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Abstract.  This paper presents a systematic design and training procedure for the feed-forward back-
propagation neural network (NN) modeling of both forward and inverse behavior of a rotary 
magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper 
force as output, an optimization procedure demonstrates accurate training of the NN architecture with only 
current and velocity as input states. For the inverse damper model, with current as output, the absolute value 
of velocity and force are used as input states to avoid negative current spikes when tracking a desired 
damper force. The forward and inverse damper models are trained and validated experimentally, combining 
a limited number of harmonic displacement records, and constant and half-sinusoidal current records. In 
general the validation shows accurate results for both forward and inverse damper models, where the 
observed modeling errors for the inverse model can be related to knocking effects in the measured force due 
to the bearing plays between hydraulic piston and MR damper rod. Finally, the validated models are used to 
emulate pure viscous damping. Comparison of numerical and experimental results demonstrates good 
agreement in the post-yield region of the MR damper, while the main error of the inverse NN occurs in the 
pre-yield region where the inverse NN overestimates the current to track the desired viscous force. 
 

Keywords:  experimental validation; inverse MR damper model; rotary MR damper; neural network 
 
 
1. Introduction 

 
Magnetorheological (MR) dampers used for controlled damping of structural vibrations have 

received considerable attention during the last decades because they offer the possibility to adapt 
their semi-active force in real-time to the structural vibrations (Christenson et al. 2006, Li et al. 
2007, Neelakantan and Washington 2008, Wu and Cai 2010). MR dampers are suitable for 
mitigation of vibrations in large civil engineering structures because they combine large control 
force ranges, low power requirements, fast response time and fail safe performance (Spencer and 
Nagarajaiah 2003). 

Basically, rotary type magnetorheological (MR) dampers consist of a housing that includes the 
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MR fluid and the rotating part of the disc. The MR fluid is a suspension of oil with magnetizable 
particles with average diameter of 5 μm and some additives. The particles and the ferromagnetic 
parts of the housing and disc are magnetized by the magnetic field that is produced by two coils 
which are installed within the housing on both sides of the disc. The magnetized particles build 
chains and thereby stick to the disc and housing (Weber and Boston 2011a). When the disc starts to 
rotate the particle chains are initially stretched before they start to slide relative to the surfaces of 
the disc and/or the housing. The particle chains may also break, whereby rupture between particles 
occurs. The phase where particle chains are elastically stretched is commonly denoted as the pre-
yield region of the MR fluid, while the sliding phase is called the post-yield region. The particle 
chains start to slide when the dry friction force between particles or between particle chains and 
disc or between particle chains and housing is balanced by the elastic force due to elongation of 
the particle chains (Weber and Boston 2011a). Since this sticking depends strongly on the 
magnetization of the MR fluid, and thereby on the MR damper current, the post-yield force of the 
MR damper typically exhibits a strong current dependency. Because the superposed viscous force 
is usually rather small and the MR fluid viscosity depends only slightly on the coil current, the 
applied current primarily controls the friction force of the MR damper, while the viscous force 
component is mainly governed by the rotating speed of the disc and the inherent viscosity of the 
MR fluid (Weber et al. 2008, Weber and Boston 2011a). In order to be able to control the total MR 
damper force relative to a desired control force, the coil current must be modulated so that the 
control force tracking error is acceptable. Due to the non-linear behavior of the MR damper force, 
i.e. the non-linear relation between current and sticking force and the non-linear dependency of the 
MR fluid viscosity on current, force tracking with force feedback only may fail to track the desired 
force accurately. Therefore, model-based feed forward control schemes are needed to solve the 
force tracking task with sufficient accuracy (Weber and Boston 2011b, Weber et al. 2011c). Such 
approaches can then later be extended by a force feedback in order to further decrease the 
remaining force tracking error (Weber and Maslanka 2012). 

MR dampers are either operated at zero or constant current, which are called passive-off or 
passive-on strategies (Weber et al. 2005), or they are controlled in real-time within a particular 
feedback loop (Maslanka et al. 2007, Weber et al. 2009). In the latter case the structural response 
is typically measured at damper position and the MR damper current is controlled in real-time to 
obtain minimum tracking error with respect to a desired control force. The force tracking task is 
usually solved by a model-based feed forward control scheme, simply to avoid costly force sensors 
(Maslanka et al. 2007, Weber et al. 2009). The input states of the feed forward controller may be 
the damper displacement, velocity, acceleration, or any combination of these states, and the desired 
control force, while the output state is the desired MR damper current. In practice the desired 
current is realized by a current driver, which compensates for the coil impedance dynamics of the 
MR damper. Therefore, an inverse MR damper model is required that estimates the desired damper 
current based on a limited number of the above mentioned input states. This model is usually 
referred to as an inverse MR damper model (Tse and Chang 2004, Yang et al. 2004, Dominguez et 
al. 2006, Weber and Boston 2011b, Weber et al. 2011c, Weber and Maslanka 2012) because it 
predicts the controllable damper current, while the classic forward models predict the damper 
force. 

Many parametric and non-parametric forward models for classic cylindrical type MR dampers 
have been presented in the literature. Some of the prominent parametric approaches are the Bouc-
Wen model, which captures both the pre- and post-yield regions (Yang et al. 2004, Dominguez et 
al. 2006), the Bingham model which basically represents current dependent friction (Ikhouane and 
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Dyke 2007), the Dahl model which describes an elasto-plastic material behavior with 
supplemental viscous effects (Shulman et al. 2006) and the LuGre approach that models the MR 
fluid particle chains as brushes with sticking and sliding against the damper housing (Jiménez and 
Alvarez-Icaza 2005, Yang et al. 2009, Boston et al. 2010). These models have also been extended 
by additional stiffness, viscous and mass elements to account for the accumulator behavior, the 
current dependent viscous force and the inertia of the damper piston and other accelerated parts 
(Sahin et al. 2010). The parameters for minimum model error are typically obtained from the test 
data directly (Sims et al. 2004, Weber et al. 2008) or by a numerical optimization tool (Ye and 
Wang 2007). Once calibrated, these parametric approaches can be used as observers to solve the 
force tracking problem without feedback from a force sensor (Maslanka et al. 2007, Weber and 
Boston 2011b, Weber 2013a). 

Non-parametric models are mainly based on fitted polynomials (Weber et al. 2009), genetic 
algorithms (Xiaomin et al. 2009), fuzzy logic (Tsoukalas and Uhrig 1997, Won and Sunwoo 2009), 
neural networks (NN) (Chang and Roschke 1998, Xia 2003, Chang and Zhou 2002, Wang and 
Liao 2005, Lee et al. 2008, Metered et al. 2009, Weber et al. 2013b) or hybrid approaches (Soeiro 
et al. 2008). As demonstrated in Chang and Roschke (1998) the NN approach is able to model the 
forward MR damper behavior fairly accurate. Most of the NNs are trained with simulated input-
output data, usually generated by the Bouc-Wen model, as e.g., in Wang and Liao (2005). Only 
few NN have been trained with experimental data (Metered et al. 2009), containing system noise 
and knocking effects due to bearing tolerances. This makes the training of the network much more 
difficult, and appropriate filtering of the training data during post processing can be very crucial 
for the NN performance. The NN architecture is usually found by a trial and error method, and the 
resulting NN architecture is therefore not necessarily optimal with respect to the minimization of 
the modeling error. 

The present investigation provides a systematic approach to the design and calibration of NNs 
for both the forward and inverse behavior of a rotary type MR damper based on experimentally 
measured training data. It is shown that only force, velocity and current, with necessary previous 
states, are sufficient for the construction of effective NN architectures. For the NN based inverse 
modeling of the MR damper the absolute value of velocity and damper force are used as input 
training data. This modification of taking the absolute value in the training data input has a major 
influence on the proper estimation of the current because the current is always positive, 
irrespective of the sign of the training inputs. Moreover, the MR damper behavior is measured at 
constant and half-sinusoidal current, where the half-sinusoidal current tests are performed because 
they generate training data very similar to the current records associated with damping of 
structures excited at resonance. The experimental data is filtered so that potential noise is 
minimized and any offset values are removed. In this paper a semi-systematic approach for the 
calibration of the NN architecture based on the minimization of the associated modeling error is 
described. The architecture of the NNs for both the forward and the inverse MR damper models 
are presented and validated with measurement data independent of the training data. Good 
accuracy is generally reported, and the validated inverse and forward models are subsequently 
used in numerical simulations, where pure viscous damping is reproduced in real-time. 

The paper is structured as follows: Section 2 describes the collection of the training data 
including the filtering and post-processing of the training data, section 3 explains the design and 
training of the NN architectures, section 4 shows the model validation and discusses the obtained 
results and section 5 tests the forward and inverse MR damper models by real-time tracking of 
viscous damping. 
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Fig. 1 Experimental set-up with rotary MR damper in hydraulic test machine 

 

 
Fig. 2 Schematic of test set-up 

 
 

2. Experimental data 
 

Section 2.1 introduces the experimental test set-up used to obtain the MR damper response data 
used for training of the NN, while the necessary post-processing of the measured time histories is 
described in section 2.2. 
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Table 1 Measurement data for training of NN and model validation 

set for 
training 

set for 
validation 

desired displacement desired current 

1a 1b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 0 A 
2a 2b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 1 A 
3a 3b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 2 A 
4a 4b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 3 A 
5a 5b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 4 A 
6a 6b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 0 A 
7a 7b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 1 A 
8a 8b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 2 A 
9a 9b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 3 A 

10ae 10b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 4 A 
11a 11b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 0 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz
12a 12b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 1 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz
13a 13b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 2 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz
14a 14b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 3 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz
15a 15b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 4 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz
16a 16b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 1 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz
17a 17b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 2 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz
18a 18b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 3 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz
19a 19b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 4 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz

 
 

2.1 Experimental set-up 
 
The MR damper under consideration is a rotary type MR damper with a maximum current of 

4 A. The damper is shown in Fig. 1 and further details on the damper characteristics can be found 
in Weber et al. (2008) and Boston et al. (2010). At constant current the damper behaves almost as 
a friction damper, with only a small velocity dependency. The apparent friction force level is 
approximately 30 N at 0 A and 300 N at 4 A. Details concerning the behaviour of the rotary type 
MR damper have been explained in the previous section. The training and the validation data are 
obtained from forced displacement tests using a hydraulic testing machine of type INSTRON, see 
Fig. 1. The desired piston displacement is defined in Matlab®, processed real time by a dSPACE® 
DS1104 R&D controller board and finally send as a command signal directly to the INSTRON PC 
unit. A flow diagram of the experimental setup is shown in Fig. 2. The actual displacement is 
captured directly as output from the INSTRON machine and acquired by the dSPACE® system at 
1000 Hz sampling frequency. The desired MR damper current is also defined in 
Matlab/dSPACE®, and tracked real time by a KEPCO current driver. The actual damper current is 
measured by the KEPCO amplifier and acquired by the dSPACE® system. The MR damper force 
is measured by a 500 N load cell, and the acceleration of the piston is also measured for 
verification and potential later use in connection with training or validation. Furthermore, 
acceleration is suitable for detection of the knocking effects due to the finite bearing tolerances of 
0.01-0.02 mm of the joints of the damper rod. A summary of the tests conducted is provided in 
Table 1. Each test is performed twice: The first set is used as training data, while the second 
completely independent set is used to validate the NN models. Tests 1-10 are performed at 
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constant current, while tests 11-19 are conducted with half-sinusoidal current. As seen in Table 1 
the desired displacement is pure sinusoidal, combining amplitudes of 5 mm and 10 mm, and 
frequencies from 0.5 Hz to 2.2 Hz. 

 
2.2 Post processing of experimental data 
 
Initially, the measurement data is post-processed by a low pass filter in order to avoid that the 

NN is trained by high frequency signal components, e.g. noise and knocking effects, which are 
typically of no interest. The applied low pass filter has the following properties: 

∙ Digital Butterworth low pass filter. 
∙ Filter order 2. 
∙ Cut-off frequency 100 Hz. 
Any offset in the displacement, acceleration and force signals are removed by simply balancing 

positive and negative maxima during steady state conditions. The effect of the filtering of 
displacement, acceleration, damper current and damper force is shown in Fig. 3. As seen in 
Figs. 3(a) and (c) the high-frequency signal parts in the displacement and damper current are 
effectively removed by the filter, and the main task is basically to avoid a too significant change in 
the phase and reduction in the peak values. The acceleration is very sensitive to the various sources 
of noise, and the influence of the filter therefore becomes very evident in Fig. 3(b). The damper 
force is shown in Fig. 3(d) where the main modification is the removal of the offset level. Note 
that the constant force level at zero crossing is due to the previously mentioned bearing tolerance. 
The effect is mainly visible in the acceleration signal, which is also shown in Fig. 3(d). 

The training of the NN also requires the damper velocity x , which is not directly measured. It 
is instead estimated at each time instant k by numerical differentiation of the displacement x as 













)1()(

)1()(
)(

ktkt

kxkx
kx    with initial condition  0)1( x  (1)

The inherent noise resulting from the numerical differentiation is subsequently removed by the 
following low pass filter: 

∙ Digital Butterworth low pass filter. 
∙ Filter order 2. 
∙ Cut-off frequency 20 Hz. 
Fig. 4(a) shows the velocity record obtained by differentiation of the sinusoidal displacement 

with amplitude 5 mm and frequency 1 Hz. The amplitude of the velocity is 31 mm/s, which agrees 
well with the analytical value of 2π (1Hz) (5 mm) = 31.4 mm/s. The figure also shows the 
corresponding displacement, and it is observed that the phase shift between displacement and 
velocity is the expected one quarter of a period. Fig. 4(a) therefore indicates that the method in 
Eq. (1) leads to a velocity signal with correct amplitude and phase compared to the associated 
displacement. After the signal post processing, 10 steady state cycles of the data sets 1-19 in 
Table 1 are isolated and then connected after each other to get individual continuous time histories 
for displacement, velocity, acceleration, current and force, respectively. Fig. 4(b) shows the 
combination system for the generation of the resulting time histories used for training of the NN. It 
should be noted that the sets are always connected at zero crossings of the displacement. To have a 
reasonably limited amount of data for the training of the NN the time histories are finally down 
sampled from 1000 Hz to 200 Hz. 

678



 
 
 
 
 
 

Experimental calibration of forward and inverse neural networks for rotary type 

 
Fig. 3 Filtering of measurement data 

 

 
Fig. 4 Estimated velocity (a) and training data time history (b) 

 
3. Modeling 

 
The modeling of a system using the NN tool requires the following basic three steps: (a) 

measurement of the input and output states of the system under consideration (see previous 
section), (b) choosing the architecture of the particular NN, which is described in section 3.1, and 
(c) training the chosen architecture with the measurement data that is described in section 3.2 for 
the forward MR damper model and in section 3.3 for the inverse MR damper model. 
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Fig. 5 Procedure to find suboptimal NN architecture 
 
 
3.1 NN architecture 
 
The NN architecture is characterized by: 
∙ What states are used as input. 
∙ How many previous values of the input states are used. 
∙ The number of hidden layers and neurons per layer. 
∙ The transfer functions of each layer. 

Because of the large variety of modeling parameters, the trial and error method is often applied to 
find an NN architecture with acceptable modeling errors. Using the trial and error approach the 
training yields the best parameters for the chosen NN architecture, but not necessarily the best NN 
architecture with the best parameters. In the present work, a semi-systematic approach is used to 
obtain a near optimal NN architecture. The procedure is illustrated schematically in Fig. 5. A 
number of NN are trained to model the forward MR damper behavior with the current records and 
one, or several, of the time histories for displacement, velocity and acceleration as input states. The 
number of previous states, the number of hidden layers and neurons are also varied. The literature 
shows that the log-sigmoidal transfer function is commonly used for the hidden layers in 
multilayer networks that are trained using the back propagation method because this transfer 
function is differentiable and gives the best result for the minimum value and the linear function is 
used for the output layer because it gives the best maximum value of all the minimum values from 
the hidden layers. However, since the transfer function of the MR damper behavior, i.e. the force 
velocity trajectory, is symmetrical about the origin, the log-sigmoidal transfer function might not 
be one of the best choices. Therefore, the tangent sigmoid transfer function is chosen here for the 
hidden layers. All trained NN candidates are determined by the Levenberg-Marquardt optimization 
method, using the error(k) between the target force f(k) and the estimated force )(kf


 by back 

propagation. When the training is finished, the individual NN architecture is stored and a new NN 
architecture is trained for different input properties. After all possible combinations of input data 
have been used for training of the NN architecture, the particular NN architecture with the smallest 
modeling error is identified as the best NN architecture, and stored for subsequent analyses. This 
systematic optimization strategy shows the following trends: 
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number of parametric MR damper models that are based on velocity and current as input 
states (Dominguez et al. 2004, Maslanka et al. 2007, Aguirre et al. 2010, Weber and Boston 
2011b). 

2. Using acceleration as additional input seems to increase the noise in the estimated force 
without improving the model accuracy. 

3. Using displacement as additional input does not decrease the modeling error. This can be 
explained by the fact that the velocity is determined from displacement by Eq. (1) and 
because the rotary MR damper has no accumulator and therefore no significant stiffness 
component. 

4. Using both displacement and acceleration as additional input has no influence on the 
modeling error. 

5. It seems that including three previous values, two hidden layers and six neurons per hidden 
layer provides a suitable compromise between modeling error and computational effort. 

 
3.2 Forward damper model 
 
The NN architecture that is found to minimize the error of the forward MR damper model is 

based on velocity and damper current as input states, three previous values and two hidden layers 
of six neurons each. The architecture of the forward NN is shown in Fig. 6. The transfer function 
g(j) of the neurons of the two hidden layers are selected as a tangent sigmoid function, while the 
transfer function of the single output layer, i.e., layer 3, is selected as a linear function. If N(j) is the 
number of neurons in the jth layer then N(3) = 1, since the output layer has only a single signal 
output. Let )0(

lO  be the R×1 column vector comprising the signal inputs to the first hidden layer. 

In the present case R = 8 because of the two input variables: velocity and current, both with a 
current state value and three previous values. The subscript l denotes the individual neurons of the 
particular layer. Let )( j

lO  be the N(j) × 1 vector comprising the signal outputs of the jth layer, 

which means that the output layer is represented by )3(
lO . For the two hidden layers and the single 

output layer the output is computed as 

 3,2,1),( )()1()()()(   jbOwgO j
l

j
l

j
l

jj
l  (2) 

where g(j) is the tangent sigmoid function for the hidden connections with j = 1, 2, while it is the 
linear function for the output connection with j = 3. The vector )( j

lw  contains the weights of the 

neural connections, while )( j
lb  is the bias vector of the jth layer, which is zero in the present 

application. Each of the transfer functions operates on the respective element of the vector 
argument. Thus, the estimation of the damper force by the NN can be expressed as 

 











)3()2()1()(

)3()2()1()(
)(ˆ

kikikiki

kxkxkxkx
NNkf


 (3) 

where NN[…] represents the computation by the neural network and i(k) denotes the current at 
time k. For feed forward neural network based forward dynamics modeling, the network output is 
?f (k )  Ol

( 3 )  whereby ?f (k )  is the predicted force from the forward MR model at current time 
state k. The target of the forward neural network model is 
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Fig. 6 NN architecture of forward MR damper model and its training 
 

Fig. 7 NN architecture of inverse MR damper model and its training 
 
 

 Tl  f (k)  (4) 

where f(k) is the desired force, or in this case the measured force data, at current time state k. The 
network training was performed using the MATLAB® function trainlm. The network has been 
trained with the input-output data sets obtained from the experiments summarized in Table 1. For 
training of small-to-medium size networks, the Levenberg-Marquardt algorithm (LM) is fairly 
efficient. The performance index used for the training of the feed forward neural network is the 
sum of squares of the difference el between the desired target Tl and the actual network output 
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length of the data set. The LM algorithm updates the parameters based on minimization of the 
performance index V. 

 
3.3 Inverse damper model 
 
Fig. 7 shows the corresponding NN for the inverse damper model with velocity and damper 

force as input states, and desired damper current as the single output. In order to estimate the MR 
damper current )(ki


, the NN for the inverse model uses the actual and three previous values of 

the two input states 

 











)3()2()1()(

)3()2()1()(
)(ˆ

kfkfkfkf

kxkxkxkx
NNki


 (6) 

For the feed forward neural network based inverse dynamics modeling of the MR damper, the 
network output is )(ki


= )3(

lO  where )(ki


 is the predicted current from the inverse MR model. 

The target of the inverse neural model 

 ( )lT i k  (7) 

is the desired damper current i(k), which in this case is the experimentally measured data. The 
structure of the NN architecture is similar to that of the forward model. However, the output 
current can only take on positive values, irrespective of the sign of velocity and/or force. 
Therefore, the NN architecture for the inverse damper model is trained using the absolute values of 
the two input states. This approach helps to avoid negative spikes in the estimated current when 
tracking a desired damper force. 

 
 

4. Model validation 
 
The model validation is carried out for independent and experimentally determined time 

records. Sections 4.1 and 4.2 consider the NNs of the forward and inverse damper model, 
respectively, while section 4.3 demonstrates that the presented NNs are able to emulate pure 
viscous damping. 

 
4.1 Forward model 
 
The forward MR damper model is validated using the validation data sets 1b-19b listed in 

Table 1. Due to the large amount of validation data, the measured and simulated force 
displacement trajectories are compared for some selected tests. The selection is made such that the 
comparison considers all displacement amplitudes, frequencies and damper currents. Figs. 8 and 9 
show the result for combinations of constant current values at different displacement amplitudes 
and driving frequencies. As seen from the figures the NN model is fairly accurate in predicting the 
forward dynamics of the MR damper. Figs. 10 and 11 show the results for half-sinusoidal current 
at different amplitudes and frequencies. As can be observed from these figures, the forward MR 
damper model is able to predict the main characteristics of the MR damper under consideration 
with fairly good accuracy. The strong current dependent yield force is captured well, the slope of 
the pre-yield region is estimated very accurately in all cases and the force response due to the 
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aggregation and radial migration of particles (Boston et al. 2010, Weber and Boston 2011a, b), 
which is visible by the rather slow force increase after the damper rod turns its direction, is also 
predicted satisfactorily. It is evident that all of the major damper characteristics are predicted 
significantly better for the half-sinusoidal current in Figs. 10 and 11 than for the constant current 
case in Figs. 8 and 9. This rather surprisingly fact is related to the transition of the MR damper 
force from the pre-sliding regime, i.e. pre-yield region, to the sliding regime, i.e. post-yield region, 
which is more pronounced in the tests made at constant current than at half-sinusoidal current. 
However, the output of the tangent sigmoid transfer function is almost independent of its input 
when the MR damper is operated in the post-yield region which corresponds to the almost 
horizontal part in the force velocity trajectory of MR dampers. Hence, the tangent sigmoid transfer 
function is not able to precisely capture the fairly slow force increase at constant current due to the 
aggregation and radial migration of particles which explains the superior model validation results 
at half-sinusoidal current. 

 
4.2 Inverse model 
 
The inverse MR damper model is also validated using the validation data sets 1b-19b in Table 1. 

The results for constant current, two different displacement amplitudes and four different 
displacement frequencies are shown in Figs. 12(a)-(b). The estimated current shows significant 
local spikes that might arise because the NN architecture has also been trained with half-sinusoidal 
current data or from the bearing plays of the damper rod joints at zero-crossing of the velocity. 

 

 
Fig. 8 Validation of forward MR damper model for constant current of 0 A (a), 1 A (b, c) and 2 A 
(d) and different displacement amplitudes and frequencies 
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Fig. 9 Validation of forward MR damper model for constant current of 2 A (a), 3 A (b) and 4 A (c, 
d) and different displacement amplitudes and frequencies 

 

 
Fig. 10 Validation of forward MR damper model for half-sinusoidal current at 1 A and different 
displacement amplitudes and frequencies 
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Fig. 11 Validation of forward MR damper model for half-sinusoidal current at 2 A and different 
displacement amplitudes and frequencies 

 

 
Fig. 12 Validation of inverse MR damper model for constant current (a, b) and half-sinusoidal 
current at 3 A (c, d) 

−6 −4 −2 0 2 4 6
−150

−100

−50

0

50

100

150
disp.: sin, 5mm, 1.27Hz; current: half-sin, 2A, 1.27Hz

displacement [mm]

fo
rc

e 
[N

]

measured force
predicted force

(a)

−10 −5 0 5 10
−150

−100

−50

0

50

100

150
disp.: sin, 10mm, 0.5Hz; current: half-sin, 2A, 0.5Hz

displacement [mm]

fo
rc

e 
[N

]

measured force
predicted force

−6 −4 −2 0 2 4 6
-150

-100

-50

0

50

100

150
disp.: sin, 5mm, 2.2Hz; current: half-sin, 2A, 2.2Hz

displacement [mm]

fo
rc

e 
[N

]

measured force
predicted force

(b)

−10 −5 0 5 10
-150

-100

-50

0

50

100

150
disp.: sin, 10mm, 1.8Hz; current: half-sin, 2A, 1.8Hz

displacement [mm]

fo
rc

e 
[N

]

measured force
predicted force

(d)(c)

a a+0.5 a+1 a+1.5 a+2

0

1

3

4

5

a a+0.5 a+1 a+1.5 a+2

0

1

3

4

5

cu
rr

en
t [

A
]

predicted current for:

predicted current for:

predicted current for:

time [s]time [s]

(a) (b)

25 26 27 28 29

0

1

3

4

time [s]

0.5Hz, 5mm 1.0Hz, 5mm

44.5 45 45.5 46 46.5 47

1.27Hz, 5mm 1.8Hz, 5mm

time [s]

(c) (d)

4A; 5mm, 1.27Hz

2A; 5mm, 2.2Hz

0A; 5mm, 1.8Hz

predicted current for:

predicted current for:
3A; 10mm, 0.5Hz

1A; 10mm, 1.0Hz

cu
rr

en
t [

A
]

0

1

3

4

cu
rr

en
t [

A
]

cu
rr

en
t [

A
]

predicted

measured
current

current
predicted

measured
current

current

686



 
 
 
 
 
 

Experimental calibration of forward and inverse neural networks for rotary type 

Although the bearing plays are on the order of 0.02 mm or less, force knocking effects cannot be 
avoided when the piston of the hydraulic machine turns its direction and thereby the damper force 
and velocity undergo zero-crossings. This hypothesis is partly verified by the fact that the spikes 
show the same frequency characteristics as the applied displacement. Similar results have also 
been reported in Wang and Liao (2005) and Metered et al. (2009). This fact might indicate that the 
NN is fairly sensitive to high frequency signal inputs and has only little low pass behaviour. In 
contrast to the prediction of constant current, the prediction of the half-sinusoidal current is fairly 
accurate for different displacement amplitudes, frequencies and current amplitudes as shown in 
Figs. 12©-(d), 13 and 14. However, also this model validation test shows current spikes and 
therefore local modelling errors at each half period. Since these spikes occur later than the current 
maximum, which means after the hydraulic piston has turned its direction, the current spikes 
cannot result from the force knocking effects at zero velocity crossing, but may instead result from 
the Stribeck effect, which occurs at the transition between the pre- and post-yield regions and 
thereby induces a jump in the force. Despite the apparent modelling error due to the spikes of the 
estimated current, these spikes are rather small compared to e.g. the validation results presented in 
Wang and Liao (2005). Another reason for the current spikes that occur when the MR damper 
force gets out of or enters the pre-yield regime might be that the tangent sigmoid transfer function 
of the hidden layers does not include a hysteresis whereas the measured force velocity trajectory 
shows a hysteresis due to the pre-yield behaviour. As a result, two different force values exist for 
the same current and velocity in the measurement data. When training the forward model, the 
forward model can distinguish between the two different force values because these values can be 
associated with the different signs in the MR damper displacement since the forward model is not 
trained with absolute velocity as the inverse model. However, the inverse model is trained with the 
absolute values of velocity and force. Consequently, the inverse model cannot distinguish between 
the two different force values in the pre-yield regime – depending if leaving or entering the pre-
yield regime – for same velocity and current because the displacement that is derived from 
velocity does not change its sign. It seems that the inverse model associates the two different force 
values in the pre-yield regime with two different current values which ends up in the observed 
current spikes. It is therefore concluded that, although the training of the inverse NN model with 
absolute values of velocity and force helps to avoid negative current values, shows the drawback 
that the model cannot distinguish between the different force values in the pre-yield regime. To 
overcome this drawback could be the adoption of a transfer function with hysteresis in the hidden 
layers. Last but not least, the current spikes may also be triggered by the fact that the measurement 
data was split into data sets of 10 steady state cycles that were connected to one training data time 
history. The 10 steady state cycles were connected at zero crossings of the displacement where the 
force is not zero. Thus, the force jumps every 10 steady state cycles in the training data and current 
also shows steps after 50 steady state cycles due to the five tested frequencies, see Fig. 4(b). 
 

4.3 Emulation of viscous damping using validated models 
 
In this section the forward and inverse models are used to demonstrate how accurate pure 

viscous damping can be emulated by the rotary MR damper of the present study. Fig. 15(a) shows 
the flow chart of this simulation. The velocity of the MR damper is assumed to be pure sinusoidal. 
This is a reasonable assumption for damping of lightly damped structures, where the structural 
response is typically dominated by resonance at the frequency of the critical vibration mode and 
with a slowly varying amplitude envelope. The desired control force is the product of velocity and 
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Fig. 13 Validation of inverse MR damper model for half- sinusoidal current at 3 A (a-c) and 4 A (d) 

 

 
Fig. 14 Validation of inverse MR damper model for half-sinusoidal current at 4 A (a-d) 
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Fig. 15 Simulated emulation of viscous damping: Flow chart (a), simulated MR damper current 
(b) and simulated MR damper force (c, d) 
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current in Fig. 15(b) exhibits two significant spikes on top of the approximately half-sinusoidal 
time history. The first spike should not occur because the desired force decreases to zero. Hence, 
zero current would be the best choice to track the desired viscous force as precise as possible. The 
second current spike occurs when the MR fluid is operated within the pre-yield region. This spike 
is therefore needed because the actual MR damper force at 0 A within the pre-yield region is 
smaller than the desired viscous force that increases rapidly at displacement extremes due to the 
elliptic force displacement trajectory of viscous damping (Maslanka et al. 2007). When the MR 
fluid is operated in the post-yield region, the current shows approximately a half-sinusoidal 
behavior because of the pure sinusoidal behavior of the desired force, see Fig. 15(c). The main 
discrepancies are mainly due to the non-linear relation between yield force and current and the 
force response, arising because of the inherent migration and aggregation of the particles in the 
MR fluid (Boston et al. 2010, Weber and Boston 2011a, b). Despite the mediocre estimate of the 
current at zero velocity and the slightly overestimated current during the pre-yield region, the time 

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

-100

-50

0

50

100
desired force
simulated force

velocity [m/s]

fo
rc

e 
[N

]

0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

2

time [s]
 

 
disp.: sin, 20mm, 1.27Hz; emulation of viscous damping

velocity*5 [m/s]
simulated current [A]

−300

−200

−100

0

100

200

300
 

desired force
simulated force

0.2 0.4 0.6 0.8 1 1.2 1.4
time [s]

inverse model

velocity input (disp.: sin, 20mm, 1.27Hz)

c

desired force

simulated current

forward model

simulated force

viscous coefficient c

(a) (b)

(c) (d)
 

(data during 0.2-0.987s)

689



 
 
 
 
 
 

Subrata Bhowmik, Felix Weber and Jan Høgsberg 

history of the damper force in Fig. 15(c) and the force velocity trajectory in Fig. 15(d) demonstrate 
that pure viscous damping is in fact tracked fairly accurate at velocities larger than 0.05 m/s. The 
obtained results indicate that the NNs have difficulties to accurately estimating the behavior of the 
MR damper in the pre-yield region, which produces current spikes and thereby significant force 
tracking errors at small velocities. However, effective structural damping is mainly governed by 
the energy dissipation at large velocities, why these low-velocity current spikes are only of minor 
importance for most practical applications. 
 

 
5. Conclusions 

 
This paper describes the feed forward back propagation neural network based modeling of the 

forward and the inverse behavior of a rotary MR damper using experimentally measured data for 
both training and validation. The measured data has been low pass filtered in order to remove high 
frequency signal parts that might have significant influence on the performance of the NN. The 
measured data comprising two displacement amplitudes, five frequencies and both constant and 
half-sinusoidal current has been combined to get a single sequential time history and afterwards 
down-sampled from 1000 Hz to 200 Hz to optimize the training of the NN architecture. An 
optimization procedure has been presented to identify the NN architecture that minimizes the error 
of the forward model. For training the procedure has been tested with combinations of measured 
displacement, velocity, acceleration and damper current as input states. Furthermore, the number 
of previous values of the input states and the number of hidden layers and neurons have been 
altered to obtain the best numerical fit. To limit the computational time of this numerical 
optimization, the transfer functions for the hidden and output layers were fixed to the tangent 
sigmoid function and the linear function, respectively. The present procedure demonstrates that the 
modeling error is not decreased significantly: 

∙ if displacement and acceleration are taken as inputs in addition to velocity, and 
∙ if substantially more than three past values of the inputs are taken into account, and 
∙ if substantially more than two hidden layers of more than six neurons are considered. 

The same NN architecture has also been used to model the inverse MR damper behavior. In this 
case the damper current is the output, while the absolute values of damper force and velocity are 
used as input states. The introduction of the absolute values as the input to the NN minimizes the 
possibility of negative spikes in the estimated damper current when e.g. tracking a desired viscous 
force. 

The trained forward and inverse MR damper models have been validated with measurement 
data that is independent of the training data at different displacement amplitudes and frequencies. 
The validation data comprises test records at two displacement amplitudes, five frequencies and 
both constant and half-sinusoidal damper current signals. The validation shows that the forward 
model is able to predict the MR damper force with high accuracy. Especially the force response 
due to the migration and aggregation of the MR fluid particles is captured well, and the slope of 
the force displacement trajectory in the pre-yield region is predicted accurately. The validation of 
the inverse MR damper model shows two particular characteristics. When the measurement data 
has been obtained from constant current, the predicted current records contain significant spikes 
with the same frequency as the damper displacement. This might therefore result from force 
knocking effects at displacement extremes due to the inherent bearing plays between the damper 
rod and the hydraulic machine, which are of the order of 0.02 mm. For these tests, only the mean 
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value of the predicted current is accurate. In contrast, the prediction based on the half-sinusoidal 
current turns out to give more accurate results for all amplitudes and frequencies used in the tests. 
Nevertheless, also this validation shows current spikes which do not occur at the time of 
displacement extremes, but later. This indicates that these spikes are forced by the Stribeck effect, 
which occurs between the pre- and post-yield regions. 

The validated forward and inverse MR damper models are finally used to simulate the 
emulation of viscous damping. The simulation shows that the inverse model overestimates the 
current in the vicinity of zero velocity, i.e. in the pre-yield region, while the output current is quite 
accurate within the post-yield region. As a result, the force tracking error is fairly large at small 
damper velocities, but considerably smaller at velocities where the MR damper is not operated in 
the pre-yield region. 

This investigation shows that the NN technique can be used to model the inverse MR damper 
behavior and thereby effectively solve the force tracking task with sufficiently small force tracking 
error. 
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