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Abstract.   A procedure employing a Teaching-Learning Based Optimization (TLBO) method is developed 
to design discrete pin jointed structures. TLBO process consists of two parts: the first part represents learning 
from teacher and the second part illustrates learning by interaction among the learners. The effectiveness of 
the TLBO method is demonstrated on the four design optimization problems. The results are compared with 
those obtained using other various evolutionary optimization methods considering the best solution, average 
solution, and computational effort. Consequently, the TLBO algorithm works effectively and demonstrates 
remarkable performance for the optimization of engineering design applications. 
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1. Introduction 

 

The optimization techniques used for minimizing the volume or weight, intend to achieve an 

optimum design having a set of design variables under certain design criteria. They can be roughly 

categorized as gradient-based and gradient-free methods. In contrast to gradient-based ones, 

gradient-free techniques have been emerging as powerful tools for discrete structural optimization, 

in which the design variables are discrete and must be chosen from a predetermined set. The key 

feature of the gradient-free techniques is to simulate natural phenomena.  

The most widely recognized optimization method among others is the Genetic Algorithm (GA), 

which is based on the concept of natural selection, and it has been used in the various structural 

optimization applications (Rajeev and Krishnamoorthy 1992, Toğan and Daloğlu 2009, Chen and 

Rajan 2004, Toğan and Daloğlu 2006). In order to further, improve the performance of the GAs, 

some enhancements which are based on the adaptive approaches haven been suggested (Nanakorn 

and Meesomklin 2001, Toğan and Daloğlu 2006, 2008). After noticing the rationale behind GA, 

different techniques inspired from the nature have been consecutively suggested and they have 

been widely used in fields varying from engineering to finance. Particle swarm optimization (PSO) 

(Kennedy and Eberhart 1995, Li et al. 2009), ant colony optimization (ACO) (Camp and Bichon 

2004, Camp et al. 2005, Capriles et al. 2007), harmony search (HS) (Lee and Geem 2004, Saka 

2007, Değertekin 2007), artificial bee colony (ABC) (Karaboğa 2005, Karaboğa and Baştürk 2007, 

Sönmez 2011) and charged system search (CSS) (Kaveh and Talatahari 2010) are the optimization 
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methods, which are recently developed and have been frequently used for the structural 

optimization applications by the researchers. To develop an algorithm simulating the nature has 

been of increasing popularity due to its ability of solving different optimization problems.  

Rao et al. (2011) developed a new optimization method, the so-called Teaching-Learning 

Based Optimization (TLBO), as an innovative optimization algorithm inspiring the natural 

phenomena, which mimics teaching-learning process in a class between the teacher and the 

students (learners). In their model, the “Teaching” phase produces a random ordered state of points 

called learners within the search space. Then a point is considered as the teacher, who is highly 

knowledgeable person and shares his or her knowledge with the learners, thus the others receive 

significant information from the teacher. The learners also learn by interacting among them. After 

a number of sequential Teaching-Learning cycles, where the teacher conveys knowledge among 

the learners and elevates their knowledge close to her or his level, the distribution of the 

randomness within the search space becomes smaller and smaller reaching around a point adopted 

as the teacher. Convergence over a solution means that the knowledge level of the whole class 

shows smoothness. Rao et al. (2011) have shown that the TLBO algorithm is more effective and 

efficient than the other optimization methods mentioned above in solving the mechanical design 

optimization problems found in the literature. In addition, Toğan (2011) determined the optimum 

designation conditions of the cross-section areas of the planar steel frames by using TLBO. 

In this study, a procedure employing a Teaching-Learning Based Optimization (TLBO) method 

is developed for discrete design of trusses to show the performance of TLBO on the structural 

optimization problems encountered in the civil engineering field. For the purpose of fulfilling the 

performance evaluation criteria on the structural design optimization problems, the effectiveness 

of the TLBO method is demonstrated on the four different truss design optimization problems 

considering the best solution, average solution, and computational effort. The minimum weight of 

the truss structure, which is subjected to constraints in the form of stress and deflection limits, is 

considered as the objective function.  

 

 

2. Teaching-Learning Based Optimization (TLBO) 
 

The TLBO can be summarized as a procedure simulating the interactivity between the teacher 

and students in a class, also known as the Teaching-Learning process. The teacher, who is 

considered as the most knowledgeable person in the society, teaches a subject to the learners to 

increase information level of the whole class on a specific subject. He or she intends to enhance 

the knowledge level of the learners thus approximating it to his or her own level. The teacher 

evaluates the learning level of the learners through an exam. The marks obtained by the learners 

represent the knowledge level that has been reached by the teacher. 

Before teaching a subject, the learners of the class is expected to exhibit irregular level of initial 

knowledge on that every topic. The final aim of the teacher, on the other hand, is to diminish this 

irregularity and provide uniformity in the class after the teaching-learning process.  

It is also possible for the learners to learn through an interaction among them. If a normal 

distribution is assumed for the obtained marks by the learners, the corresponding distribution can 

be illustrated as in Fig. 1 before and after teaching-learning process, respectively. The quality of a 

teacher affects the outcome of the learners. Fig. 2 shows the effect of the influence of a teacher on 

the output of learners examined in terms of the marks in a class. It should be noted in Fig. 2 that 

the output of the learners increases as the quality of the teacher as well as the quality of the  
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(a) before teaching-learning process             (b) after teaching-learning process 

Fig. 1 The level of whole class: (a) before and (b) after teaching-learning process 

 

 

Fig. 2 The level of whole class depending on the teacher and learners qualities 

 

 

students increase. In an actual practice, however, increasing the learners’ level uniformly to a 

certain level or up to the level of the teacher may be not possible. It has skewness about to point 

considering as the mean of the results of the learners. 

 The TLBO method, extensively used in this paper, is summarized above. The method consists 

of two phases; a) Teaching Phase, where the candidate solutions are randomly distributed over the 

search space, the best solution is then determined among those candidates, and the information 

obtained from the best solution is shared with the others; and b) Learning Phase, where the 

solutions are shared their knowledge among themselves.  

Teaching Phase, that is the initial part of TLBO, is the same with other nature-inspired methods. 

An initial population consisting of candidate solutions is generated randomly over the entire search 

space to proceed with the global solution. It is clear that the population might have feasible or 

infeasible solutions as well. In optimization algorithms, the solution composes of design variables 

and is qualified according to its fitness. Similarly the optimization algorithms, in the TLBO a class 

and a student in that class represent the population (pop)  randomly generated with pre-defined 

size (np) and the candidate solution (x
i
 , i=1 to np), respectively. Each subject taught to the 

students represents the design variable which is an integer value representing the sequence 

numbers of predefined discrete set and the combination of it denotes the design variables of 

objective function. The candidate solution composes of design variables (x
i
 = [xj, x2, …, xnd], i=1 to 

np; j= 1 to nd) and is qualified according to its fitness (f(x
i
)). The solution having best fitness (i.e., 
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fmin(.)) in the population is determined as the teacher (xteacher). Then a formula is employed to 

update the solution i according to the best solution and the mean of the solutions as follows 

 )(,
meanFteacher

iinew xTxrxx   (1) 

where x
new,i

 and x
i
 are the modified and existing solution of i, r is a random number varying 

between 0 and 1, TF is a teaching factor being either 1 or 2, which is again a heuristic step and 

decided randomly with equal probability as TF = round[1 + rand (0,1) {2-1}] (Rao et al. 2011). 

The random number r is generated for each design variables while TF is produced just one times 

for xmean. xteacher is the best solution and xmean is the mean of the solutions calculated vector based, 

Eq.(2).  
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where np and nd are the number of solutions(population size) and the design variables, pop is the 

population composed of np rows and nd columns. If the modified solution x
new,i

 produces better 

objective function value than x
i
  change x

i
 to x

new,i
, otherwise preserve x

i
.  

After the Teaching Phase, an exchange information operation is applied during the Learning 

Phase. In this case, it is aimed for the solution to learn something new interacting randomly with 

other solutions through group discussions, presentations, formal communications, etc. A learner 

with a certain solution will learn new information if the other learners with different solutions have 

more knowledge than him or her (Rao et al. 2011). So, for the minimization problem the 

modification formula requiring the exchange information between the solution i and the solution j 

can be expressed as 

 

,
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new i i i j i j
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new i i i i

new i i i new i

x x r x x f x f x

x x r x x f x f x

f x f x x x

f x f x x x

 (3) 

in which
 
x

new,i
 is the modified solution of the existing solution x

i
, x

j
 is the any solution to be 

different from x
i
, and f(x

new,i
) and f(x

i
) show the objective function values for the solutions x

new,i
 and 

x
i
, respectively. This operation is repeated until the number of solutions (i, j = 1 to np, i ≠ j). At the 

end of this operation, a cycle is completed for the TLBO. 

The entire process explained above is continued until reaching the termination criterion. The 

maximum number of cycle is taken into account as the termination criterion.  
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3. Optimum design of truss by TLBO 
 

The cost of a truss structure associated with the volume of the material used is generally taken 

as the objective function while satisfying the design constraints, such as the allowable stresses in 

members and/or nodal deflection limits. If the topology of the truss keeps on fixed the main factor 

affecting the cost of the truss would be the cross sectional area of each member in truss. Therefore, 

the value of cross-sectional area for each group of structural elements can be considered as discrete 

or continuous design variable. In case of sizing optimization problems with discrete design 

variables, the major task is to select an optimal cross-section of the elements from a permissible 

list of standard sections that minimize the weight of the structure while satisfying the design 

constraints. Typically truss designs are limited by allowable material stresses and structural 

displacements. 

In the current work, penalty function concept is preferred to handle the constraints in contrast to 

(Rao et al. 2011), where a heuristic constraint method developed by Deb (2000) was used. 

Therefore, for each candidate truss design, a penalty function is applied to the structural weight 

reflecting the degree of constraint violation. Thus, the structural weight taken as the objective 

function is modified to search the designs with the smallest structural weight that satisfies the 

design constraints. In this study, an optimal truss design is sought, which has the minimum weight 

of the structure while it does not exceed the allowable values for compressive and/or tensile stress 

in each member and deflection of any connection. A truss optimization problem can thus be 

expressed as follows 

 

1 1

, ,

, ,

Minimize ( )
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1 1,..,
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 (4) 

In Eq. (4), x is the vector for the design variables taken as the values of cross-sectional area for 

each group of structural elements (x=[A1 A2 … Ang]
T
), f(x) is the objective function for minimum 

weight of truss, ρ is the material density, ng is the total numbers of groups in the truss, ne is the 

total numbers of elements in group i, Ai is  the cross-section area of ith group and Lj is the length of  

jth element for ith group, gstr,k and gd,r are the violation value of normalized stress and 

displacement of the kth element and of the rth node of truss structure, respectively. ζk and ζa,k are 

the stress in each member k of the truss and the maximum allowable stresses indicating tension or 

compression stress depending on the axial force , δr and δa,r  are the displacement of node r of the 

truss and the allowable displacement imposed on node r. Finally, nm and n represent the number 

of stress and displacement constraints. The penalized weight reflecting the feasibility of the 

candidate truss design is then written as 

 ( ) ( )(1 )  x f x C  (5) 

where C is the value of total constraints violation and ε is the positive penalty exponent. The total 

constraints violation C is a function of the summation of the stress and deflection constraints 

defined as 

 1 1

, ,where max( ,0) and max( ,0)
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The steps of the TLBO algorithm used in the current work for truss optimization are 

demonstrated with stepwise manner as follows: 

• Define np, nd and the maximum number of cycle adopted as  the termination criterion 

• Initialize a population; As stated above, the population, pop, represents a class, which 

composes of students. The population, pop (see Eq. (2)), is filled with randomly generated students 

(solutions) according to the population size, np, and number of design variables, nd. 

• Evaluate Eq. (5) for each x
i
 (i=1,…,np) in the population 

• Find the best learner (i.e., best solution is to produce the minimum penalized weight, (.) ) in 

the population and assign him/her to the teacher (xteacher = x
i
 where x

i
 produces minimum φ(.) ) 

• Calculate mean of each group of learners (xmean) in the current population and perform the 

Teaching Phase by the help of Eq. (2) and Eq. (1) 

• Accept all x
new,i

 instead of x
i
  if f (x

new,i 
) is better than f (x

i
 ) and update the population 

• Improve the learners’ knowledge by utilizing the knowledge of some other learner through 

the Eq. (3). It means that perform the Learning Phase. 

• Accept all x
new,i

 instead of x
i
  if f (x

new,i 
) is better than f (x

i
 ) and update the population  

• Control the termination criterion (i.e., maximum number of cycle). In the case that it is met, 

show the results. Otherwise continue the procedure from steps 3 to 8 

The presented optimum design algorithm employing a Teaching–Learning Based Optimization 

(TLBO) technique for discrete optimization of trusses is coded in MATLAB environment and all 

computations are performed in a PC with the Pentium®  4 2.66 GHz processor and 1.0 GB RAM .  

 

3.1 TLBO truss design parameters 
 
Recalling the definition of TLBO algorithm given above, it is worthy to say that the algorithm 

requires easy software programming with relatively few parameters to control the algorithm 

performance. TF defined in the TLBO algorithm is taken as 2. The value of the penalty function 

exponent, given in Eq. (5), is considered as 2 (Camp et al. 2005). Numerical results presented in 

the study show the best solutions obtained among the twenty independent runs performed. Since 

these are compared with other nature-inspired methods, a predetermined number of truss analyses 

being minimum than that determined from the given references are taken into account as the 

termination criterion to show the computational efficiency and overall algorithm performance of 

TLBO.  

 

 

4. Design examples 
 

4.1 Ten-bar truss design examples 
 

A ten bar plane truss shown in Fig. 3 is studied by many researchers for comparison purposes. 

It is simple enough to take area of cross section of each member as a discrete design variable. This 

structure has been previously studied for discrete design variables by Rajeev and Krishnamoorthy 

(1992) using GA, Kripka (2004) using SA (Simulated Annealing), Li et al. (2009) using HPSO, 

Camp and Bichon (2004) using ACO, Camp (2007) using BB-BC (Bing Bang-Big Crunch), and 

Sönmez (2011) using ABC. The geometry, support, and loading conditions for the ten-bar 

cantilevered truss are also illustrated in Fig. 3. All members were assumed to be constructed from 

a material with the Young modulus, E, of 10
4
 ksi, the density, ρ, of 0.10 lb/in

3
, and the allowable  
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Fig. 3 Configuration of ten bar truss 

 
Table 1 Designs for ten bar truss 

  Cross-sectional areas (in.
2
) 

Element 

group 
Member GA SA HPSO ACO BB-BC ABC TLBO 

1 1 33.50 33.50 30.00 33.50 33.50 33.50 33.50 

2 2 1.62 1.62 1.62 1.62 1.62 1.62 1.62 

3 3 22.90 22.90 22.90 22.90 22.90 22.90 22.90 

4 4 14.20 14.20 13.50 14.20 14.20 14.20 14.20 

5 5 1.62 1.62 1.62 1.62 1.62 1.62 1.62 

6 6 1.62 1.62 1.62 1.62 1.62 1.62 1.62 

7 7 7.97 7.97 7.97 7.97 7.97 7.97 7.97 

8 8 22.90 22.90 26.50 22.90 22.90 22.90 22.90 

9 9 22.00 22.00 22.00 22.00 22.00 22.00 22.00 

10 10 1.62 1.62 1.80 1.62 1.62 1.62 1.62 

fbest (lb)  5,490.74 5,490.74 5,531.98 5,490.74 5,490.74 5,490.74 5,490.74 

favg. (lb)  - - - 5,510.52 5,494.17 5,510.35 5,510.54 

fstd. (lb)  - - - 23.19 12.42 21.513 22.22 

Nanalyses  8,000 - 50,000 10,000 8,694 25,800 8,040 

Violation        0.00 

Note: GA=Mahfouz (1999); SA=Kripka (2004); HPSO=Li et al. (2009); ACO=Camp and Bichon (2004) 

BB-BC=Camp (2007); ABC=Sönmez (2011); TLBO=This study. 

 

 

stress of 25 ksi. The objective of the problem is to minimize the weight of the structure. 

Constraints are imposed on member stresses (excluding buckling) and displacements. The 

displacements of the free nodes in both directions had to be less than ±2 in. The prescribed 

sections used for the possible cross-sectional areas for each member are 1.62, 1.80, 1.99, 2.13, 

2.38, 2.62, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 

4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 

26.5, 30.0, 33.5 in
2
 (Camp and Bichon 2004) . 

Table 1 summarizes the best designs developed by Mahfouz (1999), Kripka (2004), Li et al.  
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Fig. 4 Convergence history of ten bar truss 

 

 

(2009), Camp and Bichon (2004), Camp (2007), Sönmez (2011), and by the TLBO algorithm 

explained in this study. The reported minimum number of truss analyses in the given references is 

8,000 (Mahfouz 1999) and 8,694 (Camp 2007) to converge to a solution. Therefore, 100 

generations with a population size 40 resulting in 8,040 truss analyses are taken into account in 

TLBO algorithm as the termination criteria and the best design developed by the TLBO algorithm, 

a truss weighting 5,490.74 lb, is presented in the last column of Table 1. The average and the 

standard deviation of the designs obtained for a series of 20 design runs are also included in Table 1.  

It is worthy to state that the result obtained in this study show a remarkable agreement with the 

previous studies including Mahfouz (1999), Camp and Bichon (2004), Camp (2007), and Sönmez 

(2011). However, the TLBO algorithm exhibits more computational efficiency over HPSO, ACO, 

and ABC from the truss analyses point of view. Moreover, the number of truss analyses required 

for the TLBO algorithm is lighter than the BB-BC algorithm while it is the same with the GA. The 

number of truss analyses is also decreased and increased to investigate the effects on the best 

solution obtained using TLBO. It is observed that when the number of truss analyses is varied 

from 8,000 to 10,000, 12,000, and 25,000, respectively, the best solution to be reached is the same 

with the one obtained using GA, ACO, BB-BC, ABC. However, it is not encountered any solution 

being lighter than or the same with the best solution presented in Table 1 when the number of truss 

analyses is changed from 8,000 to 7,000 and 6,500. Typical design history for the best optimum 

design and average truss weight of 20 designs for the 10-bar truss is illustrated in Fig. 4. 

 

4.2 Twenty-five bar space truss design 
 

Another benchmark problem used to test the improvements in the algorithm proposed by the 

researcher is the 25-bar space truss shown in Fig. 5. Members of the truss are organized into 8 

groups, and the displacements at joints are restricted at 0.35 in. in the directions of x, y and z, 

respectively. A set of available sections used for this problem is 0.1 to 3.4 in.
2
 with a 0.1 in.

2
 

increment (Camp et al. 1998, Camp et al. 2005, Camp 2007). The young modulus, E, is 10
7
 psi, 

the density, ρ, is 0.1 lb/in.
3
, and the allowable stress is ±40 ksi. A single load case applied to the 

truss is presented in Table 2.  
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Fig. 5 Configuration of the 25-bar truss 

 
Table 2 Load case for 25-bar truss 

Node Fx (kip) Fy (kip) Fz (kip) 

1 1.0 -10.0 -10.0 

2 0.0 -10.0 -10.0 

3 0.5 0.0 0.0 

6 0.6 0.0 0.0 

 
Table 3 Designs for the 25 bar truss 

  Cross-sectional areas (in.
2
) 

Element 

group 
Member GA SA HPSO ACO BB-BC ABC TLBO 

1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

2 2-5 0.5 0.4 0.3 0.3 0.3 0.3 0.3 

3 6-9 3.4 3.4 3.4 3.4 3.4 3.4 3.4 

4 10, 11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

5 12, 13 1.9 2.2 2.1 2.1 2.1 2.1 2.1 

6 14-17 0.9 1.0 1.0 1.0 1.0 1.0 1.0 

7 18-21 0.5 0.4 0.5 0.5 0.5 0.5 0.5 

8 22-25 3.4 3.4 3.4 3.4 3.4 3.4 3.4 

fbest (lb)  485.05 484.33 484.85 484.85 484.85 484.85 484.85 

favg. (lb)  - - - 486.46 485.10 484.94 486.54 

fstd. (lb)  - - - 4.71 0.44 - 2.74 

Nanalyses  - 40,000 25,000 7,700 2,420 24,250 2,420 

Violation        0.00 

Note: GA=Camp et al. (1998); SA=Kripka (2004); HPSO=Li et al. (2009); ACO=Camp and 

Bichon (2004); BB-BC=Camp (2007); ABC=Sönmez (2011); TLBO=This study. 
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Fig. 6 Convergence history of the 25 bar truss 

 

 
Fig. 7 Geometry and element of the 72-bar truss with  node and element numbering schemes 

 

 

The best truss design that weighs 484.85 lb developed by the TLBO and the other algorithms 

are presented in Table 3. The TLBO algorithm produces identical design to that found by Li et al. 

(2009), Camp and Bichon (2004), Camp (2007), and Sönmez (2011). This design is lighter than 

the design presented by Camp et al. (2005) while it is roughly the same with that published by 

Kripka (2004). However, the TLBO algorithm required a 2,420 truss analyses to converge to a 

solution, which is very small than the 40,000 analyses required by Kripka (2004). The number of 

truss analyses required for the TLBO algorithm is lighter than the algorithms listed in Table 3 

excepting the BB-BC. Although both the TLBO and the BB-BC need nearly the same number of 

truss analyses, the BB-BC algorithm found the best design in Phase 2 scheme following a 

procedure called Phase 1 requiring the 6,670 truss analyses. 60 generations with a population size 

of 20 resulting in 2,420 truss analyses are taken into account in TLBO algorithm as the termination 

criterion since the reported minimum number of truss analyses in the given references is 2,420 

(Camp 2007). Fig. 6 shows the design history for the best optimum design and average truss 

weight of 20 designs for the 25-bar truss. 

 

4.3 Seventy-two bar space truss design 
 

Fig. 7 shows the configuration of the 72-bar space truss and its node and element numbering  
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Table 4 Load cases for the 72-bar truss 

Case Node Fx (kip) Fy (kip) Fz (kip) 

1 17 0.0 0.0 -5.0 

 18 0.0 0.0 -5.0 

 19 0.0 0.0 -5.0 

 20 0.0 0.0 -5.0 

2 17 5.0 5.0 -5.0 

 
Table 5 Designs for the 72 bar truss 

  Cross-sectional areas (in.
2
) 

Element group Member GA HPSO ACO BB-BC ABC TLBO 

1 1–4 0.161 2.100 1.948 1.858 0.156 1.877 

2 5–12 0.544 0.600 0.508 0.506 0.553 0.516 

3 13–16 0.379 0.100 0.101 0.100 0.391 0.100 

4 17,18 0.521 0.100 0.102 0.100 0.597 0.100 

5 19–22 0.535 1.400 1.303 1.248 0.520 1.270 

6 23–30 0.535 0.500 0.511 0.527 0.515 0.513 

7 31–34 0.103 0.100 0.101 0.100 0.101 0.100 

8 35,36 0.111 0.100 0.100 0.101 0.103 0.100 

9 37–40 1.310 0.500 0.561 0.521 1.271 0.517 

10 41–48 0.498 0.500 0.492 0.517 0.512 0.517 

11 49–52 0.110 0.100 0.100 0.100 0.100 0.100 

12 53,54 0.103 0.100 0.107 0.101 0.100 0.100 

13 55–58 1.910 0.200 0.156 0.157 1.843 0.157 

14 59–66 0.525 0.500 0.550 0.551 0.517 0.546 

15 67–70 0.122 0.300 0.390 0.392 0.102 0.409 

16 71,72 0.103 0.700 0.592 0.592 0.100 0.567 

fbest (lb)  383.12 388.94 380.24 379.85 379.89 379.70 

favg. (lb)  - - 383.16 382.08 380.05 382.56 

fstd. (lb)  - - 3.66 1.912 - 5.48 

Nanalyses  - 50,000 18,500 19,621 50,000 6,440 

Violation       0.00 

Note: GA=Erbatur et al. (2000); HPSO=Li et al. (2009); ACO=Camp and Bichon (2004); BB-

BC=Camp (2007); ABC=Sönmez (2011); TLBO=This study. 

 

 

patterns. The structural members of the space truss are divided into 16 groups after being 

connected in order to impose symmetry. The material has a modulus of elasticity of 10
7
 psi and a 

mass density of 0.1 lb/in.
3
. The maximum displacement at the upper most joints 1, 2, 3, and 4 in 

either x, y, or z directions are not allowed to exceed 0.25 in. and the allowable stress for all 

members is ±25 ksi. The set of available sections used for this problem is 0.1 to 3.0 in.
2
 with a 

0.001 in.
2
 increment (Erbatur et al. 2000). Table 4 lists the values and directions of the two 

independent loads cases applied to the 72-bar space truss. 

The lightest 72-bar truss designed by the TLBO algorithm weighs 379.70 lb, which is 0.04% 

lighter than the best discrete variable design presented by (Camp 2007). In a series of 20 design 

runs, the average weight of TLBO algorithm designs is 382.56 lb with a standard deviation of 5.48 

lb and the percent difference between the best solution and the average solution is 0.75%.  
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Fig. 8 Convergence history of the 72 bar truss 

 

 

The reported minimum number of truss analyses among the given references is 18,500 (Camp 

and Bichon 2004) and 80 generations with a population size 40 resulting in 6,440 truss analyses 

are taken into account in TLBO algorithm as the termination criterion. Table 5 compares the 

TLBO design with other optimization techniques. The TLBO algorithm requires a 6,440 truss 

analyses to converge to a solution, which is a significant reduction in computational cost when 

compared to the number of analyses required by the HPSO, ACO, and ABC designs. The design 

history for the best optimum design and average truss weight of 20 designs for the 72-bar truss are 

shown in Fig. 8. 

 
4.4 582 Bar space tower design 
 

The geometry and group numbering of a 582 bar space tower, previously studied by Sönmez 

(2011) are given in Fig. 9. The structural members of the space tower are linked together into 32 

groups. The modulus of elasticity and the material density of all members are 29000 ksi and 0.283 

lb/in.
3
, respectively. The members are subjected to stress limitations of ±21.6 ksi. The maximum  

displacement of all the nodes is not allowed to exceed 3.15 in. for all directions. A single loading 

condition is considered to be applied such that the lateral loads of 1.12 kips are applied to all nodes 

in both x and y-directions, and vertical loads of −6.74 kips and −3.37 kips are applied, 

respectively, to all nodes in the upper and lower parts of the tower in z direction. The maximum 

slenderness ratio of i-th member is limited to 300 and 200 for tension and compression, 

respectively ( i i i i allowedK L r   , in here Ki is the effective length factor which was taken to 

be 1, Li is the length and ri is minimum radii of gyration). A W-shape list of AISC profiles used in 

this problem is presented in Table 6.  

Table 7 lists the designs developed by the TLBO algorithm and the others. The lightest TLBO 

design results a tower weight of 363,568.37 lb, which is 0.6% lighter than the one obtained using 

ABC (Sönmez 2011). In a series of 20 design runs, the average weight of TLBO algorithm design 

is 363,666.22 lb with a standard deviation of 50.64 lb and the percent difference between the best 

solution and the average solution is 0.0027%. The TLBO algorithm requires approximately 35,050  
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Fig. 9 The 582-bar space tower 

 

 
Fig. 10 Convergence history of the 582 bar space tower 
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frame analyses in order to yield to the best optimum design (350 generations with a 50 population 

size). 

TLBO enables to reach the best optimum design with less truss analyses when compared to 

98,650 analyses required by ABC. Therefore, it can be concluded that the TLBO algorithm 

exhibits well computational efficiency than ABC from the point of view of the best optimum 

design. The design history for the best optimum design and the average truss weight of 20 designs 

for the 582-bar space tower are shown in Fig. 10. 

 

 
Table 6 W shape profile list designs from AISC for the 582 bar space tower 

W-shape profile list 

W8 × 21 W10 × 54 W14 × 99 W12 × 152 W24 × 229 W30 × 292 

W10 × 22 W12 × 58 W16 × 100 W18 × 158 W36 × 230 W40 × 297 

W8 × 24 W10 × 60 W10 × 100 W14 × 159 W44 × 230 W36 × 300 

W6 × 25 W14 × 61 W21 × 101 W27 × 161 W12 × 230 W14 × 311 

W12 × 26 W21 × 62 W24 × 104 W24 × 162 W14 × 233 W33 × 318 

W8 × 28 W12 × 65 W12 × 106 W12 × 170 W30 × 235 W30 × 326 

W12 × 30 W16 × 67 W14 × 109 W30 × 173 W27 × 235 W36 × 328 

W14 × 30 W10 × 68 W21 × 111 W40 × 174 W33 × 241 W44 × 335 

W8 × 31 W12 × 72 W10 × 112 W24 × 176 W36 × 245 W14 × 342 

W10 × 33 W14 × 74 W27 × 114 W14 × 176 W40 × 249 W33 × 354 

W14 × 34 W18 × 76 W30 × 116 W27 × 178 W24 × 250 W36 × 359 

W8 × 35 W10 × 77 W24 × 117 W21 × 182 W12 × 252 W14 × 370 

W16 × 36 W12 × 79 W33 × 118 W12 × 190 W14 × 257 W14 × 398 

W14 × 38 W14 × 82 W18 × 119 W30 × 191 W27 × 258 W14 × 426 

W10 × 39 W27 × 84 W14 × 120 W24 × 192 W36 × 260 W14 × 455 

W8 × 40 W18 × 86 W21 × 122 W14 × 193 W30 × 261 W14 × 500 

W12 × 40 W12 × 87 W24 × 131 W27 × 194 W44 × 262 W14 × 550 

W14 × 43 W10 × 88 W14 × 132 W40 × 199 W33 × 263 W14 × 605 

W12 × 45 W16 × 89 W12 × 136 W33 × 201 W40 × 277 W14 × 665 

W10 × 45 W14 × 90 W14 × 145 W30 × 211 W12 × 279 W14 × 730 

W14 × 48 W21 × 93 W27 × 146 W14 × 211 W24 × 279  

W10 × 49 W27 × 94 W24 × 146 W40 × 215 W36 × 280  

W12 × 50 W12 × 96 W21 × 147 W27 × 217 W14 × 283  

W12 × 53 W18 × 97 W36 × 150 W33 × 221 W33 × 291  

 
Table 7 Designs for the 582 bar space tower 

 Cross-sectional areas (in.
2
) 

Element group ABC TLBO 

1 W8 × 21 W8 × 21 

2 W10 × 77 W14 × 74 

3 W8 × 24 W8 × 24 

4 W14 × 61 W14 × 61 

5 W8 × 24 W8 × 24 

6 W8 × 21 W8 × 21 

7 W12 × 50 W10 × 49 

8 W8 × 24 W8 × 24 

9 W8 × 21 W8 × 21 

10 W10 × 49 W14 × 48 
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Table 7 Continued 

11 W8 × 24 W8 × 24 

12 W10 × 68 W16 × 67 

13 W18 × 76 W10 × 77 

14 W14 × 48 W12 × 50 

15 W10 × 77 W14 × 82 

16 W8 × 31 W8 × 24 

17 W8 × 21 W8 × 21 

18 W21 × 62 W12 × 65 

19 W8 × 24 W8 × 24 

20 W8 × 21 W8 × 21 

21 W14 × 43 W12 × 45 

22 W8 × 24 W8 × 24 

23 W8 × 21 W8 × 21 

24 W8 × 24 W12 × 26 

25 W8 × 24 W8 × 24 

26 W8 × 21 W8 × 21 

27 W8 × 21 W8 × 21 

28 W8 × 24 W8 × 24 

29 W8 × 21 W8 × 21 

30 W8 × 21 W8 × 21 

31 W8 × 24 W8 × 24 

32 W8 × 24 W8 × 24 

fbest (lb) 365906.3 363568.37 

favg. (lb) 366088.4 363666.22 

fworst. (lb) 369162.2 368759.60 

Nanalyses 98650 35050 

Violation  0.00 

Note: ABC=Sönmez [22]; TLBO=This study. 

 

 

5. Conclusions 
 

A optimization method, TLBO, based on concepts proposed by Rao et al. (2011), is applied to 

discrete forms of structural optimization to design low-weight trusses. Through a series of 

benchmark-type, except for 582 bar space tower, truss optimization problems, the TLBO 

algorithm demonstrates that it can routinely minimize the overall weight of truss structures while 

satisfying material and performance constraints. 

The main characteristics of the TLBO algorithm are its simplified numerical structure and its 

independence on a number of parameters to define the algorithm’s performance. TLBO does not 

need any algorithm parameters to be tuned. In contrast, GA requires the crossover probability, 

mutation rate, and selection method; PSO requires learning factors, the variation of weight, and the 

maximum value of velocity; ABC requires the limit value; and HS requires the harmony memory 

consideration rate, pitch adjusting rate, and number of improvisations (Rao et al. 2011), simple 

ACO requires four parameters with an additional search space reduction parameter for multiphase 

applications, and BB-BC requires the upper limit value on the search space, the center of mass 

weighting factor with an additional search space reduction parameter for multiphase applications.  

From results presented in this study, the TLBO algorithm seems to demonstrate good 
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performance as well as GA, SA, HPSO, ACO, BB-BC and ABC techniques. The consistency of 

the results is proved by the small deviation of the average solution from the best solution 

(averaged less than 0.8% for all presented example designs).  

Consequently, the TLBO algorithm works effectively, shows well performance and can be 

applied efficiently for the optimization of engineering design applications.  
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