,  ( ji, =1 to 6)                     (29a) 

ijssbss kKK
jiji
 ,  ( ji, =1 to 6)                      (29b) 

In Eqs. (27)-(29), n is the total degrees of freedom of the entire structural system; [Mb] and [Kb] 

are respectively the overall mass and stiffness matrices of the beam itself obtained by assembling 

all its element mass and stiffness matrices (Przemieniecki 1985); while the subscripts si and sj (i, j 

= 1 to 6) are the numberings for the 6 degrees of freedom of the two nodes of the beam element on 

which the eccentric rolling disk me applies at time t.  

 

3.2 Overall damping matrix 
 

Because the damping matrices of the structural elements are difficult to be found from the 

existing literature, the overall damping matrix [Cb] of the beam is determined by using the theory 

of Rayleigh damping (Bathe 1982), i.e. 

][ ][ ][ KbMaCb 
                          

(30a) 

with 
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

                         

(30b) 

22

)(2

ij

iijj
b










                           

(30c) 

where ][M  and ][K  are respectively the overall mass and stiffness matrices given by Eqs. 

(27a) and (27b), while ξi and ξj are damping ratios corresponding to any two natural frequencies of 

the structure, ωi 
and ωj. 

If the Coriolis force induced by the eccentric rolling disk me is considered, the contribution of 

the damping matrix of the eccentric-disk-loaded beam element, (i.e., [c] given by Eq. (22)) must 

be added to the overall damping matrix of the beam itself, [Cb], to establish the instantaneous 

overall damping matrix, ][C , i.e. 

66][][][   cCC nnbnn                          (31a) 

where 

ijbij CC ,    ( i, j = 1 to n)                        (31b) 

except 

ijssbss cCC
jiji
 ,  ( ji, =1 to 6)                       (31c) 

 

3.3 Overall external force vector 

 
If, at any instant of time t, the beam is subjected to an eccentric rolling disk, then all nodal 

forces of the beam are equal to zero except those at the two nodes of the s
th
 beam element on 

which the eccentric rolling disk me applies, i.e. 

     
Tssssss fffffftF 0]       0[)}({ )(

6

)(

5

)(

4

)(

3

)(

2

)(

1           (32) 

where )(s
if  (i = 1 to 6) are respectively the external force vector induced by the eccentric rolling 

disk given by Eq. (24). They are the is -th coefficients of )}({ tF , where si (i = 1 to 6 ) are the 

numberings for the 6 degrees of freedom of the sth beam element on which the eccentric rolling 

disk me applies at time t. The value of xc required by Eq. (16) is determined by  

)1(  sxx cc                              (33) 

where s denotes the numbering of the beam element at which the eccentric rolling disk is located 

and is determined by  

1)  ofpart  Integer  (  cxs                        (34) 

In Eq. (34), cx  is the global (axial) co-ordinate for the eccentric rolling disk (or contact point 

C), at any time t, given by  
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tvxx cxcc  0                                (35) 

with 

rvcx                                   (36) 

where 0cx  and vcx are respectively the initial global (axial) coordinate and moving speed of the 

eccentric rolling disk, while ω and r are respectively the rotating speed (angular velocity) and 

radius of the eccentric rolling disk. 

 

 

4. Vibration responses of a beam subjected to an eccentric rolling disk 

 

If the effects of inertia force, Coriolis force and centrifugal force induced by the eccentric 

rolling disk are considered, then the dynamic responses of the beam subjected to the eccentric 

rolling disk may be obtained with the following steps:  

1. Calculate the instantaneous mass, damping and stiffness matrices, [m], [c] and [k], of the 

eccentric-disk-loaded beam element, with Eqs. (21), (22) and (23). 

2. Determine the instantaneous overall mass and stiffness matrices, ][M  and ][K , (see Eqs. 

(27)-(29)), the instantaneous overall damping matrix ][C  (see Eqs. (30)-(31)) and the 

instantaneous overall force vector )}({ tF  (see Eqs. (32)-(36)), at time t. 

3. Determine the dynamic responses of the beam by solving for the Eqs. of motion, Eq. (26), 

with the Newmark direct integration method (Bathe 1982).   

4. Repeat steps 1-3 to obtain the dynamic responses of the beam at time t = tr = tr−1+ Δt (with r 

= 1, 2, … and t0 = 0), where t  is the time interval.  

 

 

5. Numerical results and discussions 

 
In this section, the dimensions and physical constants for the uniform pinned-pinned beam (cf., 

Fig. 2) are: the cross-section is rectangular with width b = 0.018113 m and height h = 0.072322 m, 

the area moment of inertia I = bh
3
/12 = 5.71 × 10

−7
 m

4
, total length L = 4.352 m, mass density ρ = 

15267.1756 kg/m
3
 and Young's modulus E = 205.9936 10

8
 kg/m

2
 = 2020.797216×10

8
 N/m

2
. Note 

that, for convenience of comparison, the above dimensions and material properties of the 

pinned-pinned beam are taken to be identical to those of Cifuentes (1989). 

All the numerical results presented in this paper are obtained based on the acceleration of 

gravity g = 9.81 m/s
2
 and the time interval t 0.001 second. The overall damping matrix of the 

entire structural system, )]([ tC , is obtained based on the lowest two natural frequencies ω1 and ω2 

with damping ratios ξ1 = ξ2 = 0.003. Moreover, the finite element model of the beam is composed 

of 14 identical beam elements and 15 nodes. 

 

5.1 Validation 
 

Although the technique presented in this paper is developed for the dynamic analysis of a beam  
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Fig. 2 A pinned-pinned beam subjected to a rolling disk with eccentricity e = 0.0 m 
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Fig. 3 Time histories for the vertical ( y ) displacements of the beam at contacting point C of the 

rolling disk with eccentricity e = 0.0 m 

 

 

subjected to an eccentric rolling disk, it is also available for that subjected to a concentrated mass 

if the magnitude of the concentrated mass is equal to the mass of the eccentric rolling disk with its 

eccentricity e = 0.0m. In this subsection, the pinned-pinned beam is assumed to subject a rolling 

disk with mass me = 21.8 kg, eccentricity e = 0.0m and constant moving speed vcx = 27.49 m/s. 

Then, the computer programs developed for this paper are validated by comparing the dynamic 

responses of the beam with those of the existing literature (Cifuentes 1989). 

Fig. 3 shows the time histories for the vertical ( y ) displacements of the contact point C 

between the rolling disk (with eccentricity e = 0.0m) and the beam. In the figure, the solid curve  
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Fig. 4 Influence of eccentricity e of the rolling disk on the time histories for the vertical ( y ) 

central displacements of the pinned-pinned beam 

 

 

() represents the vertical ( y ) displacements obtained by using the presented theory of 

eccentric-disk-loaded beam element, while the dashed curve (----) represents those obtained from 

Cifuentes (1989). It is evident that the differences between the last two curves are negligible.  

 

5.2 Influence of eccentricity of the rolling disk 
 

In this subsection, the dynamic responses of a pinned-pinned beam subjected to a rolling disk 

with mass me = 21.8 kg, radius r = 0.2 m, moving speed vcx = 4.352 m/s (or rotating speed ω = vcx/r 

= 4.352/0.2 = 21.76 rad/s) and eccentricity e = 0.0, 0.05, 0.1 or 0.15m are studied. The rolling disk 

is moving from left end to right end of the beam (cf., Fig. 2) and, in each case, the initial position 

of the eccentric mass (me) of the rolling disk is on the vertical line passing through left end of the 

beam with ex = 0.0m and ey = e = 0.0, 0.05, 0.1 or 0.15m (cf., Fig. 1). Because the moving speed 

vcx (or rotating speed ω) of the rolling disk is constant, the horizontal acceleration cxv  of the 

rolling disk is equal to zero. Thus, it can be seen from Eq. (24) that the larger the value of 

eccentricity e of the rolling disk, the larger the external force vector {fe} induced by the eccentric 

rolling disk, and also the larger the vibration responses of the pinned-pinned beam induced by 

eccentric rolling disk.  

Fig. 4 shows the time histories for the vertical ( y ) central displacements of the pinned-pinned 

beam. In the figure, the solid curves with circles (○), crosses (+),triangles (Δ) and 

rectangles (□) are the vertical ( y ) central displacements of the pinned-pinned beam 

corresponding to eccentricities e = 0.0, 0.05, 0.1 and 0.15 m, respectively. From the figure, it can  

465



 

 

 

 

 

 

Jia-Jang Wu 

0.0 0.2 0.4 0.6 0.8 1.00.1 0.3 0.5 0.7 0.9

Axial coordinates for the geometric centre of the eccentric rolling disk xc / L

-0.08

-0.04

0

0.04

0.08

-0.06

-0.02

0.02

0.06
V

e
rt

ic
a

l 
( y

) 
d

is
p

la
c
e

m
e

n
ts

 a
t 

th
e

 c
e

n
tr

e
 p

o
in

t 
o

f 
th

e
 p

in
n

e
d

-p
in

n
e

d
 b

e
a

m
 (

 m
 )

Radius of the rolling disk

r =0.2m

r =0.4m

r =0.6m

 

Fig. 5 Influence of disk radius r on the time histories for the vertical ( y ) central displacements 

of the pinned-pinned beam 
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Fig. 6 Influence of rotating speed (angular velocity) ω of the rolling disk on the time histories 

for the vertical ( y ) central displacements of the pinned-pinned beam 
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Dynamic analysis of a beam subjected to an eccentric rolling disk 

be seen that the larger the value of eccentricity e, the larger the vibration responses of the 

pinned-pinned beam, as expected. 

 

5.3 Influence of radius of the eccentric rolling disk 

 

In this subsection, the pinned-pinned beam subjected to a rolling disk with mass me = 21.8 kg, 

eccentricity e = 0.2 m, constant moving speed vcx = 4.352 m/s and radius r = 0.2, 0.4 or 0.6 m is 

studied. From Eq. (36), one sees that ω = vcx/r. Thus, the rotating speeds of the rolling disk with r 

= 0.2, 0.4 and 0.6 m are found to be ω = vcx/r = 21.76, 10.88 and 7.2533 m/s, respectively. From 

the above descriptions, it is evident that the larger the disk radius r, the smaller the rotating speed 

  of the rolling disk. Thus, the larger the disk radius r, the smaller the external force vector {fe} 

induced by the eccentric rolling disk, as one may see from Eq. (24), and so that the smaller the 

vertical ( y ) central displacements of the pinned-pinned beam induced by eccentric rolling disk. 

The time histories for the vertical ( y ) central displacements of the pinned-pinned beam are 

shown in Fig. 5, where the solid curves with circles (○), crosses (+) and triangles (Δ
) are respectively for the cases of r = 0.2, 0.4 and 0.6 m. Clearly, the larger the disk radius r, the 

smaller the vertical ( y ) central displacements of the pinned-pinned beam induced by eccentric 

rolling disk, as it should be. 

 

5.4 Influence of angular velocity of the rolling disk 

 

All the physical parameters for the beam and rolling disk of the current example are exactly the 

same as those of the last example except that the disk radius r = 0.2 m is a constant and the 

rotating speed of the disk is ω = 2π, 4π or 8π rad/s (or the moving speed of the rolling disk vcx = ω 

∙r = 0.4π, 0.8π or 1.6π m/s, according to Eq. (36)). From the preceding descriptions and Eq. (24), 

one can conclude that the larger the rotating speed ω of the eccentric rolling disk, the larger the 

external force vector {fe} induced by the disk and the larger the vertical ( y ) central displacements 

of the pinned-pinned beam. It is obvious that the time histories for the vertical ( y ) central 

displacements of the pinned-pinned beam shown in Fig. 6 agree with the last conclusion. In which, 

the solid curve with circles (○) is for the case of ω = 2π rad/s, the one with crosses (+) 

is for the case of ω = 4π rad/s ,while the one with triangles (Δ) is for the case of ω = 8π rad/s.  

 

5.5 Influence of Coriolis force 
 

Since the Coriolis force induced by the eccentric rolling disk is to appear in the damping matrix 

[c] of the eccentric-disk-loaded beam element, as one may see from the formulations of section 2, 

the effect of Coriolis force is dependent on whether or not the damping matrix [c] is equal to zero. 

In other words, [c] ≠ 0 is for the cases with effect of Coriolis force considered and [c] = 0 

otherwise. 

In this subsection, all physical parameters of the beam and the rolling disk are exactly the same 

as those of the last example. Fig. 7 shows the time histories of vertical ( y ) central displacements 

of the pinned-pinned beam. In the figure, the vertical ( y ) dynamic responses of the pinned-pinned 

beam with the Coriolis force considered (i.e., [c] ≠ 0) are represented by the solid curves (―) and 

those with the Coriolis force neglected (i.e., [c] = 0) by the dashed curves (------). From Figs. 

7(a)-7(c), one sees that the influence of Coriolis force on the vertical ( y ) central displacements of  
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(c) 

Fig. 7 Influence of Coriolis force of the rolling disk on the time histories for the vertical ( y ) central 

displacements of the pinned-pinned beam: (a) vcx = 0.4π m/s, (b) vcx = 0.8π m/s and (c) vcx = 1.6π m/s (or 

rotating speeds ω = 2π, 4π and 8π rad/s with disk radius r = 0.2 m) 

 

 

the pinned-pinned beam increases with the increase of moving speed vcx of the rolling disk. This is 

a reasonable result because the magnitude of the Coriolis force appearing in the damping matrix 

[c] of the eccentric-disk-loaded beam element (cf. Eq. (22)) is proportional to the moving speed vcx 

of the rolling disk. In spite of the fact that the difference between the time histories with Coriolis 

force considered and neglected is not significant for the current example, its effect may be 

significant for other cases. Thus, it is better to take account of the effect of Coriolis force in all 

cases.  

 

5.6 Influence of centrifugal force  
 

From the formulations of section 2, one sees that the effect of centrifugal force induced by the 

eccentric rolling disk is reflected by the stiffness matrix [k] of the eccentric-disk-loaded beam 

element. Thus, one of the simplest ways for neglecting the effect of centrifugal force is to set [k] = 

[0]. The example studied here is exactly the same as that of the last subsection. Fig. 8 shows the 

time histories of vertical ( y ) central displacements of the pinned-pinned beam. In which, the solid 

curves (―) represent the vertical ( y ) dynamic responses of the pinned-pinned beam with the  
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(c) 

Fig. 8 Influence of Centrifugal force of the rolling disk on the time histories for the vertical ( y ) central 

displacements of the pinned-pinned beam: (a) vcx = 0.4π m/s, (b) vcx = 0.8π m/s and (c) vcx = 1.6π m/s (or 

rotating speeds ω = 2π, 4π and 8π rad/s with disk radius r = 0.2 m) 

 

 

centrifugal force considered (i.e., 0][ k ), while the dashed curves (------) represent those with 

centrifugal force neglected (i.e., 0][ k ). In which, Figs. 8(a), 8(b) and 8(c) are respectively for the 

cases of moving speeds vcx = 0.4π, 0.8π and 1.6π m/s (or rotating speeds ω = 2π, 4π and 8π rad/s 

with disk radius r = 0.2 m). From the last figures, it is found that the influence of centrifugal force 

on the vertical ( y ) central displacements of the pinned-pinned beam is not important for the 

current example. However, the above effect may be significant for other cases. Thus, it is better to 

consider the effect of centrifugal force in all cases for achieving satisfactory results. 

 

 

6. Conclusions 

 
This paper presents a theory of eccentric-disk-loaded element such that the dynamic responses 

of a beam subjected to an eccentric rolling disk with its inertia force, Coriolis force and centrifugal 

force considered can be easily obtained. Because the external force vector {fe} induced by the 

eccentric rolling disk is proportional to the eccentricity e and rotating speed ω of the rolling disk, 

the larger the eccentricity e and rotating speed ω of the rolling disk, the larger the vibration 
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responses of the pinned-pinned beam subjected to the eccentric rolling disk. If the horizontal speed 

vcx and eccentricity e of the rolling disk are kept constant, then the larger the disk radius r, the 

smaller the external force vector {fe} induced by the eccentric rolling disk and the smaller the 

vertical ( y ) central displacements of the pinned-pinned beam. Since the influence of Coriolis 

force on the vertical ( y ) central displacements of the pinned-pinned beam increases with 

increasing the moving speed of the rolling disk, this effect should be considered in all cases to 

assure that better results will be achieved. Although the influence of centrifugal force on the 

vertical ( y ) central displacements of the pinned-pinned beam is negligible for the example studied 

in this paper, this effect should be taken into consideration when the deflection of beam is larger 

(e.g., a long-span beam subjected to a heavy eccentric rolling disk) so that the effect of centrifugal 

force is significant.  
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