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Abstract.  This paper is concerned with the determination of exact buckling loads and vibration frequencies 
of variable thickness isotropic plates using well known finite difference technique. The plates are subjected 
to uni, biaxial compression and shear loadings and various combinations of boundary conditions are 
considered. The buckling load is found out as the in plane load that makes the determinant of the stiffness 
matrix equal to zero and the natural frequencies are found out by carrying out eigenvalue analysis of 
stiffness and mass matrices. New and exact results are given for many cases and the results are in close 
agreement with the published results. In this paper, like finite element method, finite difference method is 
applied in a very simple manner and the application of boundary conditions is also automatic. 
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1. Introduction 
 

In the optimal design of structures, varying thickness plates are frequently used to economize 
on the plate materials or lighten the plates. Stiffened plates possess a number of attractive features, 
such as material saving, weight reduction, stiffness and strength improvement. Most research over 
the last 25 years has been based on theoretical approaches both approximate and exact and is 
computer based. Numerical methods characterize the behaviour of a structure at points or within 
regions of the structure that result in large order of system of equations whose coefficients are 
numerically evaluated and they are functions of materials, geometry and applied load parameters 
at these points or regions. Finite difference, finite element and finite strip are the foremost 
numerical methods. The finite element provides the most general frame work and many of the 
contributions of finite element and finite strip methods to plates are given by Azhari (1993). When 
dealing with non-uniform thickness plates, it is generally difficult to obtain exact solutions and 
hence many of the references used numerical methods for determining buckling and vibration 
solutions. 
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Finite difference represents the traditional approach to numerical analysis based on well 
established principles. The method leads to solution of equations assuring convergence. The 
resulting algebraic equations are relatively simple. Even though finite element method is well 
established as a procedure for static and dynamic analysis for complex structures, in this paper, it 
is shown that finite difference method is applied in a simple manner and incorporating boundary 
conditions is also an easy task. 

The buckling loads for uniform thickness plates have been summarised in the text by 
Timoshenko and Gere (1961), Allen and Bulson (1980), Szilard (2004). Many authors have 
investigated the problem of stability of variable thickness plates. Wittrick and Ellen (1962) solved 
the problem of plates tapering in one direction and uniformly compressed in that direction by using 
Galerkin’s method. Navaneethakrishnan (1968) applied quintic – spline collocation technique by 
considering sinusoidal variation in the thickness in loaded direction and constant thickness in other 
direction to solve for buckling of plate with various support conditions. Chung and Cheung (1971) 
investigated the thin flat- walled structures with different boundary conditions in which they 
developed a finite strip local buckling approach for plates. The first use of the semi analytical 
finite strip method for local buckling appears to be in the work of Przemieniecki (1973). 
Perturbations technique was applied by Chehil and Dua (1973) to solve the stability problems of a 
plate. Hwang (1973) investigated the stability of plates with piecewise variation in thickness using 
energy method applying the principle of virtual displacement. Hancock (1978) used a sine curve 
for longitudinal variation of buckling displacement which is applicable for structures whose ends 
are simply supported. The implementation of energy method in stability of plates was explained by 
Chen and Lui (1987). Singh and Dey (1990) applied variational finite difference approach for bi-
directionally stepped plates. Harik et al. (1991) used a semi numerical – semi analytical method 
for the analysis of plates with varying rigidities. They first reduced the governing partial 
differential equation to an ordinary differential equation using the method of separation of 
variables, and then finite difference technique was used to solve the ordinary differential equation. 
Subramanian et al. (1993) analyzed elastic stability of varying thickness plates using the finite 
element method with uniformly distributed compressive forces in one direction. Bradford and 
Ashari (1995) used finite strip method using two types of series functions to find the elastic local 
buckling of plates with different boundary conditions. Nerantzaki and Katsikadalils (1996) solved 
for the buckling load of simply supported plate with linear and exponential variation in loaded 
direction by using the analogue equation method. Bradford and Azhari (1997) used modified semi-
analytical using bubble functions for the stability of plates with different boundary conditions. 
Yuan and Yin (1998) used Kantorovich method for computation of buckling loads. Xiang and 
Wang (2002) presented an analytical approach that combines Levy method and the state space 
technique for determining exact buckling and vibration solutions of uni – directional multi-stepped 
rectangular plates. The extended Kantorovich method in conjunction with the exact element 
method was used by Eisenberger and Alexandrov (2003). Exact solutions for buckling and 
vibration of stepped rectangular Mindlin plates were obtained by Xiang and Wei (2004) by using 
Levy’s solution and a decomposition method. Xiang and Zhang (2005) presented results for the 
free vibration analysis of stepped circular Mindlin plates with multiple step-wise thickness 
variations using the domain decomposition technique. They have considered various plate 
boundary conditions and various ratios such as thickness location etc. Gupta et al. (2006) have 
analysed free axi-symmetric vibrations of non-homogeneous isotopic circular plates of nonlinear 
thickness variation by using differential quadrature method. In addition to variation in thickness, 
variation in Young’s modulus and mass density of plate material is also considered. They have 
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been presented and compared with thickness variation and boundary conditions .The thickness 
variations in one or two directions are taken as polynomial form. Mindlin’s first order shear 
deformation theory and Reddy’s higher order shear deformation theory has been applied to the 
plate analysis. Solution was obtained by using Extended Kantorovich method. Numerical results 
were compared with published results. Xiang (2007) applied Levy’s solution method with domain 
decomposition method and the state space technique for free vibration of rectangular plates with 
abrupt changes in properties such as plate thickness, in shear force and in slopes. Matsunaga 
(2008) analysed for free vibration and buckling analysis of plates made of functionally graded 
(FG) material taking into account the effect of transverse shear and normal deformation and rotary 
inertia. Fundamental dynamic equation using 2D higher theory is derived using power series 
expansion of displacements and Hamilton’s principle. Results show that 2D higher order theory 
predicts accurately the natural frequency of functionally graded simply supported plates. Nie and 
Zhong (2008) investigated the free and forced vibration of functionally graded annular sectorial 
plates with simply supported radial edges and arbitrary circular edges using a semi – analytical 
approach. Numerical results are compared with the existing exact solutions and the good 
agreement is obtained. Yalcin et al. (2009) carried out the free vibration analysis of thin circular 
plates for simply supported, clamped and free boundary conditions using differential transform 
method (DTM). They reduced the governing differential equation into recurrent relation using 
(DTM) finally reducing those to algebraic equations. Their results are compared with Bessel 
solutions. Hashami et al. (2011) presented exact closed –form solution of free vibration analysis of 
thick FG rectangular plates with different conditions of free, simply supported and clamped 
boundary conditions. Vibration frequencies were obtained by solving five coupled partial 
differential equations and using the potential functions and separation of variables.  Felix et al. 
(2011) investigated the buckling and vibration of clamped orthotropic plate under linearly varying 
in-plane load using Ritz technique. John Wilson and Rajasekaran (2012) investigated elastic 
stability of all edges simply supported, stepped and stiffened rectangular plate under uni-axial 
loading. The objective of this paper is to present the results of buckling and vibration of plates 
subjected to in-plane loads using finite difference technique. Various numerical examples are 
solved and the results are compared with the earlier work wherever possible. 

 
 

2. Formulation of the problem 
 

Consider a rectangular plate of side ‘a’ and ‘b’ as shown in Fig. 1. Divide the plate into M × N 
rectangular meshes of length l = a/M; m = b/N. 

 
2.1 Plate supported on all edges clamped (C) or simply supported (S) 

 
To solve the problem by finite difference approach one has to assume imaginary points as 

shown in Fig. 2(a). The total number of unknowns will be the deflections at all the nj = MN + 3M 
+ 3N − 3 joints. (Total no. of joints = internal points+ boundary points+ imaginary points).  

Equations available are 
1. Equilibrium equations to be provided at all the internal points neq = (M − 1)(N − 1) as 

11 


njnjneqnjnjneq

0whwM 00

                                       
(1) 
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Fig. 1 Uniform rectangular plate 
 
 
where M0 and h0 represent flexural and geometric stiffness matrix in case of buckling problems 
and flexural and mass matrices in case of free vibration problems.  

2. Displacements are zero along all the four boundaries of the plate giving 2(M + N) equations 
3. If the edges are simply supported, (moments are zero at the points on the support)  
   3a) If edges x = 0 and x = a are simply supported  
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 where (i, j) is the point on the boundary and wi,j = 0 and   

hence                                                        wi−1, j = − wi+1,j                                                               (2b) 

Similarly if on edges y = 0 and y = b are simply supported wi,j = 0 and  

hence                                                        wi,j−1 = − wi,j+1                                                                                                     (2c) 

  3b) If the edges are clamped on x = 0 and x = a the slopes are zero. 
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 
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   
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(2d) 

If edges y = 0 and y = b are clamped  

, 1 , 1
, 1 , 10

2
i j i j

y i j i j

w ww
or w w

y m
  

 


   
                                    

(2e) 

The above conditions a) or b) lead to 2(M + N − 2) equations.  
4. Hence the total boundary condition equations are 4(M + N − 1) given by  

4( 1) 1M N nj nj


   

1M w 0

                                            
(3a) 

272



 
 
 
 
 
 

Buckling and vibration of rectangular plates of variable thickness with different end 

5. Combining the equilibrium equations and boundary condition equations we get total no of 
equations available are nj = 4(M + N – 1) + (M − 1)(N − 1) = MN  + 3M + 3N – 3 which is the 
required no of unknowns given by 

11 



















njnjnjnjnjnj

0w
0

h
w

M

M 0

1

0

                                         

(3b) 

 
2.2 For plates supported on three edges (x=0; y=0; y=b) and free on edge x=a (see 

Fig. 2(b)) 
 
The total number of unknowns will be the deflections at all the nj = NM + 3N + 4M joints.   
Equations available are 
1. Equilibrium equations to be provided at all the internal points neq = MN −N written as 

   
11 


njnjneqnjnjneq

0whwM 00                                        (4) 

2. Displacements are zero along all the three boundaries of the plate giving (2M + N + 1) 
constraint equations. 

3. If the edges are simply supported, (moments are zero at the points on the support) 

   1,1,,11 ;,   jijijii wwwjw
                                       

 (5a) 

 or if the edges are clamped (slopes are zero at the points on the support)(for three edges)  

   1,1,,11 ;,   jijijii wwwjw
                                          

(5b) 

leads to (2M + N −1) equations. 

 

Fig. 2 (a) Internal and boundary points of a plate 
(edges S or C) 

Fig. 2 (b) Internal and boundary points of a plate 
(edges y = 0 and y = b C/S; x = 0 – S, x = a – F 
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4. Moment is zero on the free edge leading to (N + 1) equations and shear is zero on the free 
edge leading to (N – 1) equations.  

5. Hence the total constraint equations are 4(N + M) given by 

       
1)(4 


njnjNM

0wM1                                                  (6a) 

6. Combining the equilibrium equations and constraint equations we get total no of equations 
available are nj = (MN – N) + (4M + 4N) = MN + 4M + 3N which is the required no of unknowns 
given by 

11 



















njnjnjnjnjnj

0w
0

h
w

M

M 0

1

0

                                         

(6b) 

which is equivalent to 

     0wKwK G 
                                                 

(7a) 

or  

     GP K w K w 0                                                (7b) 

 and                                                     2 K w M w 0
                                               

(7c) 

where K, GK  and M are the flexural stiffness, geometric stiffness and mass matrices respectively. 
Eq. 7(b) is the governing equation for buckling problems and Eq. 7(c) for free vibration problems 
where P and ω denote the buckling load and the natural frequency of the plate.  
 

2.3 Derivation of matrix coefficients: (buckling problem) 
 
In order to derive the coefficient matrices for buckling problems, let us consider the 

fundamental differential equation for the deflection ‘w’ of a thin plate under the action of forces in 
the middle plane and this is given by 

2 22 2 2 2 2 2 2

2 2 2 2 2 2
2 2 2xy yx

x y xy

M MM w w w w w w
N N N P

x x y y x y y x x y y x
  

         
                    

(8) 

where β, γ, δ are the tracers that take the value of either 0 or 1 for different in-plane load 
combinations and 

   
2 2 2 2 2 3

2 2 2 2 2
, , 1

12 1
x y xy

w w w w w Et
M D M D M D and D

x y y x x y
  


         

                        

 (9)

 

D is the flexural rigidity of the plate and Nx, Ny and Nxy are the in- plane forces per unit length. 
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Fig. 3 Definition of subscripts of w 
 
 
By considering the in-plane forces the governing differential equation becomes 
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                                                  

    
        

      (10) 

At the node (i, j) for varying thickness ti,j the above equation can be transformed into system of 
equations using the following central difference formulae for the derivatives. The subscripts of w 
given in Eqs. (11) to (22) are shown in Fig. 3. 

1 1 1 1
, , , ,

, 2 2 2 2,

1 1
,

i j i j i j i j
i j i j

w w
w w w w

x l y m   

                                         

(11)  

   
2 2
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              
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(13) 
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Substitute Eqs. (14) – (16) in Eq. (10)  
we get the following equilibrium equations for different values of i and j.  
With Z = 2(1 − v)α2, X = −2α4

 – 2vα2, Y = −2 − 2vα2
, Q = 4α4 + 8vα2 +4, α = m/l 
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2.4 Moment and shear on the free edge 

 
Since (x = a) is considered as free edge, the moment  
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Again on the free edge shear Vx = 0 and it is given by Szilard (2004) 
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2 0xy x
x

M M w
V P

y x x
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Writing the finite difference equation at the point (i, j) on the free edge we get 

wi−2,j A1 + wi−1,j A2+ wi,j A3 + wi+1,j A4 + wi+2,j A5 + wi−1,j+1 A6 + wi−1,j−1 A9 + wi,j+1 A7  

+ wi,j−1 A10 +  wi+1,j+1 A8 + wi+1,j−1 A11 = − βP(wi+1,j − wi−1,j)                    (21) 
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(22)

The coefficients of Eq. 22 will contribute to flexural stiffness and the coefficients of the right 
hand side of Eq. 21 will contribute to the geometric stiffness. 
 

2.5 Derivation of matrix coefficients: (free vibration problem) 
 
Based on the classical thin plate theory, the governing differential equation in harmonic 

vibration is given by Leissa (1973) 

2 22
2

2 2
2 0xy yx

M MM
t w

x x y y
 

 
   

                                          
(23) 

The coefficients of the flexural stiffness matrix will be the same while the mass matrix can be 
derived as follows. The right side of the Eq. 17 is given as ω2ρti,j wi,j 

which are coefficients of the 
of h0 matrix. 
 
 
3. Convergence study 
 

The analysis for the buckling coefficient of a simply supported plate with uniform thickness is 
carried out using the approach explained in section 2. Table 1 and Fig. 4 show the monotonic 
convergence when the grid size is increased from 2  2 to 32  32 and the percentage error 
reduced for 32  32 grid size. Hence in this paper different grid sizes are taken from 20 to 32 
depending on the problem in which case the error is less than 0.205 %. 
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4. Types of problems considered (buckling of plates) 
 
4.1 Uniform rectangular plate: 
 
The rectangular plate is compressed by forces uniformly distributed along the sides x = 0 and x 

= a as shown in Fig. 1. Using finite difference method 841 equilibrium equations at the internal 
nodes and equations for 236 boundary conditions are written to solve the resulting matrix of 1077 
× 1077 as an eigenvalue problem to find the buckling load. Tables 2,3,4,5,6 and 7 give the 
buckling loads for a) all edges are simply supported b) all edges are clamped c) loaded edges 
supported and longitudinal edges clamped d) loaded edges clamped and longitudinal edges are 
simply supported e) loaded edges are simply supported and longitudinal edges are clamped – 
simply supported f) shear buckling for different boundary conditions and the values are compared 
with earlier results (Anonymous Hand book of Structural Stability 1971, Gambir 2004).The values 

 
 

 
Fig. 4 Monotonic convergence of buckling coefficient 

 

 

Table 1 Convergence of buckling coefficient 

Grid size Buckling coefficient(k) % of error 
2 × 2 3.2423 18.9400 
4 × 4 3.7986 5.0350 
8 × 8 3.9489 1.2775 

12 × 12 3.9772 0.5700 
16 × 16 3.9872 0.3200 
20 × 20 3.9918 0.2050 
24 × 24 3.9944 0.1400 
28 × 28 3.9959 0.1025 
32 × 32 3.9979 0.0803 

Theoretical value 4.0000 
Timoshenko and Gere (1961) 
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Table 2 Local buckling coefficient k of plate with all edges simply supported Number in  
 bracket ( ) shows the no of sine waves (β = 1, γ = 1, δ = 0, SSS ) 

a/b This analysis Gambir(2004) 
0.4 8.4023(1) 8.4100 
0.6 5.1331(1) 5.1378 
0.8 4.1987(1) 4.2025 
1.0 3.9963(1) 4.0000 
1.2 4.1307(1) 4.1344 
1.4 4.4661(1) 4.4702 
1.6 4.1961(2) 4.2025 
1.8 4.0397(2) 4.0446 
2.0 3.9964(2) 4.0000 
2.4 4.1327(2) 4.1344 
2.8 4.0134(3) 4.2191 
3.0 3.9964(3) 4.0000 
4.0 3.9965(4) 4.0000 

     
Table 3 Local buckling coefficient k of plate with all edges clamped (β = 1, γ = 0, δ = 0, CCCC) 

a/b This analysis Bradford and Azhari (1997) Anonymous Hand Book(1971) 
0.50 19.2510(1) 19.20 19.20 
0.75 11.6039(1) 11.70 11.40 
1.00 10.0094(1) 10.31 10.08 
1.25 9.1923(2) 9.28 9.94 
1.50 8.2913(2) 8.40 8.32 
1.75 8.0502(2) 8.28 8.08 
2.00 7.7996(3) 7.89 7.88 
3.00 7.3013(4) - - 
4.00 7.1391(4) - - 

 
Table 4 Local buckling coefficient k of a plate loaded edges simply supported longitudinal edges  
clamped (β = 1, γ = 0, δ = 0, SSCC) 

a/b This analysis Bradford and Azhari (1997) Anonymous Hand Book(1971) 
0.4 9.4119(1) 9.46 9.45 
0.5 7.6553(1) 7.71 7.69 
0.6 7.0168(1) 7.07 7.06 
0.7 6.9584(1) 7.02 7.00 
0.8 7.2559(1) 7.32 7.30 
0.9 7.8027(1) 7.87 7.83 
1.0 7.6480(2) 7.71 7.69 
1.2 7.0144(2) 7.07 7.06 
2.0 6.9313(3) 6.99 6.99 
3.0 6.9985(5) 7.40 7.40 
4.0 6.9351(6) - - 

 
obtained using finite difference method agrees with the published results. SSCS - means loaded 
edges simply supported and longitudinal edges clamped and simply supported. Fig. 5 shows the 
buckled shape for a fixed plate a/b = 4 subjected to shear on all edges. 
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Table 5 Local buckling coefficient k of a plate loaded edges clamped and longitudinal edges simply  
supported (CCSS) 

a/b This analysis Bradford and Azhari (1997) Anonymous Hand Book(1971) 
0.4 27.0271(1) 27.12 27.12 
0.6 13.3389(1) 13.38 13.38 
0.8 8.7044(1) 8.73 8.73 
1.0 6.7278(1) 6.75 6.74 
1.2 5.8258(1) 5.85 5.84 
1.4 5.4441(1) 5.50 5.45 
1.6 5.3298(1) 5.48 5.34 
1.8 5.1584(2) 5.17 5.18 
2.0 4.8316(2) 4.85 4.85 
3.0 4.3902(3) 4.41 4.42 
4.0 4.2200(4) - - 

 

Fig. 5 Buckled shape of a fixed plate a/b = 4 subjected to shear 

 
Table 6 Local buckling coefficient k of a plate loaded edges simply supported and longitudinal  
edges simply supported and clamped  (β = 1, γ = 0, δ = 0, SSSC) 

a/b This analysis Bradford and Azhari (1997) 

0.728 5.4426 5.47 
0.790 5.3935 5.41 
0.889 5.4692 5.50 

 
 

4.2 Buckling of stepped thin plates 
 
A one step rectangular Levy plate subjected to in-plane load as shown in Fig. 6 is considered.  

For the buckling analysis of thin plates, we consider three in-plane loading cases, namely (1) uni-
axial in-plane compressive load in the x direction (β = 1; γ = 0); (2) uni-axial in-plane compressive 
load in the y direction (β = 0; γ = 1); and (3) equi-biaxial in-plane compressive loads (β = 1; ν = 1).  

Table 8 presents the buckling coefficient k generated by the present finite difference approach 
and compared with Xiang and Wei (2004) for the case of (a = 2, b = 1, a1 = 1, ν = 0.25) and 
varying the thickness ratio t1/t0 and the results are in close agreement with Xiang and Wei (2004).  
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Table 7 Local buckling coefficient k  of a plate buckling of rectangular plates due to uniform  shearing stress 
on all edges β = 0, γ = 0, δ = 1(first two letters correspond to short edges  and last two letters correspond to 
long edges) 

a/b 
CCCC SSCC SSSS 

This analysis Gambir (2004) This analysis Gambir (2004) This analysis Gambir (2004)
1.0 14.6517 14.71 12.5870 12.280 9.3763 9.338 
1.5 11.4776 11.50 10.8273 11.120 7.1104 7.070 
2.0 10.3039 10.34 10.0660 10.210 6.5886 6.590 
2.5 9.9501 9.82 9.7507 9.810 6.0908 6.066 
3.0 9.6797 9.62 9.6262 9.610 5.9047 5.890 
4.0 9.5656 - 9.5489 - 5.7249 - 

 

Fig. 6 One-step Levy rectangular plate 

 
Table 8 Comparison of buckling coefficient for a one step SSSS rectangular plate subjected  
to uniaxial load ((β = 1, γ = 0, δ = 0) a = 2.0, a1 = 1.0, ν = 0.25, thin plate) as given in Fig. 6 

t1/t0
 

This analysis Xiang and Wei (2004) 
0.4 0.3113 0.3082 
0.6 1.0246 1.0244 
0.8 2.3339 2.3439 
1.0 3.9918 3.9995 
1.2 4.5125 4.5315 
1.4 4.6506 4.6651 
1.6 4.7252 4.7280 
1.8 4.7744 4.7639 
2.0 4.8097 4.7865 
2.2 4.8357 4.8014 

 
 
Table 9 presents the buckling factors for the four symmetric Levy square plates (SS, CC, SF 

and CS) are the boundary conditions for the loaded edges and SS conditions for the longitudinal 
edges with one- step (see Fig. 6). The step length parameter a1 varies from 0.3, 0.5 to 0.7. The step  
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Table 9 Comparison of buckling coefficients for a thin square plate with one step subjected to uniaxial and 
bi-axial load - δ = 0 (longer edges are simply supported) (values in brackets from Xiang and Wei (2004) 

(β, γ) t1/t0 a1 SS CC SF CS 

(1,0) 1.2 

0.3 
 

5.7462 10.1042 4.0030 7.7157 
(5.7389) (10.1929) (3.9616) (7.7310) 

0.5 
4.9635 8.3380 3.8047 6.8194 

(4.9616) (8.3862) (3.7668) (6.8186) 

0.7 
4.5090 7.5152 3.4948 5.8168 

(4.5093) (7.5966) (3.4598) (5.8171) 

(1,0) 2.0 

0.3 
10.4230 19.7319 10.3688 19.2377 

(10.3908) (19.6097) (10.3339) (18.7209) 

0.5 
7.7450 13.2327 7.7069 12.2088 

(7.7348) (13.7249) (7.7133) (12.2933) 

0.7 
5.9160 9.7683 5.9079 9.0300 

(5.8800) (9.8258) (5.8587) (9.0179) 

(0,1) 1.2 

0.3 
5.9812 11.5977 2.2593 8.5837 

(5.9772) (11.7662) (2.2603) (8.6478) 

0.5 
5.1995 9.7893 2.0874 7.6112 

(5.1961) (9.9132) (2.0894) (7.6544) 

0.7 
4.6025 8.4425 1.8626 6.6480 

(4.6011) (8.5567) (1.8654) (6.6832) 

(0,1) 2.0 

0.3 
16.6111 30.1867 8.5741 25.4753 

(16.4087) (33.8744) (8.5261) (25.1480) 

0.5 
10.8251 18.2350 6.2770 15.8639 

(10.8319) (18.6525) (6.3249) (15.9189) 

0.7 
7.5661 11.2123 4.3250 10.9108 

(7.5468) (11.4514) (4.3931) (10.9912) 

(1,1) 1.2 

0.3 
2.9549 5.6183 1.7343 4.0987 

(2.9524) (5.7385) (1.7328) (4.1147) 

0.5 
2.5599 4.7838 1.6245 3.6197 

(2.5584) (4.8650) (1.6246) (3.6270) 

0.7 
2.2852 4.2988 1.4638 3.1300 

(2.2848) (4.3902) (1.4652) (3.1367) 

(1,1) 2.0 

0.3 
6.7211 12.6067 5.8980 11.5045 

(6.6697) (13.0149) (5.8610) (11.2214) 

0.5 
4.6999 8.0630 4.1439 7.0590 

(4.7072) (8.7214) (4.1886) (7.0850) 

0.7 
3.4426 6.0514 2.9694 5.0707 

(3.4286) (6.4258) (3.0002) (5.0902) 
 
 

thickness ratio of the plates are set to be t1/t0 = 1.2 and 2.0 for the thin plates. It is observed that the 
buckling factors decrease as the step length parameter a1 increases for all cases. The rate of 
decrease is more pronounced for plates subjected to the uni-axial in-plane load in the y-direction (β 
= 0; γ = 1). The buckling coefficients increase as the step thickness ratio changes from 1.2 to 2.0. 
Even in this case, it is observed that the rate of increase is more significant for plates subjected to 
the uni-axial in-plane load in the y-direction (β = 0; γ = 1). 

 
4.3 Buckling of one, two and three even step plates 
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Table 10 compares the buckling coefficients for two, three and four even step plates in which 

the step thickness variation for plates is moderate. i.e., ti/t0 = 1 + i × 0.1 where i(= 1, 2 and 3) 
referring to the plate of ith step. It is observed that the increase in the number of steps has 
insignificant effect on the buckling factors for SS, CC and CS plates. It is due to the fact that the  

 
 

Table10 Comparison of buckling coefficients for thin rectangular plates having one, two and three even 
steps (Longer edges are simply supported δ = 0) (t1/t0 = 1.1, t2/t0 = 1.2, t3/t0 = 1.3)) are the thicknesses ratio 
of first, second and third steps respectively) (values in brackets from Xiang and Wei (2004) for thick 
Mindlin plates) 

Cases (β, γ) SS CC SF CS 
 
 
 
 
 

a = 2 

(1,0) 
4.3694 5.3284 3.0597 5.0288 

(4.1143) (4.9620) (2.6686) (4.7129) 

(0,1) 
1.7886 2.1634 1.3503 1.9872 

(1.7246) (2.0864) (1.3125) (1.914) 

(1,1) 
1.4173 1.6670 1.2485 1.5632 

(1.3669) (1.6056) (1.2069) (1.5075) 

 
 
 
 
 

a = 3 

(1,0) 
4.3743 5.1749 3.9700 5.1656 

(4.1435) (4.8472) (3.4063) (4.8382) 

(0,1) 
1.5686 1.6942 1.4892 1.6682 

(1.5232) (1.6425) (1.4475) (1.6150) 

(1,1) 
1.3645 1.4813 1.3570 1.4709 

(1.3256) (1.4347) (1.3190) (1.4244) 

 
 
 
 

a = 4 

(1,0) 
4.3743 5.1655 4.3742 5.1655 

(4.1437) (4.8403) (4.1436) (4.8402) 

(0,1) 
1.5415 1.6277 1.5313 1.6247 

(1.4976) (1.5778) (1.4919) (1.5744) 

(1,1) 
1.3623 1.4654 1.3616 1.4649 

(1.3236) (1.4198) (1.3235) (1.4193) 
 

Table 11 Comparison of buckling coefficient value for uniformly compressed SSSS plate with bilinear 
thickness variation ex = 0.5 and ey varied (β = 1, γ = 0, δ = 0) (values in brackets are from Eisenberger and  
Alexandrov (2003)) 

a/b 
ey values 

0.125 0.25 0.5 0.75 1.0 

0.5 
13.8962 16.3048 21.5645 27.4250 33.84444 

(13.9322)(1,1) (16.3557)(1,1) (21.6681)(1,1) (27.0622)(1,1) (34.1667)(1,1) 

1.0 
8.4910 10.0173 13.4742 17.4858 22.0681 

(8.5212)(1,1) (10.0634)(1,1) (13.5826)(1,1) (17.7076)(1,1) (22.4688)(1,1) 

1.5 
7.7779 9.1700 12.3097 15.9352 20.0594 

(7.8130)(2,1) (9.2266)(2,1) (12.4502)(2,1) (16.2238)(2,1) (20.5704)(2,1) 

2.0 
7.0958 8.3688 11.2481 14.5839 18.3903 

(7.1297)(2,1) (8.4195)(2,1) (11.3611)(2,1) (14.8056)(2,1) (18.7760)(2,1) 

3.0 
6.4588 7.6198 10.2501 13.3048 16.7988 

(6.4838)(3,1) (7.6595)(3,1) (10.3356)(3,1) (13.4752)(3,1) (17.0947)(3,1) 

4.0 
6.1177 7.2186 9.7153 12.6190 15.9445 

(6.1462)(3,1) (7.2590)(3,1) (9.7989)(3,1) (12.7763)(4,1) (16.2122)(4,1) 

284



 
 
 
 
 
 

Buckling and vibration of rectangular plates of variable thickness with different end 

buckling behaviour of the plates is dominated by the first two steps of the plate. For SF plates, 
however, the buckling factors increase significantly as the number of steps increase, especially 
when the plates are subjected to uni-axial in-plane load in the x-direction (β = 1; γ = 0). 

 
4.4 Buckling of a plate with bi-linear thickness variation loaded in x – direction 
 
The values of the dimensionless buckling load (buckling coefficients) for SSSS plate with 

bilinear thickness variation in the x and y directions as t = t0(1 + exx/a)(1 + eyy/b) are given in 
Table 11 for values of ex = 0.5 and ey = 0.125, 0.25, 0.25, 0.5, 0.75, 1.0. The values computed 
using finite difference approach agrees with the values obtained by Eisenberger and Alexandrov 
(2003) who used Kantorovich method. The buckled shape for a/b = 3 and ey = 0.75 for a simply 
supported plate uniformly compressed in x direction is shown in Fig. 7. 

 
 

Fig. 7 Buckled shape (a/b = 3 thickness vary in both direction) SSS condition 

 
Table 12 Buckling coefficient k for horizontally and vertically stiffened in the centre of the plate as shown 
in Fig. 8 

a/b 
t1/t0 

2 1.75 1.5 1.25 
0.25 42.9882 37.9774 32.3491 25.6451 
0.50 17.7850 14.2768 11.2548 8.6047 
0.75 11.6463 9.3406 7.4086 5.7657 
0.80 11.1662 8.9654 7.1236 5.5593 
0.90 10.5927 8.5221 6.7908 5.5211 
1.00 10.3904 8.3735 6.6858 5.2509 
1.10 10.4423 8.4288 6.7404 5.2999 
1.20 10.6656 8.6262 6.9101 5.4379 
1.30 10.9912 8.9164 7.1616 5.6442 
1.40 11.3478 9.2494 7.4633 5.9021 
1.50 11.3688 9.1433 7.2701 5.6908 
1.75 10.1344 8.2653 6.6763 5.3027 
2.00 9.3621 7.7664 6.3919 5.1663 
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Fig. 8 Horizontally and vertically stiffened at 
centre of the plate 

Fig. 9 Buckling coefficient vs a/b ration for horizontally 
and vertically stiffened at the centre of the plate 

 

Fig. 10 Mode shape for a square plate (x = 0 – S; x = a – F, y = 0 – S, y = b – S) 
 
 
4.5 Buckling of stiffened horizontally and vertically at the centre of the plate 
 
Buckling is carried out for SSSS plate with 361 internal nodal points subject to uni-axial in-

plane compressive load in the x direction (β = 1; γ = 0) ,the width of the horizontal strip is equal to 
four times the width of a mesh (4l) with thickness t1 covering the centre of the plate and the width 
of the vertical strip equal to four times the length of the mesh (4m) with thickness t1 as shown in 
Fig. 8 and the critical values are calculated and tabulated in Table 12 and plotted in Fig. 9. 

 
Vibration of plates 
 
4.6 Vibration of a rectangular plate of uniform thickness with different boundary 
conditions 
 
Table 13 shows the comparison of frequency parameter values of a rectangular plate with 

different boundary conditions compared with Leissa (1973) who employed the Ritz method with 
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36 terms containing the product of beam functions. The results obtained by using finite difference 
method discussed in this paper more or less agree with the values obtained by Leissa (1973).The 
mode shape for shorter edges (simply supported and free) with longitudinal edges simply 
supported for α = 0.3 and t1/t0 = 2  is shown in Fig. 10 

 
4.7 Free vibration of stepped thin plates 
 
The free vibration of thin square and rectangular plate of multi steps is studied. Table 14 

presents frequency parameters Λ obtained using present finite difference method and from Xiang 
et al. (2004), Yuan et al. (1992) for one step (SSSS) square plate. The vibration solutions by finite 
difference solution are in close agreement with the results of Xiang and Wei (2004) and Yuan and 
Dickinson (1992). Results are given for one step with step length parameter a1 varying as 0.25 and 
0.75 and t1/t0 = 0.5 and 0.8. Table 15 presents first four frequency parameters for the Levy square 
plate with one step. The step length parameter a1 varies for 0.3, 0.5 and 0.7 and the step thickness 
ratios t1/t0 is set to be 1.2 and 2.0. In all the cases we obtain that the frequency parameters decrease 
with increase in step length parameter a1. It is due to the overall stiffness of the plate as the step 
length parameter a1 increases. On the other hand, the frequency parameter Λ increases as the step 
thickness t1/t0 changes from 1.2 to 2.0. The values given in Table 15 are the same order of 
magnitude by values given by Xiang and Wei (2004) who analyzed thick plates using Levy type 
solution method with domain decomposition. Table 16 presents first four frequency parameters for 
thin rectangular plates with one, two and three even steps. The thickness ratio of the steps are 1.1, 
1.2, 1.3 the plate aspect ratios a/b for the two, three and four even step plates are taken as 2, 3 and 
4 respectively. The frequency parameters change significantly as the number of steps increase. 

 
Table 13 Comparison of fundamental six frequency parameters with Leissa (1973) for a rectangular  
plate of uniform thickness  

Mode Analysis 
a/b                     SSSS 

0.4 2/3 1 1.5 2.5 

1 
FD 7.2397 3.2431 1.9971 1.4444 1.1600 

Leissa(1973) 7.2499 3.2468 1.9999 1.4424 1.1583 

2 
FD 10.2183 6.2217 4.9758 2.7758 1.6399 

Leissa(1973) 10.2651 6.2425 4.9999 2.7662 1.6349 

3 
FD 15.1260 9.9383 7.9544 4.4413 2.4398 

Leissa(1973) 15.2510 9.9880 7.9999 4.4210 2.4202 

4 
FD 21.8789 11.1295 9.8835 4.9965 3.5597 

Leissa(1973) 22.2515 11.2365 9.9999 4.9474 3.5006 

5 
FD 25.8561 12.9170 9.8835 5.7737 4.1596 

Leissa(1973) 26.0017 12.9844 9.9331 5.7449 4.1371 

6 
FD 28.8347 17.8247 12.8621 7.9944 4.6396 

Leissa(1973) 29.0100 17.9715 13.0000 7.9261 4.6136 

Mode Analysis 
a/b                      SCSC 

0.4 2/3 1 1.5 2.5 

1 
FD 7.6563 3.9377 2.9333 2.5202 2.3420 

Leissa(1973) 7.6813 3.9566 2.9149 2.5357 2.3583 

2 
FD 11.5137 7.9508 5.5455 3.5304 3.6510 

Leissa(1973) 11.6318 8.0479 5.5067 3.5543 2.6704 

3 
FD 17.3609 10.2774 7.0228 5.4803 4.1634 

Leissa(1973) 17.7107 10.3443 6.9236 5.5427 3.2784 
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    Table 13 Continued 

4 
FD 24.9707 13.8112 9.7517 6.4880 5.3969 

Leissa 1973) 25.7941 14.1291 9.4583 6.5820 4.2325 

5 
FD 27.0372 14.0383 10.3545 7.5507 6.2716 

Leissa(1973) 26.2048 14.1887 10.2238 7.6550 5.5462 

6 
FD 29.5029 19.8437 13.0774 8.3408 6.7383 

Leissa (973) 29.7708 20.2208 12.7524 8.5101 6.3685 

Mode Analysis 
a/b                        SCSS 

0.4 2/3 1 1.5 2.5 

1 
FD 7.4410 3.5412 2.3679 1.9081 1.6782 

Leissa(1973) 7.4238 3.5511 2.3954 1.9138 1.6846 

2 
FD 10.8842 7.0262 5.2058 3.0908 2.0709 

Leissa 1973) 10.7186 7.0845 5.2346 3.1051 2.0804 

3 
FD 16.4133 10.0997 5.8878 5.1782 2.7707 

Leissa(1973) 16.1911 10.1607 5.9409 5.2320 2.7943 

4 
FD 23.9588 12.4178 8.6496 5.3957 3.7836 

Leissa(1973) 23.3800 12.6295 8.7254 5.4441 3.8458 

5 
FD 26.0964 13.4463 10.0365 6.5850 5.0911 

Leissa(1973) 25.9412 13.5750 10.1573 6.3436 5.1989 

6 
FD 29.3611 18.7949 11.2661 8.1229 5.1484 

Leissa(1973) 29.1511 19.0622 11.4700 8.2845 5.2352 

Mode Analysis 
a/b                       SSFS 

0.4 2/3 1 1.5 2.5 

1 
FD 1.0242 1.0795 1.1821 1.3873 1.9025 

Leissa(1973) 1.0260 1.0900 1.1836 1.3889 1.9045 

2 
FD 1.3194 1.8483 2.7982 4.3908 5.0960 

Leissa(1973) 1.3227 1.8537 2.8120 4.4139 5.1198 

3 
FD 1.8964 3.3386 4.1395 4.8309 10.0378 

Leissa(1973) 1.9084 3.4135 4.1740 4.8479 10.1535 

4 
FD 2.7535 4.0416 5.9350 8.2103 11.1252 

Leissa(1973) 2.7916 4.0652 5.9840 8.2538 11.1659 

5 
FD 3.8881 4.8753 6.1850 9.2742 14.8834 

Leissa(1973) 3.9849 4.9038 6.2670 9.3848 14.9551 

6 
FD 3.9878 5.7376 8.9785 12.4982 16.7682 

Leissa(1973) 4.3254 5.8342 9.1480 12.6183 17.1301 

Mode Analysis 
a/b                       CCCC 

0.4 2/3 1 1.5 2.5 

1 
FD 14.8587 6.1070 3.6160 2.7142 2.3774 

Leissa(1973) 14.9763 6.1501 3.646 2.7347 2.3958 

2 
FD 17.4250 9.3795 7.3244 4.1687 2.7880 

Leissa(1973) 17.6155 9.4987 7.4367 4.2237 2.8181 

3 
FD 22.0348 14.8110 10.7708 6.5827 3.5256 

Leissa(1973) 22.4480 15.0608 10.9678 6.6969 3.5912 

4 
FD 28.6960 17.8772 12.9901 6.5953 4.5914 

Leissa(1973) 29.5764 18.1800 13.3351 6.7383 4.7315 

5 
FD 37.2239 22.1453 13.0566 7.9454 5.9558 

Leissa(1973) 38.9821 22.9635 13.3959 8.0847 6.2361 

6 
FD 39.3218 22.9697 16.2942 9.8423 6.2915 

Leissa(1973) 39.9612 - - 10.2114 6.3927 
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Table 14 Comparison of frequency parameters Λ for one-step SSSS square plate 

a1
 

t1/t0
 

Source 1 2 3 4 

0.25 

0.5 
Present 1.2882 2.8753 2.8798 4.8542 

Xiang and Wei(2004) 1.2924 2.8708 2.8986 4.9192 
Yuan and Dickinson(1992) 1.2933 2.8718 2.8998 4.9225 

0.8 
Present 1.7007 4.1572 4.1733 6.7158 

Xiang and Wei(2004) 1.7037 4.1863 4.1962 6.7643 
Yuan and Dickinson(1992) 1.7039 4.1872 4.1969 6.7661 

0.75 

0.5 
Present 1.6463 4.0524 4.3001 6.7990 

Xiang and Wei(2004) 1.6289 4.0472 4.3404 6.8642 
Yuan and Dickinson(1992) 1.6290 4.0489 4.3414 6.8692 

0.8 
Present 1.8869 4.6688 4.7487 7.5059 

Xiang and Wei(2004) 1.8892 4.6884 4.7823 7.5577 
Yuan and Dickinson(1992) 1.8894 4.6898 4.7833 7.5602 

 
Table 15 Frequency parameter   for one step square plate (longitudinal edges simply supported) 

Shorter 
edges 

a1 
t1/t0 = 1.2 (modes) t1/t0 = 2 (modes) 

1 2 3 4 1 2 3 4 

SS 
0.3 2.2650 5.6119 9.0277 11.1747 3.1688 8.0397 13.3579 16.0208
0.5 2.1849 5.4351 8.7123 10.6742 2.8915 7.0764 7.1739 11.2606
0.7 2.1167 5.2001 5.2371 8.3769 2.6574 5.8818 9.9530 10.9108

CC 
0.3 3.1969 6.2384 7.5730 10.5282 4.0715 8.9757 9.7633 14.7852
0.5 3.1085 5.9675 7.3802 10.1611 3.7118 7.7805 9.1033 12.6790
0.7 3.0496 5.7115 7.0913 9.7571 3.5792 6.5442 7.4741 11.0630

CS 
0.3 2.6913 5.9918 6.0281 9.8224 3.7639 8.8821 9.1861 14.4076
0.5 2.6132 5.7414 6.4454 9.4980 3.3755 7.7065 8.6613 12.4415
0.7 2.5320 5.4816 6.2068 9.1107 3.1620 6.4738 6.9586 10.7626

SF 
0.3 1.3756 3.1847 4.8881 6,7678 2.1256 4.4794 7.6870 9.9965 
0.5 1.3381 3.0752 4.7605 6.5452 1.9517 4.2179 6.7799 8.6474 
0.7 1.2914 2.9625 4.9678 6.3319 1.7664 3.6765 5.7610 7.5183 

 

Table 16 Frequency parameter Λ for thin plate having one, two and three even step (longitudinal edges 
simply supported) b =1 having thickness ratios (t1/t0 = 1.1, t1/t0 = 1.2, t1/t0 = 1.3) of first, second and third 
 steps  

Λ steps mode 
Shorter edges 

SS CC CS SF 

2 1 

1 1.3080 1.4393 1.3740 1.1212 
2 2.0883 2.4530 2.2715 1.5696 
3 3.3616 3.9446 3.6627 2.5074 
4 4.3952 4.4596 4.4445 3.9242 

3 2 

1 1.2098 1.2520 1.2395 1.1584 
2 1.5838 1.7109 1.6546 1.3517 
3 2.1839 2.4146 2.3113 1.8001 
4 3.0154 3.3444 3.1973 2.4711 

4 3 

1 1.1915 1.2157 1.2135 1.2173 
2 1.4344 1.4909 1.4721 1.4211 
3 1.7877 1.8993 1.8540 1.8819 
4 2.2778 2.4463 2.3780 2.5846 
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4.8 Simply supported square and rectangular plate with variable thickness 
 

Numerical solutions for the lowest six frequency parameters defined by 
 

2 4
0 0

4 2
0 1

t b

D

 


 


 of a 

simply supported square and rectangular plate of aspect ratio; a/b = 1, a/b =2 with thickness 
variation in y direction given by t(x, t) = t0(1 + by·y/b) as shown in Table 17 for two cases by = 0.1 
and 0.8 and these values agree well with the results of Sakiyama and Huang (1998). 

 
4.9 Vibration of Fixed square plate with variable thickness 
 
Numerical solutions for the lowest six natural frequency parameters Λ for a fixed square plate 

with a sinusoidal thickness variation in the x, y direction given by t(x, y) = t0(1− bx sin(πx/a))(1−by  
 
 

Table 17 Frequency parameter 4 2
0

42
00 1Λ )(D/bt    for simply supported square and rectangular 

plate with variable thickness 

a/b M 
by = 0.1 by = 0.8

 

This analysis 
Sakiyama and 
Huang (1998) 

This analysis 
Sakiyama and 
Huang (1998) 

1 

1 4.6417 4.660 5.227 5.354 
2 7.1786 7.342 8.1980 8.404 
3  7.363 8.2303 8.437 
4 9.0777 9.311 10.4194 10.980 
5  10.389 11.4417 11.742 
6 10.1118 10.393 11.5828 11.886 

2 

1 3.5957 3.684 4.1196 4.220 
2 4.5434 4.659 5.2215 5.352 
3 5.7753 5.930 6.6218 6.797 
4 6.6170 6.789 7.5816 7.775 
5 7.1296 7.322 8.1432 8.359 
6 7.1763 7.362 8.2267 8.436 

 

Table 18 Frequency parameter 4 2
0

42
00 1Λ )(D/bt    for fixed square plate with thickness 

varying in both directions 

 
bx = by = 0.3

 
bx = by = 0.5

 

This analysis Sakiyama and Huanag (1998) This analysis Sakiyama and Huanag (1998)
1 5.130 5.038 4.339 4.262 
2 7.125 7.003 6.010 5.758 
3 8.690 8.570 7.380 7.093 
4 9.350 9.185 7.751 7.415 
5 9.360 9.220 7.760 8.631 
6 10.630 10.55 9.160 9.108 
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sin(πy/b))
 
are shown in Table 18 for the two cases of bx = by = 0.5 and 0.5 and the results do not 

agree well with Sakiyama and Huang (1998) . 
 
4.10 Vibration of a plate stiffened horizontally and vertically at the centres of the plate 
 
Free vibration analysis is carried out for SSSS plate with 361 internal nodal points subject to 

uni-axial in-plane compressive load in the x direction (β = 1; γ = 0) ,the width of the horizontal 
strip is equal to four times the width of a mesh (4l) with thickness t1 covering the centre of the 
plate and the width of the vertical strip equal to four times the length of the mesh (4m) with 
thickness t1 as shown in Fig. 8 The frequency parameter Λ is calculated and tabulated in Table 19 
and plotted in a graph shown in Fig. 11. The mode shape for the case t1/t0 = 1.5 and a/b = 0.5 is 
given in Fig. 12. 

 
 

Fig. 11 Frequency parameter vs a/b ration for 
horizontally and vertically stiffened at the centre 
of the plate 

Fig. 12 Mode shape (t1/t0 = 1.5; a/b = 0.5) for 
SSSS plate horizontally and vertically stiffened at 
the centre 

 
Table 19 Frequency parameter Λ for horizontally and vertically stiffened at the centre of the plate as 
shown in Fig. 8 

a/b 
t1/t0 

2 1.75 1.5 1.25 
0.25 22.5675 21.7081 20.5780 19.0322 
0.50 6.8885 6.4181 5.9578 5.4901 
0.75 3.6986 3.4537 3.2224 2.9984 
0.80 3.3966 3.1734 2.9633 2.7608 
0.90 2.9450 2.7535 2.5739 2.4018 
1.00 2.6313 2.4607 2.3010 2.1481 
1.10 2.4064 2.2500 2.1034 1.9629 
1.20 2.2406 2.0940 1.9562 1.8273 
1.30 2.1154 1.9758 1.8441 1.7168 
1.40 2.0187 1.8842 1.7568 1.6329 
1.50 1.9424 1.8118 1.6875 1.5660 
1.75 1.8086 1.6853 1.5663 1.4478 
2.00 1.7221 1.6045 1.4895 1.3725 
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5. Conclusions 
 

This paper presents finite difference approach for studying the buckling and vibration 
behaviour of thin rectangular plates with variation in thickness and with multiple steps. Finite 
difference method is an extrapolation method whereas finite element is an interpolation method. 
Finite difference solves differential equations and finite element solves integral equations. In finite 
difference method boundary conditions are applied in discretized form whereas in finite element 
method we can use them as they are. Both methods can handle complex geometry. In finite 
element method, displacement functions are assumed a priori whereas such an assumption is un-
necessary in finite difference method. For a given discretization scheme, finite difference 
underestimates buckling coefficient and frequency parameter whereas they are overestimated in 
finite element displacement approach. The results obtained in all the above numerical cases are 
tabulated in Tables 1-19 for ready use by the designer and they are compared with Bradford and 
Azhari (1997), Eisenberger and Alexandrov (2003), Xiang and Wei (2004), Leissa (1973), Gambir 
(2004), Yuan and Dickinson (1992), Sakiyama and Huang (1998). They are in close agreement 
except Sakiyama and Huang (1998). In this paper it is also shown how finite difference technique 
is made automatic like finite element procedure and the incorporation of boundary condition is 
also an easy task.  The authors believe that the presented solutions for buckling and vibration of 
the stepped plates are very valuable as they may serve as bench mark results for future research in 
this area.  
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Nomenclature 
 
a - length of the plate 
a1 - step length 
b - width of the plate 
bx and by - parameters for the definition of thickness variation 
a/b - panel aspect ratio 
D - flexural rigidity of the plate 
E - Young’s modulus   
h0 - geometric /mass stiffness matrix 
K - flexural stiffness matrix 

GK  - geometric stiffness matrix 

0
2

2

D

b
Pk


  - buckling coefficient  

)-12(1 2

3
0

0 
Et

D    

 l - mesh length 
m - mesh breadth  
M - number of divisions in x direction 
 M - mass matrix 
M0 - flexural matrix 
Mx, My, Mxy  - moments 
N - number of divisions in y direction 
nj - number of joints 
Nx, Ny, Nxy - in-plane forces 
t - thickness of the plate 
ti -step thickness  
w - lateral deflection 
w - displacement vector 
 (x, y) - cartesian coordinates 
α - ratio between the breadth and length of a mesh 
β, γ, δ –tracers 

0

00
2

2

Λ
D

tb 



  - frequency parameter 

ν - Poisson’s ratio 
ω - natural frequency 
θx, θy 

-slopes 
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