
 
 
 
 
 
 
 

Structural Engineering and Mechanics, Vol. 47, No. 3 (2013) 307-329 
DOI: http://dx.doi.org/10.12989/sem.2013.47.3.307                                                                                                              307 

Copyright © 2013 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=sem&subpage=8    ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 
 
 

 
 
 
 

Exact stochastic solution of beams subjected to delta-correlated 
loads 

 

G. Falsone and D. Settineri  
 

Dipartimento di Ingegneria Civile, Università di Messina, C.da Di Dio, 98166 Messina, Italy 
 

(Received March 27, 2012, Revised July 16, 2013, Accepted July 17, 2013) 

 
Abstract.   The bending problem of Euler-Bernoulli discontinuous beams is dealt with, in which the 
discontinuities are due to the loads and eventually to essential constrains applied along the beam axis. In 
particular, the loads are modelled as random delta-correlated processes acting along the beam axis, while  the 
ulterior eventual discontinuities are produced by the presence of external rollers applied along the beam axis. 
This kind of structural model can be considered in the static study of bridge beams. In the present work the 
exact expression of the response quantities are given in terms of means and variances, thanks to the use of the 
stochastic analysis rules and to the use of the generalized functions.  The knowledge of the means and the 
variances of the internal forces implies the possibility of applying the reliability β-method for verifying the 
beam. 
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1. Introduction 

 
The study of Euler-Bernoulli beams subjected to static concentrated forces can be of interest in 

many engineering applications. For example, it can be useful for defining the static behaviour of a 
bridge beam subjected to the vehicle actions, introducing the dynamic effects by means of 
meaningful coefficients. As confirmed by many codes in all the world, the static analysis is accepted 
because the dynamic characteristics of the vehicles and of the bridge are such that they have 
negligible effects on the response quantities.  Neglecting the dynamic effects, the vehicle action can 
be represented by a point force applied to a certain abscissa of the beam axis. The solution of this 
simple problem can be obtained by solving the classical fourth order differential equation governing 
the response behaviour of the beam. This approach requires that the response quantities must be 
continuous. This means that, if the concentrated loads acting on the beams are n, then it is necessary 
dividing the beam into n+1 pieces, in each of which the response quantities are continuous. This 
implies the necessity of evaluating 4(n+1) integration constants by imposing the corresponding 
boundary essential and/or natural conditions (4 at the beam ends and n in correspondence of the 
point loads). 

This approach can be made computationally lighter if the so-called generalized functions are 
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introduced for describing the concentrated loads, as made in some works (Macaulay 1919, 
Brungraber 1965, Falsone 2002, Biondi and Caddemi 2007, Colajanni et al. 2009). As shown in 
(Lighthill 1959) these functions can be all considered as derivatives or integrals, made in a 
generalized way, of the Dirac delta function (Dirac 1947). This last is a generalized function used in 
many field of the science for capturing the properties of some kinds of discontinuities, as those 
defined by the concentrated loads on a beam. As shown by Falsone (2002), the use of these 
functions, for the case under examination, allows to reduce the number of integration constants to 4, 
only those related to the end conditions.  

When some essential constrains, as the rollers, act on the beam, the use of the generalized 
functions allows to reduce the number of the integration constants to be determined to r+4, against 
4(r+n+1) necessary if the classical approach is used, r being the number of these constrains (Falsone 
2002). 

In the literature the generalized functions have been also used for solving the problem of 
discontinuous beams via the Green functions (Failla and Santini 2007, Failla 2011) or by applying 
the Finite Element method (Failla and Impollonia 2012). 

Remaining in the field of the bridges, an accurate model of the concentrated loads simulating the 
presence of vehicles on the beam is that based on a distribution of random forces placed 
stochastically along the beam axis. In particular, a Poisson distribution along the beam axis with a 
given mean rate can give an accurate model of the traffic on the bridge (if the traffic level augments 
a bigger mean rate must be considered). In the field of random processes this kind of load is called 
delta-correlated process (Ross 1983, Lin and Cai 1995, Iwankiewicz and Nielsen 1999). 

Aim of the present work is the application of the approach based on the use of the generalized 
functions for finding the exact response of  beams subjected to delta-correlated processes. 

 
 

2. Preliminary concepts 
 

The differential equation governing the deflection u(x) of a homogeneous elastic Euler-Bernoulli 
beam with constant bending stiffness subjected to a transversal continuous load p(x) can be written 
as 

1
( ) ( )u x p x

EI
 

                                                           
 (1) 

where EI is the constant bending stiffness of the beam. The integrations of this equation and the 
consideration of the boundary conditions allow to find u(x). Once that the deflection law is known, it 
is possible to obtain the other generalized quantities characterizing the beam from both a cinematic 
and a static point of view; they are the rotation, the bending moment and the shear force. In 
Appendix the sign convention about the cinematic and static quantities characterizing the beam is 
reported. 

In some cases the load is not continuous, as for example when it acts only in a limited part of the 
beam, or, at the limit, when it is concentrated. However, as evidenced in some works (Macaulay 
1919, Falsone 2002, Colajanni et al. 2009), even in these cases Eq. (1) can continue to be used if the 
load p(x) is treated as a generalized function and all the integrations necessary for solving it are 
considered in generalized sense (Lighthill 1959). 

Two of the most known generalized functions are the Unit Step Function, usually indicated with 
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U(x−x0), and the Dirac Delta Function, usually indicated with δ(x−x0), having the following 
definitions 

0
0

0

0       for 
( )

1       for 

x x
U x x

x x


 


 

0

0

0
0 0 0 0

0

0       for 
( ) ;      ( )d lim ( )d 1

       for 

x

x

x x
x x x x x x x x

x x






  
 


 

            
          

(2a-c) 

The Dirac Delta Function, that in the following will be indicated with 1 0( )R x x  , can be 
considered as the generalized derivative of the Unit Step Function, that will be indicated with 

0 0( )R x x . Hence, the following relationships can be written 

0 1 0 0 0 0( ) ( ) ( ) ( )x x R x x R x x U x x           

0 0 0 1 0 0( ) ( ) ( )d ( )d
x x

U x x R x x R x x x x x x
 

                                (3a, b) 

where the notation 1 0 0( ) ( )i iR x x R x x     already introduced in (Falsone 2002) has been used. 

The further integrations of 0 0( )R x x  bring to the following relationships 

 
0

1 0 0 0
0 0

0                 for 
( ) ( )d

       for 

x x x
R x x R x x x

x x x x


   

   

 
0

22 0 1 0
0 0

0                      for 
( ) ( )d 1

       for 
2

x
x x

R x x R x x x
x x x x


   

   

 
0

33 0 2 0
0 0

0                      for 
( ) ( )d 1

       for 
6

x
x x

R x x R x x x
x x x x


   

 
                        

(4a-c) 

where the generalized functions 0( )iR x x  ( 1,2,3i  ) are defined as Linear Ramp Function, 
Quadratic Ramp Function and Cubic Ramp Function, respectively. 

The Unit Step Function can be advantageously used in order to represent an uniformly 
distributed load acting between two axial abscissas 1x  and 2x  of the beam. In this case, the 

continuous (in a generalized sense) load ( )p x  can be expressed as follows 

   0 1 0 2( )p x p R x x R x x                                                    (5) 

p  being the constant load intensity. 
On the other hand, the Dirac Delta Function is used for representing a concentrated force, of 

intensity F and applied at the abscissa 0x , writing as follows 

 0( )p x F x x                                                            (6) 

In this work the load acting on the beam is considered to be represented by a sequence of 
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concentrated loads having independent random intensities Fi characterized by the same probability 
distribution and acting at the abscissas xi that are distributed along the beam axis following a Poisson 
distribution, that is 

   
( ) ( )

1

1 1

( )
N l N l

i i i i

i i

p x F x x F R x x 
 

    
                                          

(7) 

where N(l) is a Poisson counting process with constant average rate λ and l is the beam length. The 
quantity here introduced is a stochastic process called Poisson Delta-Correlated Process. It is 
characterized by having the r-th correlation functions expressed as follows (Ross 1983, Lin and Cai 
1995, Iwankiewicz and Nielsen 1999) 

       ( )
1 2 1 1 1 2 1, , ,r r

p r i rC x x x E F R x x R x x R x x        
                       

(8) 

where  E �  indicates the mean of  � , so that r
iE F    represents the r-th moment of the random 

variables Fi. For r = 1, 2, 3 these correlations coincide with some important statistical quantities of 
the stochastic process, that are 

             (1) (2)
1 1 1 2 1 2 1 2 1 2( ) ;      , ( ) ( ) ( ) ( ) , ;p p pC x E p x C x x E p x p x E p x E p x x x     

          (3)
1 2 3 1 1 2 2 3 3, , ( ) ( ) ( ) ( ) ( ) ( )pC x x x E p x E p x p x E p x p x E p x               

(9a-c) 

These relationships show that the first correlation is the mean of the process, the second one is 
the covariance and the third one is the third order central moment of the process evaluated at 
different positions. When the abscissas are coincident, the second order correlation becomes the 
second cumulant that coincides with the variance of the process, while the third order correlation 
function degenerates to the third cumulant that coincides with the third central moment. For higher 
order correlation functions similar simple relationships cannot be evidenced. 

In the following sections the exact probabilistic response, in terms of the first two order 
correlation functions, of some beams generically constrained and subjected to a delta-correlated 
process will be studied and obtained. 
 
 
3. Beams with constrains at the ends 
 

In this section some beams subjected to a delta-correlated load expressed as into Eq. (7) and 
characterized by different constrain conditions at their ends will be treated. Both the cases of 
statically determinate beams and redundantly constrained beams will be considered.  

 
3.1 The hinged-hinged beam 
 
Perhaps this is the most classical case of statistically determinate beam. The equation governing 

the problem is obtained by replacing Eq. (7) into Eq. (1), that is  

 
( )

1

1

1
( )

N l

i i

i

u x F R x x
EI 



  
                                                   

(10) 
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whose solution requires the following four integrations, some of which have to be considered in 
generalized sense 

 
( )

0 1

1

1
( ) ;

N l

i i

i

u x F R x x D
EI 

     

 
( )

1 1 2
1

1
( ) ;

N l

i i
i

u x F R x x D x D
EI 

      

 
( )

2
2 1 2 3

1

1 1
( ) ;

2

N l

i i

i

u x F R x x D x D x D
EI 

       

 
( )

3 2
3 1 2 3 4

1

1 1 1
( )

6 2

N l

i i

i

u x F R x x D x D x D x D
EI 

     
                         

(11a-d) 

where Di, with i = 1, …, 4, are the integration constants that must be evaluated by imposing the 
boundary conditions depending on the constrain conditions. It is not difficult to realize that they are 
random variables.  

It is important to note that if the generalized functions are not considered for solving this 
problem, the use of continuous functions for solving Eq. (1) implies the necessity of dividing the 
beam axis into N(l) + 1  pieces and, as consequence, of finding 4(N(l) + 1) integration constants 
analogous to Di, each of them being a random variable. As a consequence the application of this 
approach for finding the stochastic response appears to be very difficult.   

In the field of random processes the summations appearing in the previous equations are 
stochastic quantities known as Filtered Poisson Processes (Lin and Cai 1995, Iwankiewicz and 
Nielsen 1999). Here they are indicated as follows 

 
( )

1

( ) ;    0,1,2,3
N l

j i j i

i

G x F R x x j


  
                                         

 (12) 

and are characterized by the following correlation functions (Lin and Cai 1995, Iwankiewicz and 
Nielsen 1999) 

       
1 2min( , , )

( )
1 2 1 2

0
, , , d

r

j

x x x
r r

G r i j j j rC x x x E F R x x R x x R x x x       


 
          

(13) 

For the constrains acting on the beam under consideration the boundary conditions impose  

0 4 0 0 2( ) | 0      0;      ( ) | ( ) | 0      0;x x xu x D M x EIu x D           

3
3 1 3

1 1
( ) | 0      ( ) 0;

6x lu x G l D l D l
EI       

1 1( ) | ( ) | 0      ( ) 0x l x lM x EIu x G l EID l                                  (14a-d) 

where M(x) indicates the bending moment. Eqs. (14a, b) imply that the constants D2 and D4 are 
deterministically zero, while the expressions of the random variables D1 and D3 are obtained by 
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using Eqs. (14c, d). In particular, they are 

1 1 3 1 3

1 1 1
( );      ( ) ( )

6

l
D G l D G l G l

lEI EI l
                                     

 (15a, b) 

Hence, the expression of the random processes defining the transverse deflection u(x), the 
bending moment M(x) and the shear force T(x), obtained by using Eqs. (15), (12) and (11), are 

3
3 1 1 3

1 1 1
( ) ( ) ( ) ( ) ( ) ;

6 6

l
u x G x G l x G l G l x

EI l l

         
 

1 1 0 1

1 1
( ) ( ) ( ) ;      ( ) ( ) ( )M x G x G l x T x G x G l

l l
                                (16a-c) 

that are particular processes whose correlation functions can be exactly evaluated. For example, 
their mean values are 

         3
3 1 1 3

1 1 1
( ) ( ) ( ) ( ) ( ) ;

6 6

l
E u x E G x E G l x E G l E G l x

EI l l

         
 

           1 1 0 1

1 1
( ) ( ) ( ) ;      ( ) ( ) ( )E M x E G x E G l x E T x E G x E G l

l l
     

        
(17a-c) 

In order to make explicit the above reported quantities, it is necessary to evaluate the mean values 
of the filtered Poisson processes Gi(x) (i = 0, 1, 3). This is obtained by particularizing Eq. (13) for r 
= 1, that are 

         
0

(1)
0 0

0 0
( ) ( ) d d ;

x x

G i i iE G x C x E F R x E F E F x            

           
1

(1) 2
1 1

0 0

1
( ) ( ) d d ;

2

x x

G i i iE G x C x E F R x E F x E F x              

           
3

3(1) 4
3 3

0 0

1 1
( ) ( ) d d

6 24

x x

G i i iE G x C x E F R x E F x E F x              (18a-c) 

that, replaced into Eqs. (17), give 

        
3

4 3 21 1
( ) ;      ( ) ;

12 2 2 2
i

i

E F l
E u x x x x E M x E F lx x

EI




 
     

 
 

   ( )
2i

l
E T x E F x    

                                             
(19a-c) 

By setting x = 0 and x = l into Eq. (19c) it is possible to obtain the mean values of the two hinge 
reactions at the beam extremes as follows 

           (0) ;      ( )
2 2A i B i

l l
E V E T E F E V E T l E F       

                 
(20a, b) 
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It is important to note that the laws of the displacement mean, the bending moment mean and the 
shear mean given into Eq. (19) coincide with the laws of the same corresponding deterministic 
quantities when the beam is loaded by a deterministic uniformly distributed force whose intensity is 
equal to the mean value of the delta correlated input, that is p = λE[F]. The same consideration can 
be made for the restrain reaction mean values given into Eq. (20). These results are not surprising if 
the following consideration is made: by taking into account Eq. (11), it must be noted that their mean 
values, obtained by using Eq. (18), too, are coincident with the deterministic equations governing 
the derivatives up to the fourth order of the deflection of a beam subjected to a deterministic 
uniformly distributed load with intensity p = λE[F]. As this consideration is not influenced by the 
boundary conditions, it can be considered true for any beam constrain condition. 

The expressions of the second order correlation functions of the deflection and of the two internal 
forces M(x) and T(x) can be obtained by applying the relationships given into Eq. (16) and into Eq. 
(9b), that, after some algebra give 

 
 

     

 
      

3 3 1 3 1

3 3 1

(2) (2) (2) 2 (2) 2
1 2 1 2 1 2 2 2 1 12

(2) (2) (2) 2 2 2 2 2
1 2 2 1 1 2 1 2 1 22 2

1 1 1 1 1
, , , ,

6 6

1 1 1 1
                  , , ,

36

        

u G G G G G

G G G

C x x C x x C x l x l x C x l x l x
l lEI

C x l x C x l x C l l x x x x x x l
l lEI

                

            

 
   

1 3 3

(2) 2 2 (2)
1 2 1 2 1 22 2 2 2

1 1 1 1 1
          , 1 , ;

3 2 2G G GC l l x x x x C l l x x
l l lEI

         

          
1 1 1 1

(2) (2) (2) (2) (2)
1 2 1 2 1 2 2 1 1 22

1 1
, , , , , ;M G G G GC x x C x x C x l x C x l x C l l x x

l l
     

          
0 0 1 0 1 1

(2) (2) (2) (2) (2)
1 2 1 2 1 1 2

1 1
, , , , ,T G G G G G GC x x C x x C x l C x l C l l

l l
   

                 
(21a-c)  

By setting x1 = x2 = x and after some algebra, the previous equations give the corresponding 
values of the variances in the form 

 
     

 
   

3 3 1 3 1

1 3 3

2 2 (2) 2 (2) 2 2 4 2 2
2 2

2
2 2 2

2 2 2

1 1 1 2 1 1
( ) ( ) , , 2

3 36

1 1 1
         1 ;

3

u G G G G G

G G G

x x C x l x l x C x l x l x x x l
l l lEI

x
l x l x

l lEI

  

 

                  

  
    

    

       
1 1 1 0 0 1 1

2 2 (2) 2 2 2 (2) 2
2

2 2 1
( ) ( ) , ;      ( ) ( ) ,M G G G T G G G Gx x C x l x l x x C x l l

l l l
          

     
(22a-c) 

The explicit values of the above response variances can be obtained once that the explicit values 
of the variances, covariances and cross-correlations appearing into the second members of the above 
equations are obtained by particularizing and/or extending Eq. (13), that are 

     
3

2 4

(2) 2 3 2 2 3
3 3

0

3 1 1
, d ;

144 5 5 35

x

G

E F x
C x l E F R x R l l xl x l x


   

               
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(23a-h) 

At last, by replacing Eq. (23) into Eq. (22), the following results are obtained 
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(24a-c) 

It is not difficult to verify that at the beam ends the variances of both the displacements and the 
bending moments are zero, as must be because these quantities are deterministically zero in 
correspondence of the constrains. On the contrary, the variances of the shear forces and, hence, of 
the constrain reactions are given by 
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2 2
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3 3A BV T V T
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 
   
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(25a, b) 

In Figs. 1(a)-(f) the diagrams related to the response mean values and variances are reported in a 
non-dimensional form. From the analysis of the results related to the bending moment and to the 
shear force, the critical section for the moment seems to be the middle one in which the moment 
mean value and the corresponding variance are maxima. In terms of shear force, the most critical 
sections seem to be the extreme ones with maximum mean value and variance. Hence, verifying the 
beam in these sections seems to be necessary. In the next sections a procedure to implement this kind 
of operations will be introduced.  
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Fig. 1 Dimensionless means and variances for the response quantities of the hinged-hinged beam 
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3.2 The clamped-clamped beam 
 
In this section the case of the clamped-clamped beam subjected to the same load defined into Eq. 

(7) is analyzed. Respect to the previous restrain conditions, the differences arise starting from Eq. 
(14) where the boundary conditions are imposed. For the case now under consideration, these 
conditions are 

0 4 0 0 3( ) | 0      0;      ( ) | ( ) | 0      0;x x xu x D x u x D           

3 2
3 1 2

1 1 1
( ) | 0      ( ) 0;

6 2x lu x G l D l D l
EI       

2
2 1 2

1 1
( ) | ( ) | 0      ( ) 0

2x l x lx u x G l D l D l
EI

        
                      

(26a-d) 

Eqs. (26a, b) evidence that the constants D3 and D4 are deterministically zeros, while Eqs. (26c,d) 
allows to find the following expressions for the other two constants 

1 3 2 2 3 23 2

12 6
( ) ( ) ;      ( ) ( )

2 3

l l
D G l G l D G l G l

l EI l EI
                                  

(27a, b) 

Hence, the expressions of the random processes defining the transverse deflection u(x), the 
bending moment M(x) and the shear force T(x) for the case of the clamped-clamped beam are 

3 2
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(28a-c) 

The mean values of these processes are obtained by simply applying the mean operator to each 
member of the previous equations 
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                           (29a-c) 

that, besides of the mean value expressions already reported into Eq. (18), require the knowledge of 
the expression of E[G2(x)], that is 

           
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(30) 
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Taking into account Eqs. (18) and (30), the mean values given into Eqs. (29), after some algebra, 
can be rewritten in the following explicit form 
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                                              
(31a-c) 

By setting x = 0 and x = l into Eqs. (31b, c) it is possible to obtain the mean values of the reactions 
at the beam ends as follows 
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(32a, d) 

It is important to note that what before said about the fact that the laws of all the response 
quantity means coincide with the laws of the same corresponding deterministic quantities when the 
beam is loaded by a deterministic uniformly distributed load whose intensity is equal to the mean 
value of the delta correlated input, is confirmed for the present case of clamped-clamped beam, too.  

The expressions of the second order correlation functions of the deflection and of the two internal 
forces M(x) and T(x) can be obtained by applying the relationships given into Eqs. (28) and (9b), 
that, after some algebra, give 
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(33a-c)

By setting x1 = x2 = x, the variances of the response quantities are obtained as 

 
           

 
        

3 3 2 3 2

3 2 3

22 2 (2) 2 (2) 2 2 4
2 2 3 4

24 2 4
2 5 6

1 2 2 1
( ) ( ) , , 2 3

1 2 1
         2 3 2 3 ;

u G G G G G

G G G

x x C x l x x l C x l x x l l x x l
l l lEI

l x x l x l l x x l
l lEI

  

 

         

        

        

      

1 2 3 1 2

1 3 2 3

2 22 2 2 2 (2)
4 6 2

(2)
3 5

4 36 4
( ) ( ) 3 2 , 3

12 24
            , 2 2 3 ;

M G G G G G

G G G G

x x l l x l x l C x l l x
l l l

C x l x l l x l l x
l l

   



      

    
 

         
0 3 2 0 3 0 2 3 2

2 2 2 2 (2) (2)
6 4 3 2 5

144 36 24 12 144
( ) ( ) , ,T G G G G G G G G Gx x l l C x l C x l l

l l l l l
         

    
(34a-c) 

Besides of the quantities reported into Eq. (23), the explicit expressions of these variances 
require the evaluation of 
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At last, the use of Eqs. (23) and (35), after some algebra, gives 
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In Fig. 2 the graphic representations of these laws are reported in a dimensionless form. 
 
 
4. Continuous beams 
 

In this section the case of the generic continuous beam of the type represented in Fig. 3 is taken 
into account.  

The fourth order differential equation governing the behavior of the transverse deflection can be 
written as 
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1 1
1 1
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                                         (37) 

where jV  is the reaction of the j-th intermediate constrain and 
1

j

j k

k

l l


 , kl  being the length of the 

k-th beam piece among a constrain and the successive one. The solution of Eq. (37) requires the 
following four integrations, some of which have to be considered in generalized sense 
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Fig. 2 Dimensionless means and variances for the response quantities of the clamped-clamped beam 
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Fig. 3 Continuous multi-span beam. 
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In these expressions (n + 3) random unknowns appear. They are the four integration constants Di and 
the (n − 3) reactions Vj. In order to find their expressions, it is necessary to impose the four 
conditions at the ends of the beam and the (n − 1) conditions at the intermediate constrains, that are 
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Eqs. (39a, b) evidence that D2 and D4 are deterministically zero, while the expressions of D1, D3 and 
of the reactions Vj must be obtained by solving Eqs. (39c-e) that are conveniently rewritten in matrix 
form as follows 

   3 3 3 1 1 1 3 3 3

1 1 1 1 1 1
;      ;      T T T T
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EI EI EI EI EI EI

        r v h d r v h d R v H d g
  

(40a-c) 

where 
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(41a-g) 

Eq. (40) can be again compacted in the following form 
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(42a-d) 

that is able to give the expressions of the random variables included into v  and d  as follows 
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(43a,b) 

In order to find the response statistics of the continuous beam, it is convenient to rewrite the laws 
of the deflection, of the bending moment and of the shear force as follows 
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(45a,b) 

Applying the mean operator to both the members of Eq. (44) the expressions of the beam mean 
responses are obtained as follows 
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       0 0 1( ) ( ) ( )TE T x E G x x E EIE D   r v                                 (46a-c) 

in which the expressions of the mean values  ( )iE G x  have been already given in the previous 

section, while the other mean values appearing before are obtained by applying the mean operator to 
both the members of Eq. (43), that are 
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(47a,b) 

322



 
 
 
 
 
 

Exact stochastic solution of beams subjected to delta-correlated loads 

At last E[D1] into Eq. (45) is the first element of the vector E[d]. Thanks to the expressions given 
in the previous section for E[Gi(x)] and to those given into Eqs. (41e) and (42d), the evaluation of the 
vectors E[g] and E[g3] appearing in the previous relationships becomes very simple.  

The expressions of the corresponding second order correlation functions can be obtained starting 
again from Eq. (44) and they are 
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(48a-c)

where  vv  and  dd  are the covariance matrices of the random vectors v  and d , respectively, 

while  vd  is their cross-covariance matrix; moreover, the vectors of the type ( )A x a  collect the 

covariances      ( ) ( ) ( )
iAa i ix E A x a E A x E a   , with 1,2, 1i n  ; it must be noted that if A is 

independent by x also ( )
iAa x  is.  

It is not difficult to realize that the beam response variances, that are obtained by setting x1= x2= x 
into Eq. (48), have the following form 
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(a) Geometry of the beam
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Fig. 4 Means and variances of a three-span beam 
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In Figs. 4(b)-(g) the means and the variances of the beam response quantities are represented for 
the continuous beam represented in Fig.4a, characterized by: 1 3 25m;  6ml l l    and bending 

stiffness 7 26.5625 10  N/mmEI   . The first and second moments of the random variable iF  

assumed in the analysis are   4E 3 10 NiF    and 2 8 2E 9 10 NiF     , while 30  .  

The knowledge of the mean values and of the variances of the internal forces M(x) and T(x) 
allows to apply the β -method for the reliability of the beam, as will be shown in the next section.   
 
 
5. Application of the reliability  -method 

 
The knowledge of the mean values and of the variances of the internal force S(x), where S(x) may 

be the absolute value of the bending moment M(x) or the absolute value of the shear force T(x), 
allows to apply the β -method approach for studying the beam reliability. It is obvious that it is also 
necessary the knowledge of the corresponding quantities referred to the resistance force R(x), that 
indicates the resistance bending moment if S(x) ≡ |M(x)| and the resistance shear force if S(x) ≡ |T(x)|. 
In the following, the case of deterministic resistance will be treated; but this does not invalidate the 
proposed approach that can be simply rearranged for taking into account the eventual randomness of 
R(x). 

It is known that in the cases treated in this work the β -method gives approximate results because 
of the non-Gaussianity of S(x). As a matter of the fact, the beam responses would be Gaussian 
processes only if their input is Gaussian and this happens only if λ → ∞ and E[F2] → 0 
simultaneously. However, even if the beam response quantities are not Gaussian processes, for 
relatively high values of λ, the β -method gives sufficiently accurate results. 

Once that the significance of the internal action S(x) and of the resistance R(x) are defined, it is 
possible to introduce the so-called success variable defined as follows 

( ) ( ) ( )K x R x S x                                                          (50) 

The corresponding β -coefficient is defined as follows (Papoulis and Pillai 2002) 

   ( ) ( )
( )

( ) ( )K S

E K x R E S x
x

x x


 


 
                                               

(51) 

where the hypothesis that R(x) is deterministic and independent by x has been taken into account. 
The knowledge of β(x) allows to evaluate the beam failure probability against the given load 
conditions in the form 

  1
( ) erf ( )

2fP x x                                                      (52) 

It is interesting to identify the critical abscissa xf where the failure probability above defined is 
maximum. Due to the properties of the error function  erf � , the failure probability is maximum 

where β(x)  is minimum. For example, for the hinged-hinged beam treated in the section 3.1 it is 
possible to define the following two β -coefficients for the bending moment and the shear force, 
respectively 
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(a) βM(x) (b) βT(x) 

Fig. 5 β -coefficients for the bending moment and shear force of the hinged-hinged beam 
 

 
 

 
 

 

(a) βM(x) (b) βT(x) 
Fig. 6 β -coefficients for the bending moment and shear force of the clamped-clamped beam 
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(53a, b) 

RM and RT being the values of the bending moment resistance and of the shear force resistance.  
In Fig. 5(a), (b) the corresponding graphics of β(x) for the bending moment and the shear force 

are reported, assuming l = 5m, E[F] = 104 N, E[F2] = 108 N2, λ = 10, RM = 4 × 105 Nm, RT = 4 × 105 
N. In Fig. 6(a), (b) the same graphics referred to the clamped-clamped beam are given. The  
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(a) βM(x)  (b) βT(x)  
Fig. 7 β -coefficients for the bending moment and shear force of the three-span beam 

 
 
β -coefficients for the bending moment and the shear force of the continuous beam studied in the 
previous section are shown in Fig. 7(a), (b), where it has been assumed RM = 5 × 106 Nm  and RT = 3 
× 106 N. It is important to note that, for any example taken into account in this work, the most critical 
sections evidenced by the study of the β -coefficients are coincident with the most critical sections 
deriving by the application of an uniformly distributed deterministic load on the same beam. 
 
 
6. Conclusions 
 

The bending problem of Euler-Bernoulli discontinuous beams, where the discontinuity is due to 
the loads and eventually to essential constrains, has been dealt with. Studying this problem could be 
important in the static analysis of the bridge beams if the load is modeled as a delta-correlated 
process along the beam axis. In this case, it has been shown that the use of the generalized function 
has reduced the computational effort of the problem. In particular, it has made easily applicable the 
rules of the structural stochastic analysis, allowing to find the beam exact response in terms of 
means and variances of the deflections, the bending moments and the shear forces. The evaluation of 
these quantities has implied the possibility of applying the reliability β -method. In all the examples 
taken into account, it has been shown that the critical sections for the bending moments and the shear 
forces found with this approach coincide with those related to an uniformly distributed deterministic 
load. 
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Appendix. Sign convention 
 

 
 
 
 
 
 

 
 
 
 
 

(a) applied transverse loads 

 

(b) generalized internal forces (c) generalized displacements 

Fig. A1 Sign convention
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