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Abstract.  A finite element computational procedure for the accurate analysis of quasistatic thermo-
rheological complex structures response is developed. The geometrical nonlinearity, arising from large 
displacements and rotations (but small strains), is accounted for by the total Lagrangian description of 
motion. The Schapery’s nonlinear single-integral viscoelastic constitutive model is modified for a time-
stress-temperature-dependent behavior. The nonlinear thermo-viscoelastic constitutive equations are 
incrementalized leading to a recursive relationship and thereby the resulting finite element equations 
necessitate data storage from the previous time step only, and not the entire deformation history. The 
Newton-Raphson iterative scheme is employed to obtain a converged solution for the non-linear finite 
element equations. The developed numerical model is verified with the previously published works and a 
good agreement with them is found. The applicability of the developed model is demonstrated by analyzing 
two examples with different thermal/mechanical loading histories. 
 

Keywords:  thermo-rheological complex material (TCM); nonlinear Schapery's model; geometrical 
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1. Introduction 
 

Many engineering materials that cannot be adequately modeled using the classical elasticity 
formulation; one category of such materials is the set of viscoelastic materials. The theoretical 
foundations for viscoelasticity are well established by Ferry (1980) and Christensen (1982). Many 
viscoelastic materials exhibit linear or nonlinear behavior under combined structural and 
environmental loadings. The nonlinear viscoelastic response, which often occurs at high load level 
and elevated temperatures, is indicated by non-constant material properties.  

Viscoelastic materials can be categorized as thermo-rheological simple materials (TSM) or 
thermo-rheological complex materials (TCM). In TSM, the temperature effect is incorporated only 
through a time-scale shift factor, Ferry (1980). Idealizing thermo-viscoelastic responses of 
materials as TSM is sufficient when the materials are subjected to moderate temperature changes 
and temperature does not vary with time or when the materials are under constant temperature 
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rates and constant mechanical loads. Other materials that do not belong to the TSM are referred to 
TCM, in such materials; temperature influences the material’s initial, instantaneous elastic, and 
time-dependent, transient, properties. Further discussions regarding both TSM and TCM can be 
found in Peretz and Weitsman (1983), Harper and Weitsman (1985). 

Numerical methods provide a powerful framework for obtaining approximate solutions to 
linear viscoelasticity problems. In particular, the FEM has been employed successfully in the 
analysis of viscoelastic bodies by many researchers. Taylor et al. (1970) used the FEM in 
conjunction with a recurrence relation to solve viscoelasticity problems such that data from only 
the previous time step (as opposed to the entire deformation history) is needed in determining a 
body’s configuration at the current time step. A similar recursive approach was used by Feng 
(1992) for viscoelastic materials described by the Voltera integral equation. Additional general FE 
formulations for viscoelastic continua can be found in (Areias and Matous 2008, Guedes 2010, 
Mahmoud et al. 2011). The recursive method has also been used for solving nonlinear viscoelastic 
constitutive equations. 

The Schapery’s nonlinear viscoelastic model, Schapery (1969) has been extensively applied for 
isotropic and anisotropic materials. Lai and Bakker (1996) developed a recursive algorithm 
including nonlinear effects due to temperature and physical aging in terms of the reduced time 
functions. Haj-Ali and Muliana (2004) formulated a recursive scheme of the Schapery’s stress-
dependent viscoelastic constitutive models for isotropic materials based on decoupling the 
deviatoric and volumetric parts. Muliana (2008) extended this scheme of the Schapery theory and 
implemented it in Abaqus FE package to represent the TCM behavior at small deformations.   

Considering geometrical nonlinearity in viscoelasticity, Rogers and Lee (1962) developed a 
direct FE model for solving the nonlinear integro-differential equations that arise in the finite 
deflection of a thin linear viscoelastic beam due to constant load history. Roy and Reddy (1988) 
analyzed the geometrically nonlinear deformations of adhesive joints using an updated Lagrangian 
FE formulation. The adhesive was modeled as nonlinear viscoelastic using a constitutive law 
proposed by Schapery (1969). Touati and Cederbaum (1998a) used Schapery’s nonlinear 
viscoelastic theory to study the postbuckling response of laminated plates with initial 
imperfections. Payette and Reddy (2010) presented a FE model using a recursive relation for 
solving quasi-static viscoelastic Euler-Bernoulli and Timoshenko beams with linear mechanical 
properties. Large transverse displacements, moderate rotations and small strains were allowed 
Further studies on the numerical modeling of linear/nonlinear viscoelasticity problems with large 
mechanical deformations can be found in Lin (2001), Bonet (2001), and Vaz and Caire (2011).  

For the FE modeling of thermo-viscoelastic problems including geometrical nonlinearities, 
Holzapfel and Reiter (1995), Reese and Wriggers (1998), Johnson and Chen (2005) presented 
time-integration procedures for coupled thermo-viscoelastic behaviors for small and large 
deformation problems. Constitutive equations were derived from the Maxwell mechanical analog 
model with constant material properties. Reese and Govindjee (1997) extended a model for finite 
deformation viscoelasticity that utilizes a nonlinear evolution law to include thermal effects. Khan 
et al. (2006) developed a phenomenological one-dimensional constitutive model, characterizing 
the complex nonlinear finite thermo-mechanical behavior of viscoelastic polymers. Their simple 
differential form model is based on a combination of linear and nonlinear springs with dashpots. 
Khan et al. (2010) studied the characterization of the large deformation response of two elastomers 
over a wide range of strain rates and temperatures.  

As noted, majority of the cited references deals with the FE modeling of small/large 
deformations structures based on the assumptions that the material behaves linear thermo-
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viscoelasticity. The original contribution of this work is to develop and implement a FE model 
capable of analyzing quasistatic nonlinear viscoelastic structures. The developed model accounts 
for TCM behavior and geometrical nonlinearity arising from large displacements and rotations (but 
small strains) under different thermo-mechanical loading histories. The Schapery’s nonlinear 
viscoelastic model is adopted and modified with an integral form to include time-stress-
temperature dependent behavior. The constitutive equations are transformed into an incremental 
form suitable for the FE formulations. This results in a recursive relationship, which allows 
bypassing the need to store entire strain histories, only the previous time step is needed. The 
geometrical and material nonlinearities are modeled in the framework of the total Lagrangian 
formulation. The Newton-Raphson iterative scheme is utilized to obtain the converged solution at 
the end of each time increment. The developed procedure is implemented into 2D time dependent 
nonlinear FE model. Obtained results are compared with benchmark results. Numerical results for 
different thermo-mechanical loading conditions are presented to show the significance of material 
nonlinearity and thermo-rheological behavior on the system response.  

 
 
2. The nonlinear thermo-viscoelastic constitutive model 
 

The Schapery uniaxial stress-strain history relationship, Schapery (1969, 1997), is modified for 
a time-stress-temperature-dependent behavior, which refers to a class of TCM, of non-aging 
materials. For large displacements and rotations with small strain assumption, the uniaxial 
relationship relating the second Piola Kirchhoff stress tS and the Green-Lagrange strain te can be 
expressed as 
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where tθ is the current applied temperature, D0 is the instantaneous elastic compliance, ΔD(ψ) is 
the transient creep compliance. ψ is the reduced time, which is given by
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g0, g1, and g2 are the nonlinear parameters related to stress or strain status. The parameter g0 is 
related to the nonlinear instantaneous compliance, g1 is associated with the nonlinear transient 
compliance, and g2 is related to the loading rate effect on nonlinear response. aθ is the temperature 
shift factor and aσ is the strain or stress shift factor. The transient compliance ΔD(ψ) can be 
represented using the Prony series,
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where Dn is the nth coefficient of the Prony series and λn is the nth retardation time. Both Dn and λn 

are assumed to be time-stress-temperature independent. Generally, the coefficient of thermal 
expansion α is assumed to be temperature-dependent. For constant α, the thermal strain appears in 
Eq. (1), teth is reduced to  
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     
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where θref is the reference temperature.  
The convolution form expressed by Eq. (1) can be generalized for multiaxial constitutive 

relations for isotropic TCM. This can be done by decoupling the deviatoric and volumetric strain-
stress relations and thermal strains as 

1

3
t t d t t
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Applying the Schapery integral constitutive model, the deviatoric and volumetric mechanical 
strains can be expressed as 

 ( )
0 0 1 2

0

1

2

t
t

t d t t d t t d
ij ij ij

d
e g J S g J g S d

d






  
   

 
                   (6) 

 ( )
0 0 1 2

0

1

3

t
t

t t t t t
kk kk kk

d
e g B S g B g S d

d

  


  
   

 
                  (7) 

where eij is the deviatoric strain and ekk is the volumetric strain. J0 and B0 are instantaneous elastic 
shear compliance and instantaneous elastic bulk compliance, respectively. ∆J and ∆B are transient 
shear compliance and transient bulk compliance, respectively. To simplify material 
characterization, the Poisson’s ratio v is assumed to be time independent. This leads to the 
following expressions of the compliances 
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                 (8) 

 
 
3. The mathematical model 
 

The problem to be solved in this study is the quasistatic isotropic thermo-viscoelastic initial-
boundary value problem exhibiting both material and geometrical nonlinearities with TCM 
behavior. Consider a general 2D domain Ω, bounded by surface Γ, and subjected to 
thermal/mechanical loading. A concise statement of this problem, formulated in the context of 
continuum mechanics, can be formally stated as follows.  

The equilibrium equations: for a quasi-static assumption, the applied loads vary slowly with 
time, and thus the inertial term may be neglected in the equations of motion. For such a condition 
with large deformations, the equilibrium equations can be described as; Fung and Tong (2001)
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where Sji is the 2nd Piola Kirchhoff stress tensor, ρ is the body density and fi is the body force. 
The kinematic constraints: large deformations are expressed by the Green strain-displacement 
relation 
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      , , , ,0.5ij i j j i k i k je u u u u                            (10) 

The boundary conditions 
) a(o o( )n nndi i ijd i fju u S n F                    (11) 

where iu  is the prescribed displacement on the boundary Γd , nj is the unit outer normal vector at 
the point of interest and Fi is the prescribed surface traction on the boundary Γf. 
The initial conditions 
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where ,,  iu and ijS  are the initial values of displacement, temperature, and 2nd Piola Kirchhoff 

stresses respectively. 
 
 
4. The incremental form of the Schapery nonlinear constitutive model 
 

An incremental form of the Schapery nonlinear constitutive model will be derived leading to a 
recursive relationship, which will be more amenable to FE implementation. The resulting FE 
equations necessitate data storage from the previous time step only, and not the entire deformation 
history. By substitution of Eqs. (3) and (8) into Eqs. (6)-(7) and assuming that the term τg2

τS to be 
linear over the current time increment, the deviatoric and volumetric strains can be written in terms 
of hereditary integral formulation and as follows 

 

0 0 1 2 1 ,
1 1

2τ
,

0

1

2

where exp

t N N
t d t d t t t d t t

ij ij ij n n ij n
n n

dt
ijt t

ij n n

e g J S g g S J g J q

d g S
q d

d

 

 


 

 
   

 
       

 


              (13) 

           

 

0 0 1 2 1 ,
1 1

2τ
,

0

1

3

where exp

N N
t t t t t t t t

kk kk kk n n kk n
n n

t
kkt t

kk n n

e g B S g g S B g B q

d g S
q d

d

 

 


 

 
   

 
        

 


              (14) 

Applying the recursive integration method to Eqs. (13)-(14) by splitting the integration into two 
parts, consequently 
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The variables t-Δtqij,n and t-Δtqkk,n are the shear and volumetric hereditary integrals at the end of 
the previous time t-Δt for every term in the Prony exponential series, respectively. These variables 
are considered as the history state variable that needed to be stored at the end of each time 
increment. Substituting Eqs. (15)-(16) into Eqs. (6)-(7) yields the following incremental form for 
deviatoric and volumetric mechanical strains 
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The above equations are used to determine the unknown stresses increments for a given strains 
increments and the previous history rate, i.e. hereditary integrals. The main difficulty is that the 
nonlinear stress functions at the current time are not known. Therefore, an iterative procedure is 
needed for the stress correction. An expressions for the approximate or trial incremental stresses 
can be obtained from Eqs. (17)-(18) by assuming 
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This leads to the following approximate incremental form for 2nd Piola Kirchhoff stresses 
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5. The finite element model 
 
The FEM as a numerical tool allows for solving such complex nonlinear viscoelastic problems 

undergoing large thermo-mechanical deformations with real boundary conditions. In the present 
formulation, the external load is taken to be deformation-dependent. The principle of virtual work, 
in the framework of the total Lagrange incremental formulation, can be stated as; Bathe (1996) 
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where δeij is the variation in the Green-strain vector caused by the virtual displacements δui. Since 
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t e0 are unknown, for solution; the following incremental decomposition 

is used; 
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Eq. (22) can be rewritten as 
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tC0  is the nonlinear viscoelastic stress-strain relation matrix, h
ij

tt S
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increment which expresses the material history and th
ij

t S0 is the incremental thermal stress vector. 

Substitution of Eqs. (25)-(26) into Eq. (24) yields 
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which represents a nonlinear equation for the incremental displacement vector {Δu}. All matrix 
elements correspond to the configuration at time t and are defined with respect to the configuration 
at time 0. All terms in Eq. (27) will be completely defined in the following section. 
 
  
6. The solution algorithm 
 

This section presents the solution procedure of the developed FE model. It is important to 
realize that Eq. (27) contains two possible sources of nonlinearities; material nonlinearity due to 
nonlinear stress-strain relationships considering time-temperature-stress dependency of the 
material characteristics and geometric nonlinearity due to large displacements and rotations. 
Hence, linearization of Eq. (27) may introduce errors, which ultimately result into solution 
instability, and thus it cannot be solved by direct methods. For this reason, to obtain the solution at 
any time increment, the Newton-Raphson iterative scheme is used. Now, assuming that the 
equilibrium configuration at the time t-Δt is known and within the time t, it is postulated that (r) 
iterations have been performed. That is, given the stresses t{S}(r), t{Sh}(r), t{Sth}(r) and 
displacements t{u}(r) that satisfy the equilibrium equations. The solution algorithm to determine 
the equilibrium configuration at the time t can be described as follows. 

 
1. Compute the linear and nonlinear counterparts of the overall stiffness matrix 
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where NE is the total number of FEs. [BL] and [BN] are the linear and nonlinear strain-
displacement transformation matrices, [S] is a matrix of 2nd Piola Kirchhoff stresses. 
2. Compute the external force vector due to body forces and surface tractions and thermal force 
vector due to the incremental thermal strain, respectively 
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where [Ne] and [Ns] are the element and line shape function matrices, respectively. 
3. Compute the internal force vector due to both the material damping and the internal stresses 

        
0

( )( ) ( ) 0

00 0
1 V

ˆF B S S V
e

NE t rt r t r T h e
int L

e

d


                   (31) 

where {S^} a vector of 2nd Piola Kirchhoff stresses.  
4. Compute the incremental displacement vector t{Δu}(r+1) by solving Eq. (27). 
5. Update the displacement field 
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6. Compute and update the Green strain vector 

           ( 1)( 1) ( 1) ( 1) ( ) ( 1)

0
e B u and e e e

t rt r t r t r t r t r

L

                (33) 

7. Compute the nonlinear relaxation matrix using Eqs. (22) and (26), i.e., for plane stress analysis 
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8. Compute the incremental thermal stress vector 
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9. Update the 2nd Piola Kirchhoff stress vector 
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10. Compute the equivalent Von Mises stress 
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11. Update the nonlinear stress and temperature parameters. 
12. Compute the incremental and updating the reduced time 
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13. Compute the quantity defined by Eq. (23) 
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14. Compute the incremental stress vector due to material history, using Eqs. (22) and (26); i.e., for 
plane stress analysis 
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15. Compute the material history vector using Eq. (17) 
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16. Steps 1 to 15 are repeated till the displacement convergence is satisfied 
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17. Once the convergence is satisfied, update the state at the end of the time increment 
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18. Solution proceeds to the next time step for which steps 1 through 17 are repeated. 
 
 
7. Applications 
 

The applicability of the developed model to predict the response of nonlinear viscoelastic 
structures undergoing large deformations is investigated. Two problems with different 
thermal/mechanical loading conditions will be analyzed.  
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Fig. 1 A viscoelastic beam under uniform distributed load 
 

Table 1 Coefficients of the Prony series 

n Dn×10-5 (MPa-1) λn (s
-1) 

1 2.36358 1.0 
2 0.566016 10-1 
3 1.48405 10-2 
4 1.88848 10-3 
5 2.85848 10-4 
6 4.00569 10-5 
7 6.04235 10-6 
8 7.96477 10-7 
9 16.2179 10-8 

Do=27.09x10-5 MPa-1 
 
 
7.1 Thermo-mechanical response of a beam 

 
Consider a viscoelastic beam of length L=2540 mm and cross section 25.4 mm×25.4 mm as 

shown in Fig. 1, with material properties given in Table 1. For nonlinear viscoelastic behavior 
(NLVE), fourth-order polynomials are sufficient for calibrating the nonlinear stress-dependent 
functions, Haj-Ali and Mulina (2004) 
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where < x> = 0 for x ≤ 0 and < x> = x for x> 0. 
The parameters describing these functions are given in Table 2. The Poisson’s ratio v of the 

material, which is assumed to be time-invariant, is taken 0.4, Payette and Reddy (2010), and the 
effective stress σo is taken 2.75 MPa. The problem is analyzed with plane stress condition. At t =0 
the beam is subjected to a time invariant uniform vertical distributed load w=0.0437817 N/mm. 
The load at t =0 s is applied incrementally to insure convergence of the solution. Table 3 presents 
some selected numerical results for the maximum vertical deflection of linear viscoelastic (LVE) 
and NLVE beam under uniform distributed load. It is noted that, the obtained numerical results for 
LVE analysis are in an excellent agreement with those of Payette and Reddy (2010). 

Furthermore, the maximum deflection for corresponding linear and nonlinear elastic solutions, 
where the Young’s modulus is 3691.45 MPa, is obtained as 22.1246 and 23.22611 mm, 
respectively. Thus at t=0 s, the obtained results for LVE and NLVE coincide with the 
corresponding elastic solutions. In addition, it is noticeable that the deflection for NLVE is greater 
than that for LVE. This is owing to the effect of the nonlinear stress parameters on increasing the 
compliance of the beam. Fig. 2 illustrates the relaxation of the maximum equivalent Von Mises 
stress with time. 
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Table 2 Nonlinear stress dependent parameters in the Schapery model 

 κ1
σ  κ2

σ κ3
σ κ4

σ 
g0 0.183 0.567 -1.067 0.533 
g1 0.067 0.133 2.133 -2.133 
g2 -0.773 9.707 -5.787 8.533 

aσ 
δ1
σ δ2

σ δ3
σ δ4

σ 
-0.373 2.580 -5.227 3.520 

 

 
Fig. 2 Maximum Von Mises stress of LVE 
and NLVE beam behaviors 

Fig. 3 Maximum deflection for different 
Thermo-viscoelastic beam behaviors 

 
 

To investigate the effect of thermal load upon the beam response, the beam will be subjected to 
a thermal load represented by a prescribed temperature tθ=303+0.00833t K, in addition to the time 
invariant uniform vertical distributed load. Numerical results for different thermo-rheological 
behaviors are obtained; namely LTHVE, NLTHVE in which the material nonlinearity is attributed 
to the nonlinear stress-dependent parameters only, and TSM. For TSM, the time temperature shift 
factor is approximated as, Lai and Bakker (1996) 

     
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t
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                       (45) 

Fig. 3 displays the maximum thermo-mechanical vertical deflection of the beam for LTHVE, 
NLTHVE, and TSM behaviors. Also, the maximum equivalent Von Mises stress is illustrated in 
Fig. 4. It is depicted that the thermo-rheological behavior has a great significant effect on the Von 
Mises stress, especially as the time marches. This is due to that the nonlinear stress parameters and 
the time-temperature shift factor result in decreasing the beam stiffness and hence lower equivalent 
Von Mises stresses is obtained. 

An important characteristic of the viscoelastic constitutive model employed in this work is that 
the body should eventually return to its original configuration once the loads are removed. To 
demonstrate that the developed FE model capture this effect, the beam will be subjected to the 
following quasi-static transverse load 
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        (46) 
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Table 3 FE results for the maximum deflection (mm) 

Time, (s) LVE (Payette and Reddy (2010)) LVE (Present) NLVE (Present) 
0 23.13940 23.12460 23.22611 

200 25.40000 25.36917 25.84787 
400 25.62606 25.60196 26.06863 
600 25.76576 25.74364 26.22378 
800 25.87498 25.85673 26.34709 

1000 25.96642 25.95250 26.45129 
1200 26.04770 26.03488 26.54081 
1400 26.11628 26.10641 26.61843 
1600 26.17724 26.16902 26.68629 
1800 26.23058 26.22430 26.74613 

 

Fig. 4 Maximum Von Mises stress for different 
thermo-viscoelastic beam behaviors 

Fig. 5 Maximum deflection of NLVE beam 
subjected to time-dependent transverse loading 

 
 

where w0=0.0437817 N/mm and τ=1800 s. The parameters 0≤µ≤γ≤1 are constants. Fig. 5 presents 
the results for NLVE analysis with σo=2.75 MPa at different values of µ and γ. It is evident that the 
beam recovers its original configuration as t tends to infinity once the applied load is removed. 
 

7.2 Thermo-mechanical response of a composite cylinder   
 
Consider a thick viscoelastic cylinder covered by a perfectly bonded aluminum layer as shown 

in Fig. 6. Plane strain condition is assumed. The layer is assumed to behave linear elasticity, while 
the viscoelastic cylinder is simulated using six terms of the Prony exponential series, Touati and 
Cederbaum (1998b). The elastic and thermal properties of the viscoelastic cylinder as well as the 
Prony series coefficients are given in Table 4. The nonlinear material functions based on stress and 
temperature are given by the following functions 
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Table 4 Thermal and elastic properties and coefficients of the Prony series 

n Dnx10-4 (MPa-1) λn (s-1) 
1 0.210 1.0 
2 0.216 10-1 
3 0.118 10-2 
4 0.159 10-3 
5 0.216 10-4 
6 0.201 10-5 

Do=3.69004x10-4 MPa-1 
v=0.35,  α=5x10-5 oC-1  
σo=100 MPa , θref=303 K 

 

Fig. 6 A composite thick cylinder subjected to a quasi-static thermo-mechanical load 
 
 
where σo is the effective stress limit and θref is the reference temperature of the material. The 
thermal and elastic properties of the aluminum layer are: E=70 GPa, v=0.33, and α=7.17x10-6 oC-1. 

The cylinder is subjected to a quasi-static thermo-mechanical loading; a prescribed space-wise 
ramp temperature θ(t) as a thermal load and an internal pressure p(t) as a mechanical load. The 
space-wise ramp temperature is θ(t)=303+0.9t K, while the acting internal pressure has the 
following quasi-static loading-unloading pattern 
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               (49) 

where p0=100 MPa, µ=0.5, γ=1.0, and τ =100 s.  
The inner radial displacement is shown in Figs. 7(a) and (b) for viscoelastic and thermo-

viscoelastic analyses, respectively. It is noticed that the modeling the cylinder as nonlinear 
viscoelastic has a notable significant effect on the creep rate of the radial displacement. Also, for 
LVE and NLVE analyses, it is depicted that the cylinder recovers its original configuration as t 
tends to infinity once the applied load is removed.  

Figs. 8(a) and (b) illustrate the variation of the maximum equivalent Von Mises stress on the 
inner surface with time for viscoelastic and thermo-viscoelastic analysis, respectively. It is 
depicted that the nonlinear stress functions greatly influence the stress. In addition, it is found that 
the thermo-rheological behavior has a dramatic effect on the system response. This is owing to the 
effect of the nonlinear-temperature parameters and time-temperature shift factor on the creep 
compliance of the cylinder. 
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Fig. 7(a) Creep of the inner radial displacement 
for viscoelastic analysis 

Fig. 7(b) Creep of the inner radial displacement 
for thermo-viscoelastic analysis 

 

Fig. 8(a) Maximum Von Mises stress for 
viscoelastic analysis 

Fig. 8(b) Maximum Von Mises stress for thermo-
viscoelastic analysis 

 

Fig. 9(a) Variation of the radial displacement 
with radius LVE analysis 

Fig. 9(b) Variation of the radial displacement 
with radius NLVE analysis 
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Fig. 10 Variation of the radial displacement with radius for thermo-viscoelastic analysis at various time
 
Table 5 Radial displacement of the inner surface for LVE and LTHVE analyses 

 
Time (s)

10 30 50 70 90 100 
LVE 0.9469 2.9366 5.0289 3.0152 1.0378 0.0746 

LTHVE 0.9471 2.9388 5.0340 3.0571 1.1021 0.1495 
 
 
Figs. 9 and 10 show the variation of the radial displacement with radius for viscoelastic and 

thermo-viscoelastic analyses, respectively.  
The effect of the effective stress limit σo on the system response will be studied. Table 5 

provides some numerical results for the inner radial displacement for LVE and LTHVE analyses 
(σo is taken infinity and all nonlinear temperature parameters are assumed to equal unity). Tables 
6-8 present the inner radial displacement while varying the effective stress limit for different 
loading conditions and thermo-rheological behaviors. From the obtained results, it can be clear 
that when the effective stress limit increases, the radial displacement decreases. Also, the effect of 
the effective stress limit is more significant while the time marches. The effect on TCM behavior is 
more than that on the TSM and NLVE behaviors; this is attributed to the complex effect of the 
nonlinear-temperature parameters. For example at t=50 s and for TCM behavior, the radial 
displacement decreases with 23.84% as the effective stress limit increased from 100 to 180 MPa.  
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Table 6 The variation of inner radial displacement for different effective stress limits (NLVE behavior) 

Time (s) 
Effective stress limit σo (MPa) 

100 120 140 160 180 
10 0.9612 0.9497 0.9480 0.9467 0.9457 
30 3.1545 3.0717 3.0391 3.0175 3.0023 
50 6.3479 5.7615 5.5570 5.4328 5.3510 
70 3.5515 3.3103 3.2259 3.1743 3.1401 
90 1.3681 1.1903 1.1378 1.1071 1.0878 

100 0.3873 0.21674 0.1668 0.1380 0.1198 
 

Table 7 The variation of inner radial displacement for different effective stress limits (TSM behavior) 

Time (s) 
Effective stress limit σo (MPa) 

100 120 140 160 180 
10 0.9720 0.9693 0.9674 0.9661 0.9650 
30 3.2684 3.2027 3.1633 3.1375 3.1194 
50 6.9483 6.3862 6.0861 5.9045 5.7853 
70 3.9674 3.7197 3.5833 3.4996 3.4443 
90 1.5114 1.3530 1.269 1.2194 1.1879 

100 0.4266 0.2737 0.1929 0.1453 0.1151 
 

Table 8 The variation of inner radial displacement for different effective stress limits (TCM behavior) 

Time (s) 
Effective stress limit σo (MPa) 

100 120 140 160 180 
10 0.9897 0.9867 0.9847 0.9832 0.9822 
30 3.5674 3.4789 3.4264 3.3923 3.3687 
50 8.9904 7.8982 7.3615 7.0482 6.8467 
70 5.9589 5.1961 4.8146 4.5911 4.4475 
90 2.8712 2.2816 1.9901 1.8220 1.7160 

100 1.3634 0.8005 0.5218 0.3613 0.2603 
 
 

Whereas, for the same conditions, the radial displacement decreases with 15.7% and 16.74% for 
NLVE and TSM behaviors, respectively.  
 
 
8. Conclusions 
 

An efficient and accurate computational FE model for investigating the nonlinear viscoelastic 
response of thermo-rheological complex structures under different thermal/mechanical loading 
histories is developed. The model is derived based on implicit stress integration solutions for large 
displacements and rotations (with small strains) and quasistatic thermo-mechanical problems. The 
Schapery’s single-integral creep nonlinear viscoelastic model is modified for a time-stress-
temperature-dependent behavior. An incremental-recursive relationship for the constitutive 
equations is derived, such that history data need only be stored from the previous time step. Both 
material and geometrical nonlinearities are modeled in the framework of the total Lagrangian 
description. The Newton-Raphson iterative scheme is used for solving the resulting nonlinear 
incremental equilibrium equations. The developed model is verified by comparing the obtained 

42



 
 
 
 
 
 

Analysis of thermo-rheologically complex structures with geometrical nonlinearity 

results with benchmark results and an excellent agreement is found. Two different examples are 
analyzed to demonstrate the applicability of the developed model. The obtained results show that, 
the effective stress limit (level of material nonlinearity) and thermo-rheological behavior have 
notable significant effects on the system response. Therefore, dependency of viscoelastic material 
parameters on the stress and/or temperature should be modelled carefully.   
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