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Abstract.  Flexible behaviors in new aerospace structures can lead to a degradation of their control and 
guidance system and undesired performance. The objectives of the current work are to analyze the vibration 
resulting from the propulsion force on a Single Stage to Orbit (SSTO) launch vehicle (LV). This is modeled 
as a follower force on a free-free Euler-Bernoulli beam consisting of two concentrated masses at the two free 
ends. Once the effects on the oscillation of the actuators are studied, a solution to reduce these oscillations 
will also be developed. To pursue this goal, the stability of the beam model is studied using Ritz method. It 
is determined that the transverse and rotary inertia of the concentrated masses cause a change in the critical 
follower force. A new dynamic model and an adaptive control system for an SSTO LV have been developed 
that allow the aerospace structure to run on its maximum bearable propulsion force with the optimum effects 
on the oscillation of its actuators. Simulation results show that such a control model provides an effective 
way to reduce the undesirable oscillations of the actuators. 
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1. Introduction 

 

Many problems are modeled by beams subjected to axial or follower forces. The stability of the 

beams under the axial or follower force is of vital importance and is in the interests of many 

researchers as it can be applied to many aerospace structures. The direction of the axial force is 

assumed to be fixed along the beam while the direction of the follower force is always 

perpendicular to the cross surface of the beam and changes with the beam deflections. The critical 

axial force normally causes the static instability (divergence) and the follower force may cause 

static or dynamic instability (flutter). Divergence happens when the vibration frequency of the 

system becomes zero and flutter occurs when two natural frequencies of the systems converge 

together.  

The current developments in the aerospace vehicles design have led to produce large flexible 

structures especially in the new launch vehicles. The larger values of propulsion force-to-weight 
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and length-to-diameter ratios required for long-range flights as well as the cost reduction of 
handling and launching operation lead to the highly Flexible Launch Vehicles (FLVs). The 
dynamic response and vibrational characteristics of the FLV are very significant. SSTO LV 
structure is one of the important models for FLV and is studied as the core model in this study. 
The SSTO LV structure is modeled by a Euler-Bernoulli beam with two tip masses under the 
follower and transverse forces that is an acceptable model for such structures with the propulsion 
and the controller forces (with the actuator forces responsible for the control and guidance of the 
SSTO LV). The first concentrated mass represents the payload, while the second one stands for the 
vehicle engine as shown in Fig. 1. One of the objectives pursued in the paper is to determine the 
maximum follower force structurally bearable in such a way as to prevent instability of the 
structure. It will be shown that both the transverse and rotary inertia have significant effects on this 
maximum follower force. On the other hand, flexibility and the elastic behaviors in the SSTO LV 
can lead to undesired performance and degradation of its control system due to influence of the 
body vibrations on the Inertial Measurement Units (IMU) measurements. So, in this work, the 
critical follower force for an SSTO LV model which leads to the instability has been calculated 
using Ritz method. The effect of the follower force on the vibration in the SSTO LV, and, in 
particular on its IMU, is then investigated. Also the destructive effect of the vibration of the IMU 
on oscillation of the SSTO LV actuator in a control loop is presented. Finally an adaptive notch 
filter is designed and implemented by using Lyapunov theory to develop a new dynamic model 
and an adaptive control system. The effectiveness of this system is discussed later in this paper. 

Beal (1965) investigated a uniform free-free beam under an end follower force. He introduced a 
direction control mechanism for the follower force to eliminate the tumbling instability of a free-
free beam under a follower force. He also showed that, in the absence of a control system, the 
magnitude of the critical follower force is associated with coalescence of the two lowest bending 
frequencies. When the control system was included, it was found that the magnitude of the critical 
follower force only corresponded to a reduction of the lowest frequency of zero. Wu (1975) 
studied the stability of a free-free beam under a controlled follower force by using finite element 
discretization with an adjoint formulation. Park and Mote, Jr. (1984) studied the maximum 
controlled follower force on a free-free beam carrying a concentrated mass. They predicted the 
location and the magnitude of the additional concentrated mass and the location and the gain of the 
follower force direction control sensor that permit the follower force to be maximized for stable 
transverse motion of the beam. Naguleswaran (2004) analyzed the transverse vibration of uniform 
Euler-Bernoulli beams under linearly varying fully tensile, partly tensile or fully compressive axial 
force distribution. Thana and Ameen (2007) addressed the dynamic stability problem of columns 
and frames subjected to the axially-applied periodic loads. The finite element method (FEM) was 
used in their work to analyze dynamic stability problems of columns. Hassanpour et al. (2007) 
analyzed the exact solution of free vibration of a beam with a concentrated mass within its 
intervals when the beam was subjected to axial loadings. They determined the exact mode shapes 
of vibration, which were necessary in the study and analysis of the time-domain response of 
sensors and determination of stability regions. Pourtakdoust and Assadian (2004) modeled a free-
free Bernoulli beam under an axial force. The three dimensional elastic equations of vibration are 
solved by the FEM. Only the divergence was found and shown in their work. And finally the 
elastic equations along with the equations of motion were simulated in a controller loop by the 
authors in their work. It has been shown that the oscillations of the actuators were increased when 
the axial force was applied. Singh et al. (2005) discussed the implementation of axial and follower 
end forces in a beam-type MEMS resonator for the application of resonant frequency tuning. 
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Luongo and Di Egidio (2006) studied an internally constrained planar beam, equipped with a 
lumped visco-elastic device and loaded by a follower force. Paolone et al. (2006) analyzed the 
stability of a cantilever elastic beam with rectangular cross-section under the action of a follower 
tangential force and a bending conservative couple at the free end. Elfelsoufi and Azrar (2006) 
presented a mathematical model based on integral equations for numerical investigations of 
stability analyses of damped beams subjected to sub-tangential follower forces. Many researchers 
have also published their work on cantilever beam under a follower force with damping (Ryu and 
Sugiyama 2003, Di Egidio et al. 2007, Lee et al. 2007). Sugiyama and Langthjem (2007) studied 
cantilever beam under a follower force with proportional damping. Both internal (material) and 
external (viscous fluid) damping were considered. Tomski et al. (2007) presented the results of 
theoretical and numerical studies on the slender, geometrically nonlinear system supported at the 
loaded end by a spring of a linear characteristic and subjected to non-conservative (generalized 
Beck’s) loading. The large-deflection problem of a non-uniform spring-hinged cantilever beam 
under a tip-concentrated follower force was considered by Shvartsman (2007). Shape optimization 
was used to optimize the critical load of an Euler-Bernoulli cantilever beam with constant volume 
subjected to a tangential compressive tip load and/or a tangential compressive load arbitrarily 
distributed along the beam by Katsikadelis and Tsiatas (2007). De Rosa et al. (2008) dealt with the 
dynamic behavior of a clamped beam subjected to a sub-tangential follower force at the free end. 
Djondjorov and Vassilev (2008) have studied the dynamic stability of a cantilevered Timoshenko 
beam lying on an elastic foundation of Winkler type and subjected to a tangential follower force. 
Attard et al. (2008) have investigated the dynamic stability behaviors of damped Beck’s columns 
subjected to sub-tangential follower forces using fifth-order Hermitian beam elements. Marzani et 
al. (2008) have applied the generalized differential quadrature (GDQ) method to solve classical 
and non-classical non-conservative stability problems. The governing differential equation for a 
non-uniform column subjected to an arbitrary distribution of compressive sub-tangential follower 
forces has been obtained. Irani and Kavianipour (2009) investigated effects of a flexible joint on 
instability of a free-free jointed bipartite beam under the follower and transversal forces. 
Kavianipour and Sadati (2009) studied effects of damping on the linear stability of a free-free 
beam subjected to follower and transversal forces.  

To reduce the undesired effects of vibration many researchers used optimized control methods 
in their design of the FLV control systems such as Rynaski (1967), Jenkins and Roy (1968), Maki 
et al. (1972). The optimized control methods included linear and nonlinear in the basis of the 
minimization of the generalized vibration modes. Bibel and Stalford (1991, 1992) improved gain 
stabilized mu-controller as well as a control design for a FLV. Englehart and Krause (1992) 
proposed an analogue notch filter with least square algorithm to reduce the bending vibrational 
effects on a FLV. Choi and Bang (2000), Choi and Kim (2000) also designed an adaptive control 
approach to the attitude control of a flexible aerospace system. They used the root mean square 
method to estimate the bending frequency and one digital notch filter to reduce the flexible 
behaviors, considering the first and the second bending vibration modes. Ra (2005) proposed a 
robust adaptive notch filter for a flexible system and Oh et al. (2008) examined the attitude control 
of a FLV using an adaptive notch filter. In another work, Khoshnood et al. (2007) proposed a 
model reference adaptive control for reducing the undesired effects of bending vibration for a 
FLV. In this study, the approach of Khoshnood et al. (2007) is developed in the presence of the 
follower force which may considerably affect on the parameters of the control system. This work 
essentially consists of two parts: 

Part 1 includes the solution of the elastic equation of the structure in order to find the  
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Fig. 1 The simple model of an aerospace structure

 
 

propulsion force bearable by the structure. With the particular solution method used (Ritz method), 
there is a need for the mode shapes for the free-free beam consisting of two concentrated masses at 
the two free ends.  

Part 2 makes use of the linear model for the rigid-elastic body motion and includes the control 
system for decreasing the vibrations of the actuators.  

These two parts are then combined in the end to perform a simulation of the overall controlled 
system.  

 
 

2. Mathematical modeling  
 
Fig. 1 shows the assumed model for an aerospace structure. Define the ZI XI, ZB XB, and YX as 

the inertial frame, body frame, and the elastic frame, respectively. The inertial frame is fixed and 
the body frame and elastic frame are attached to the beam. The mass of the structure is considered 
to be constant, with no translation of the center of mass of the whole structure. The beam has been 
assumed to be axially rigid and is an Euler-Bernoulli beam. The gravity force is also ignored. The 
propulsion force is modeled by a follower force and the transverse force represents the controller 
force, as shown. In this figure, xIMU and xF0 indicate the points on the beam for the locations of the 
sensors, corresponding to the locations of the Inertial Measurement Units (IMU) and the controller 
force in the aerospace structure, respectively.   

 
2.1. Energy method 
 
One of the most effective methods to derive the governing equations is the Energy Method. In 

fact, by considering all the energies in the system and applying the Hamilton’s Principle, the 
governing equations could be derived accurately. The general form of the Hamilton’s Principle 
appears as 

                                       02

1

2

1
  dtδWdtWEEδ

t

t nc
t

t cpk
                                            (1) 
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where   is the variation, t is the time, Ek is the kinetic energy, Ep is the potential energy, Wc is 
the work done by conservative forces, and Wnc is the work done by non-conservative forces. For 
the model presented in Fig. 1, Eq. (1) may be presented as 
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In Eq. (2), L is the beam length  ، m is the beam mass per length, M1 and M2 are the first and 
second concentrated masses, J1 and J2 are the rotary inertia of the first and second concentrated 
masses, EI is the bending stiffness, P is the axial force distribution, P0 is the follower force, F0(t) is 
the transverse force. To calculate the axial force along the beam, the dynamics equilibrium can be 
used. 
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To simplify the equations, non-dimensional parameters are introduced as the following 
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Considering the fact that the axial force distribution on the beam is not constant, the governing 
differential equation cannot be solved analytically and an approximation method must be used. 
Ritz method is the one that has been employed in this study using Hamilton’s principle (Hodges 
and Pierce 2002). In this method the response is approximated with a series as the following 

                                                  tqxtxy i

N

i
i




1
,                                                            (5) 

 xi  is admissible function and   tqi
 is a generalized coordinate.  
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Replacing Eqs. (3), (4) and (5) in Eqs. (2) and (1), then by simplifying the results and writing 
the equation in matrix form, Eq. (6) will result as 

                                                        jjijjij QqKqM                                                         (6) 

where 22 tdqdq  ,  ijM  is the mass matrix,  ijK  is the stiffness matrix, and  jQ  is the 

generalized force vector which can be described as 

           
               

   
 

00

1

0 0
1

0

1

0 2211

11

11110000

Fjj

jijijiij

jijijijijiij

xFQ

PxdPxdK

JMJMxdM
















            (7) 

where xdd   and 22 xdd   . 

As a common rule, in the approximate solution methods, a partial differential equation may be 
put into a set of ordinary differential equations.  

 
2.2 Admissible functions 
 
In general the admissible functions should satisfy four conditions: 
1) At least must satisfy all geometric boundary conditions. 
2) Must be continuous and differentiable to highest spatial derivative. 
3) Should be a complete function. 
4) Must be linearly independent. 
The mode shapes of a free-free beam with two masses at the ends satisfy the above conditions 

and have been used in this study. As the first two rigid body modes are not involved in the 
instability, they are not considered as the admissible functions (Beal 1965). It is to be noted that 
the rigid body modes are controlled by the force in the transverse direction. 
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and the 
i  is the natural frequency of the model. The A1, A2, A3, and A4 coefficients are related to 

the mode shapes and are calculated based on the boundary conditions. The boundary conditions 
are stated as 
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Fig. 2 Calculation of total pitch angle associated with rigid and elastic motions 

 
 
3. Rigid body motion and control strategy   

 
The transfer function is first obtained from the rigid body equations for the pitch canal, as 

described below. The control design for the actuator oscillations is then described.  
 

3.1 Modeling of the pitch channel in the FLV 
 
To model the pitch channel of the FLV in which the elastic behavior follows Eq. (6), one can 

demonstrate these vibrational effects only in the IMU (Choi and Bang 2000). Hence, the IMU 
senses the rigid pitch angle associated with the dynamics of the rigid motion as well as the elastic 
pitch angle associated the Eq. (6). This statement similarly holds for the rate of the pitch angle as 
shown in Fig. 2. 

The slope of the bending vibration deflection can be found by 
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where  IMUi x  is the slope of the mode shape at the IMU location and 
b  is the magnitude 

of the bending angle. The total pitch magnitude 
T  is equal to the pitch magnitude of a rigid beam 

( ) plus the bending angle expressed as 

                                                             bT                                                           (12) 

The negative sign in Eq. (12) is related to the particular frames used. The dynamics of the rigid 
body is presented by deriving the equation of motion for the flight device in the standard format. 
These equations for the pitch channel in the linear form lead to a third order transfer function. The 
transfer function between the actuator deflection of the pitch channel (

p ) and   is given in the 

following equation 
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where ai and bj are found from the aerodynamics and system dynamics. 
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3.2. The main approach to control the actuator oscillations 
 
The main strategy to prevent the destructive effects of the SSTO LV vibrations is to filter the 

structural dynamics excitation in the closed loop of the rigid control system. In the structures 
controlled by a closed loop, there are internal excitation sources as well as the external ones that 
could affect the control system. The internal excitation sources are of vital importance because the 
continuous interaction of the actuators and the measuring systems involving the vibration of the 
structure cause the instability or high oscillation on the actuators. This phenomenon can obviously 
be found in SSTO LVs. 

To prevent such destructive effects, the main approach developed in this study is to protect the 
vibrational bias from feeding back into the control system. Stated differently, it is desirable that the 
measuring devices do not sense the bending vibration and do not send any excitation feedback to 
the actuators in all conditions. To this end, the elimination of the vibrational excitation includes 
two steps: estimation of the bending vibration frequencies, and filtering these frequencies. As the 
vibration frequencies vary with respect to time, the challenging issue is to estimate them. The 
approach used in this paper to estimate the bending frequencies is based on the Lyapunov theory 
and applications in model reference adaptive systems.   

Many different filtering methods are available and can be used to filter bending vibrations such 
as low pass, high pass, and notch filtering. A particular kind of notch filtering has been employed 
in this research. A simplified infinite impulse response notch filter can be expressed as follows 
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where α is a function of the center frequency of the filter and β is a constant parameter. 
Because eight vibration modes of the elastic beam model of SSTO LV are considered in this 

study, for a first guest, it seems that eight series of filters must be used to reduce the vibrational 
effects. But as the first and the second modes of vibration are the most active modes and the other 
ones are in low amplitudes, only two filters can be employed in the control loop with good 
accuracy. Moreover, with respect to the bandwidth of the closed loop element such as actuator and 
linear controller, in all conditions, only the main mode of the system dominantly affects the 
performance of the system. All these considerations have led to the study of designing only one 
adaptive filter, even though the system consists of more vibrational modes, a claim shown and 
discussed in later sections of this paper. 

 
3.3 Model reference adaptive system based on Lyapunov theory 
 
In order to estimate the frequency of bending vibration, one can use the rigid model reference 

adaptive method. This approach is proposed by Khoshnood et al. (2007). In their method the 
stability of algorithm is limited to tune the parameters of the algorithm; hence there are some 
limitations for increasing the speed of estimation with regard to the value of the parameters. In this 
paper, the estimation is designed based on the Lyapunov theory to ensure the stability of the 
algorithm, as shown in Fig. 3. 

If the input of the first filter for eliminating the rigid body dynamics is u(n) at the nth step and 
the output of the pole section is g(n), then 

              nu
zB

ng
1

  
(15)
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Fig. 3 The adaptive algorithm and the control loop 

 
 

Hence, the output of the filter w(n) can be expressed as 
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If wm indicates the rigid model, the system error can be expressed as 

)()()( nwnwne m                                                        (17) 

Now, one can select the following function as a Lyapunov function for adaptive algorithm in 
discrete form as 
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where γ is the gain for tuning the speed of estimation.  
Considering this Lyapunov candidate, the ∆Vcan be derived as the following 
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According to the Lyapunov theory, V is a positive function and if 
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holds, the ∆V can be a semi-negative function. Eq. (20) is then employed to estimate the center 
frequency of the filter referred to as the frequency of the system. 
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4. Results and discussion 
 

The results are discussed for several cases as follows. 
 
4.1 Critical follower force 
 
One of the important objective of the present study is to determine the magnitude and type of 

the least follower force (the divergence or flutter) leading to instability ( crP0 ). As seen in Eq. (7), 
the follower force affects the system stiffness matrix and changes the system frequencies. 
Therefore, to pursue the stated goal, one must first determine the system frequencies. To obtain the 
changes in the system frequencies in terms of the follower force, set the right hand side of Eq. (6) 
to zero ( 0)(0 tF ) and assume the homogeneous response as follows. 

                               
1

,1,

  ieqq ti

jj
                                 (21) 

where  jq


 is a vector with constant elements and λ1 is the first non-dimensional system frequency 

for the case of 00 P . Therefore,   indicates the new non-dimensional system frequency as a 

result of a change in 0P . An observation of the two Eqs. (3) and (7) reveals that the concentrated 
masses have an effect on the system mass matrix and on the system stiffness matrix, and causes a 
change in the system frequencies. It will be demonstrated that these changes are not predictable. 
Hence, the effect of these parameters is studied for the following several cases including the:  

1) Effect of the 1M  alone, 

2) Effect of the 2M  alone, 

3) Effect of 1M and 2M  together, 

4) Effect of 1M and 1J  together, 

5) Effect of 2M and 2J  together, 

6) Effect of 1M  ، 1J ، 2M and 2J  altogether. 

To assure the validity of the computer code first, the values of the 1M , 1J , 2M , 2J  parameters 
were set to zero for which case it was observed that the resulting instability was of the flutter type, 
as indeed found by Beal (1965). Moreover, the critical follower force obtained as 0P = 109.8 was 

in fact comparable with 0P =109.9 obtained by Beal (1965). It is to be noted that to solve Eq. (6) 
here in the present work, the first eight mode shapes of the model (N = 8) are considered. Fig. 4 
depicts the changes in the non-dimensional system frequency versus the non-dimensional follower 
force for the two specific cases of the parameter values considered. It can be observed that with 
changes in the system parameters, flutter or divergence occurs and the critical follower force 
changes as well.  

The next few figures show the changes in the critical follower force versus the parameter 
changes of the model. In each of these figures, the magnitude of the least critical force as well as 
its type are both indicated. The kink that exists on the curves is due to the transition from flutter to 
divergence. 
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Fig. 4 Changes in the non-dimensional system frequency versus the non-dimensional follower 

 

 
Fig. 5 Changes in the critical follower force for the cases of 

1M  alone 

 
 
4.1.1 Effect of 1M alone 

It can be seen in Fig. 5 that flutter occurs for smaller values of 1M  while divergence occurs for 
larger values. For the case when flutter occurs, the critical follower force decreases with the 
increase in 1M . Also, when divergence occurs too, again the critical follower force decreases with 

the increase in 1M .  
 
4.1.2 Effect of 2M alone 

Fig. 6 indicates that flutter occurs for smaller values of 2M  while divergence occurs for larger 
values. For the case when flutter occurs, the critical follower force decreases in the beginning and 
then starts to increases with the increase in 2M . Also, when divergence occurs too, again the 

critical follower force decreases first and then starts to increase as 2M  increases.  
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Fig. 6 Changes in the critical follower force for the cases of 

2M  alone 

 

 
Fig. 7 Changes in the critical follower force for the cases of 

1M and 
2M together 

 
 

4.1.3 Effect of 1M and 2M  together 
It is observed from Fig. 7 that flutter occurs for smaller values of 

1M  and 
2M  while divergence 

occurs for larger values. It can be generally inferred in this case that when 
1M  gets larger than a 

certain value, the critical follower force will decrease with an increase in 
1M  and 

2M .  

 
4.1.4 Effect of 1M and 1J  together 
Change in the critical follower force versus 

1M  and 
1J  is shown in Fig. 8. It is quite clear from 

this figure that when 
1M  is large and 

1J  is small, divergence occurs. For the case when flutter 

occurs and for a given
1M , the critical follower force will decrease with the increase in

1J .  
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Fig. 8 Changes in the critical follower force for the cases of 

1M and 
1J together 

 

 
Fig. 9 Changes in the critical follower force for the cases of 

2M and 
2J together 

 
 
4.1.5 Effect of 2M and 2J  together 
Change in the critical follower force versus 

2M  and 
2J   is shown in Fig. 9. It is observed that 

when 
2M  is large, and also for small values of 

2M and large values of
2J , divergence occurs. For 

the case when divergence occurs and for a given
2M , the critical follower force will decrease with 

the increase in
2J .  

 
4.1.6 Effect of 1M , 1J , 2M and 2J  altogether 
In this case where the effects of all the parameters are considered, one needs to draw and 

consider a five-dimensional drawing which is of course impossible. So, a table of variations of the 
critical follower force versus the related parameters was made up first. Then the maximum and 
minimum values given in this table were determined. Because of the immense amount of data 
involved, only the final results have been demonstrated in the table below. 
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Table 1 Extremum values obtained for the
1M , 

1J , 
2M  and 

2J altogether  

crP0  2J  2M  
1J  

1M  

38.7 Divergence (Minimum) 0.0008 0.35 0.0002 0.35 
83.7 Flutter (Maximum) 0.0002 0.15 0.001 0.15 

 

 
Fig. 10 (a) The slope of IMU location versus time, (b) The angle of actuator versus time 

 
 
4.2 Simulation 
 
One of the objectives of this research is to analyze the displacement of a point in the beam near 

the tip at which point the Inertial Measuring Units (IMU) is normally located. The analysis of 
displacements and vibrations of this point over the time is crucial for any control system used in 
the aerospace structure. The point is shown in Fig. 1 and its distance to the tip of the beam is 
denoted by xIMU.  

To calculate the vibration of the IMU position over the time, one must use dimensional 
parameters which have been made non-dimensional in the previous sections.  One particular case 
is selected for this analysis which is: xIMU = 0.1×L, xF0 = L, M1 = 0.15×mL, J1 = 0.001×mL3, M2 = 
0.15×mL and J1 = 0.0002×mL3. The first instability for this case (m = 1.773×104kg/m, L = 20m, EI 
= 8.1997 ×1010N.m2) is flutter which occurs when P0 = 83.7×(EI/L2)N.  

In Fig. 10, the effects of the follower force on the controller loop are represented. As Figs. 10 
(a) and 10 (b) show, the slope at the IMU location and the angle of the actuator increases over the 
time when the value of the follower force is bigger than that of the critical one, namely (P0 = 
83.7×(EI/L2)N). The angle of the actuator becomes saturated because the flutter phenomenon 
occurred in the structure. 

The resulting outcome of applying the adaptive control on the system for P0 = 83.7×(EI/L2)N is 
shown in Figs. 11 to 13. Fig. 11 presents the frequency estimation using the adaptive algorithm. As 
shown in this figure, the adaptive algorithm estimates the main active frequency in the SSTO LV 
vibration properly and the error in recognized frequency is low and acceptable. The variations of 
the angle of the actuator in two cases (with and without adaptive controller) are shown in Fig. 12. 
The oscillation of the actuator is obviously reduced when the adaptive controller is applied. Fig. 13 
shows the variations of the angle of the IMU in the system while the adaptive control system is  
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Fig. 10 (a) The slope of IMU location versus time, (b) The angle of actuator versus time 

 
Fig. 11 The frequency estimation using the adaptive algorithm 

 

 
Fig. 12 The variations of the angle of the actuator in two cases (with and without adaptive controller) 

 
 

applied and also is compared with the same variations without the controller. This figure shows 
that the controller was able to limit the vibration of the IMU while it was divergent when no 
controller was applied. 
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Fig. 13 Comparison of the vibration of IMU location in the system with and without adaptive controller 

 
 
5. Conclusions 

 
In this paper the stability and vibrations of a free-free Euler-Bernoulli beam with two tip 

masses at the ends, i.e., the SSTO structure, under the follower and transverse forces have been 
analyzed. The follower force is the model for the propulsion force and the transverse force is the 
controller force. The first concentrated mass represents the payload, while the second one stands 
for the vehicle engine. Both the transverse and rotary inertia of the concentrated masses have 
notable effects on the stability of the beam, causing a change in the magnitude of the critical 
follower force ( crP0 ) and the type of the ensuing instability, as shown in section 4.1. In this work, 
the effect of these parameters has been studied using Ritz method for the following six cases 
including:  

1) Effect of the 1M  alone, 2) Effect of the 2M  alone, 3) Effect of 1M  and 2M  together,           

4) Effect of  1M and 1J  together, 5) Effect of  2M  and 2J  together, 6) Effect of  1M , 1J , 2M ,  

and 2J  altogether. 

To complete the design process, the values for the 1M , 1J , 2M  and 2J  must be determined, as 

used in Eq. (7) while crP0  becomes maximum. This is done by solving the governing equation 
first, followed by making up a table of variations of the critical follower force versus the related 
parameters. This table was not presented in the paper and only the final results have been 
demonstrated. The results of this paper offer an approximation method to design the two 
concentrated masses at the ends of a beam under the follower force.   

The destructive effects of the bending vibration of an SSTO LV (when the follower force is 
considered) on its control system and in particular on the undesirable oscillations of its actuator are 
also studied. In this work, the equation of motion of elastic bending vibration of the SSTO LV 
having a follower force is derived and added to a control system. It has been shown that the effects 
of the bending vibration on oscillations of the actuators are of vital importance and when the 
follower force is increased, the oscillation of the actuators also increases considerably. To reduce 
these negative effects, the bending vibration of the SSTO LV was modeled using the eight mode 
shapes and regarding to only one dominant frequency of the system, an adaptive notch filter could 
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almost omit the bending vibration of the IMU location from the control system. The results of the 
current work show that this strategy which has been successfully employed in the previous models 
without any follower force influences can reduce the negative effects of the structural vibrations, 
especially in the presence of any follower force effects. Moreover, it has been demonstrated that 
by using this system, one can have the maximum follower force (less than critical follower force) 
in an SSTO LV and control the high amplitude vibration of the IMU location. 
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