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Abstract.  An efficient method is proposed here to identify multiple damage cases in structural systems 
using the concepts of flexibility matrix and strain energy of a structure. The flexibility matrix of the structure 
is accurately estimated from the first few mode shapes and natural frequencies. Then, the change of strain 
energy of a structural element, due to damage, evaluated by the columnar coefficients of the flexibility 
matrix is used to construct a damage indicator. This new indicator is named here as flexibility strain energy 
based index (FSEBI). In order to assess the performance of the proposed method for structural damage 
detection, two benchmark structures having a number of damage scenarios are considered. Numerical results 
demonstrate that the method can accurately locate the structural damage induced. It is also revealed that the 
magnitudes of the FSEBI depend on the damage severity. 
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1. Introduction 
 

Many structural systems may experience some local damage during their lifetime. If the local 
damage is not identified timely, it may lead to a terrible outcome. Therefore, damage identification 
is an essential issue for structural engineering and it has received considerable attention during the 
last years. Structural damage detection consists of three different levels aiming to identify the 
existence, localization and quantification of the damage, respectively. After discovering the 
damage occurrence, damage localization is more important than damage quantification. Due to a 
great number of members in a structural system, properly finding the damage location has been the 
main concern of many studies.  

In the last years, several methods have been proposed for structural damage detection (Messina 
et al. 1998, Wang et al. 2001, Bakhtiari-Nejad et al. 2005, Koh and Dyke 2007). Structural 
damage detection by a hybrid technique consisting of a grey relation analysis for damage 
localization and an adaptive real-parameter simulated annealing genetic algorithm for damage 
quantification has been presented by He and Hwang (2007). A two-stage method for finding the 
structural damage sites and extent through an evidence theory and a micro-search genetic 
algorithm has been introduced by Guo and Li (2009). The changes of modal flexibility matrix and 
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modal strain energy of flexural members before and after damage have been used by Shih et al. 
(2009) as a basis for locating the structural damage. Locating the structural damage through an 
adaptive neuro-fuzzy inference system (ANFIS) has been introduced by Fallahian and Seyedpoor 
(2010). A multi-level damage localization strategy for achieving an efficient damage detection 
system for structural systems based on wireless sensors has been proposed by Yan et al. (2010). 
Damage detection using an efficient correlation based index and a modified genetic algorithm has 
been proposed by Nobahari and Seyedpoor (2011). The change of displacement curvature derived 
from measured static data has been used by Abdel-Basset Abdo (2011) as a good indicator for 
locating the structural damage. A two-stage method for determining structural damage sites and 
extent using a modal strain energy based index (MSEBI) and particle swarm optimization (PSO) 
has been proposed by Seyedpoor (2012).The studies on the subject of introducing a proper method 
for damage detection are being developed.  

The objective of this work is to present an efficient damage localization method based on the 
flexibility matrix of a structure and strain energy of structural elements. The flexibility matrix is 
first predicted through few lower mode shapes and frequencies of the structure. Then, the 
columnar coefficients of the flexibility matrix are used to evaluate the strain energy of structural 
members. Finally, a relative change of strain energy of structural elements is introduced to make a 
new indicator nominated here as flexibility strain energy based index (FSEBI) for locating 
structural damage. Numerical results demonstrate the effectiveness of the proposed method for 
structural damage localization.  

 
 

2. Vibration based damage detection methods 
 

Structural damage detection using non-destructive methods has received significant attention 
during the last years. The fundamental law is that damage will change the mass, stiffness and 
damping properties of a structure. Such a change would lead to changes in the static and dynamic 
characteristics of the structure. This enables us to identify the damage by comparing the response 
data of the structure before and after damage. Therefore, damage detection techniques have been 
generally classified into two main categories. They include the dynamic and static identification 
methods requiring the dynamic and static test data, respectively. Furthermore, the dynamic 
identification methods have shown their superior accuracy in comparison with the static ones.  
Based on this concept, various dynamic responses based methods have been introduced to identify 
the damage in structural systems (Alvandi and Cremona 2006, Shih et al. 2009, Ciambella et al. 
2011, Seyedpoor 2012). The relative change of natural frequencies of a structure can be used as a 
simple tool for being aware of damage presence, i.e. 

ndj
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j ,...,2,1      ,        


                                         (1) 

where hjf and djf denote the jth natural frequency of healthy and damaged structures, respectively 

and nd stands here for the total number of degrees of freedom. Theoretically, structural damage 
reduces the stiffness and then natural frequencies of the structure. Therefore, the reduction of 
natural frequencies can be used to provide an indicator for damage occurrence. 

The flexibility method is another vibration based identification method. Using information of a 
modal analysis, the flexibility change of a structure before and after damage can be considered as 
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an index for identifying structural damage. The modal flexibility matrix of a structure can be given 
by (Pandey and Biswas 1994, Alvandi and Cremona 2006, Shih et al. 2009) 
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where [F] is the modal flexibility matrix; [φ] contains the mass normalized mode shape vectors; 
and [1/ω2] is a diagonal matrix containing the reciprocal of the square of circular frequencies in 
ascending order. Also, ωj and φj are jth circular frequency and mode shape of the structure, 
respectively. Theoretically, damage reduces the stiffness and then increases the flexibility of the 
structure. Increase in the structural flexibility can therefore serve as an indicator for structural 
damage detection. 

The strain energy of a vibrating structure determined by a mode shape vector is usually referred 
to as modal strain energy (MSE) and can be considered as a valuable characteristic for damage 
identification. The modal strain energy of a structural element in vibrating mode j can be 
expressed as (Au et al. 2003, Seyedpoor 2012) 

     ,      ,    
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where Ke is the stiffness matrix of the eth element and e
j  is the vector of corresponding nodal 

displacements of the element e in mode j. Also, ne is the total number of structural elements. 
Hypothetically, the damage occurrence leads to increasing the MSE and therefore can be used as 
an efficient indicator for damage detection. 
 
 
3. The proposed damage detection method 
 

In this study, an efficient method combining the concepts of flexibility matrix and strain energy 
of a structure is proposed for structural damage detection. The flexibility matrix F is the inverse of 
stiffness matrix K and can be predicted dynamically using modal analysis information as given by 
Eq. (2). It can be observed from the equation that the modal contribution to the flexibility matrix 
decreases as the frequency increases. Therefore, using only a few vibrating modes of the structure 
a good estimation of the flexibility matrix can be obtained as 
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where nm is the number of vibrating modes considered.  
Each column of the flexibility matrix represents the nodal displacement pattern of the structure 

when a unit force is applied to the degree of freedom corresponding to that column. Therefore, the 
columnar coefficients of the flexibility matrix fij (j = 1,…, nd) can be utilized to obtain the strain 
energy stored in structural elements due to applying the unit force to the degrees of freedom. The 
strain energy of a structural element calculated in this way is named here as flexibility strain 
energy (FSE). The FSE of eth element for jth column of the flexibility matrix can be expressed as 
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where Ke is the stiffness matrix of eth element of the structure and e
jf is the vector of 

corresponding nodal displacements of element e for the column j. Also, ne is the total number of 
structural elements and nd is the total number of columns in the flexibility matrix. The nd is 
always equal to total degrees of freedom of the structure. 

The total flexibility strain energy of jth column of the structure can also be determined by 
summation of FSE for all elements ne, given by 
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For computational purpose, it is better to normalize the FSE of elements with respect to the 
total FSE of the structure as 
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where e
jnfse is the normalized FSE of eth element for jth column of the flexibility matrix. The 

mean of Eq. (7) for the nd columns can now be selected as an efficient parameter as 
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When damage occurs in a structural element, it increases the flexibility leading to increasing 
the FSE and consequently the efficient parameter mnfsee. As a result, in this study, the efficient 
parameter mnfsee is evaluated twice, one for healthy structure and another for the damaged 
structure denoted here as (mnfsee)h and (mnfsee)d, respectively. Therefore, by considering a relative 
change of the efficient parameter, a good indicator for estimating the presence, location and 
relative severity of the damage in an element can be defined. This indicator termed here as 
flexibility strain energy based index (FSEBI) and can be determined as 
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                      (9) 

It should be noted that, as the damage locations are unknown for a real-world damaged structure, 
therefore for this case the element stiffness matrix of the healthy structure is used for estimating 
the parameter (mnfsee)d. According to the Eq. (9), for a healthy element the index will be equal to 
zero (FSEBIe = 0) while for a damaged element the index will be grater than zero (FSEBIe  > 0). 
 
 
4. Test examples 
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In order to show the capabilities of the proposed method for structural damage detection, two 
illustrative test examples are considered. The first example is a 56-element planar frame and the 
second example is a 31-bar planar truss. In the first example, the effects of the number of vibrating 
modes, considered for damage detection, on the performance of the method is studied. The 
efficiency of FSEBI, compared to the damage indicator MSEBI proposed by Seyedpoor (2012) is 
assessed in the second example. The measurement noise effect on the effectiveness of the method 
is also investigated for 31-bar planar truss. For modal analysis using the finite element method and 
damage detection a program is provided by the MATLAB (2006). 
 

4.1 Fifty six-element planar frame 
 
The first example considered in this work is a concrete portal frame (Gomes and Silva 2008) to 

show the robustness of the proposed method. The frame shown in Fig. 1 has the span L = 2.4m and 
height H = 1.6m with a rectangular cross sectional area having the width b = 0.14m and depth h = 
0.24m. The elasticity modulus is E = 25 GPa and the mass density is ρ = 2500 kg/m3. The 2D-
beam element with three degrees of freedom per node is used for finite element discretization of 
the structure. Three damage cases listed in Table 1 are numerically simulated here by reducing the 
elasticity modulus of some elements and the method is tested.  
 
 

 

Fig. 1 A portal frame having 56 elements 
 

 
 Table 1 Three different damage cases induced in 56-element planar frame 

Case 1 Case 2 Case 3 
Element number Damage ratio Element number Damage ratio Element number Damage ratio

7 0.10 44 0.10 10 0.10 
- - - - 28 0.10 
- - - - 52 0.10 

1

2

3

17 
41 

57 e1 

e2 
56 

e56

18 

e17 
42 

e41

L=2.4 m

H
=

1.
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m
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4.1.1 The effect of number of vibrating modes 
In order to examine the effect of number of vibrating modes on the performance of the method, 

the proposed indicator FSEBI is evaluated when 1 to 5 modes are considered to estimate the 
flexibility matrix. Figs. 2-4 show the value of FSEBE versus element number for damage cases 1 
to 3, respectively when the first one to five modes of the structure are considered for each damage 
case. As shown in the damage identification charts of cases 1 to 3, for locating the damage 
accurately, only 2 vibrating modes of the structure are required to be considered. Although the 
method can properly locate all the damage cases, however, the index gives a damage extent which 
is about two times the actual sizes. 
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(c) 

Fig. 2 Damage identification chart of 56- element planar frame for damage case 1 considering: (a) one mode, 
(b) two modes, (c) three modes, (d) four modes, (e) five modes 
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(e) 

Fig. 2 Continued 
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(b) 

Fig. 3 Damage identification chart of 56- element planar frame for damage case 2 considering: (a) one mode, 
(b) two modes, (c) three modes, (d) four modes, (e) five modes 
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Fig. 3 Continued 
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(a) 

Fig. 4 Damage identification chart of 56- element planar frame for damage case 3 considering: (a) one 
mode, (b) two modes, (c) three modes, (d) four modes, (e) five modes 
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(e) 

Fig. 4 Continued 
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4.2 Thirty one-bar planar truss 
 
The 31-bar planar truss shown in Fig. 5 studied by Messina et al. (1998) and Seyedpoor (2012) 

is modeled using the conventional finite element method without internal nodes leading to 25 
degrees of freedom. The material density and elasticity modulus of aluminum truss are 2770 kg/m3 
and 70 GPa, respectively. For this example, three different damage cases given in Table 2 are 
induced in the structure and the proposed method is used for damage detection. 
 
 

 
Fig. 5 A planar truss having 31 elements 

 
 

4.2.1 The efficiency of FSEBI compared to MSEBI 
In order to assess the competence of FSEBI for structural damage detection, the efficiency of 

FSEBI is compared with that of the modal strain energy based index (MSEBI) proposed by 
Seyedpoor (2012). Figs. 6(a)-(c) show the FSEBI value with respect to element number for 
damage cases 1 to 3, respectively and compares it with the MSEBI value when the first 5 vibrating 
modes of the structure are utilized for damage detection. As shown in the figures, the most 
potentially damaged elements identified by FSEBI for damage scenario 1 are elements 11, 21, 24 
and 25; for damage scenario 2 is element 16; and for damage scenario 3 are elements 1 and 2. Here, 
those elements whose indexes exceed 0.05 are selected as suspected damaged elements. Also, the 
damaged elements found by MSEBI for damage scenario 1 are elements 11, 21, 25 and 26; for 
damage scenario 2 is element 16 and for damage scenario 3 are elements 1, 2 and 6. It is revealed 
that the FSEBI for accurately locating the damaged elements is more efficient than MSEBI while 
the number of vibrating modes considered for FSEBI and MSEBI, is equal. Also, it can be 
observed that the magnitudes of the FSEBI are slightly closer to the damage severity when 
comparing with those of the MSEBI. 
 
 
 
Table 2 Three different damage cases induced in 31-bar planar truss 

Case 1 Case 2 Case 3 

Element number Damage ratio Element number Damage ratio Element number Damage ratio
11 0.25 16 0.30 1 0.30 
25 0.15 - - 2 0.20 
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Fig. 6(a) The FSEBI and MSEBI values for damage case 1 of 31-bar planar truss 
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Fig. 6(b) The FSEBI and MSEBI values for damage case 2 of 31-bar planar truss 
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Fig. 6(c) The FSEBI and MSEBI values for damage case 3 of 31-bar planar truss 

 
 

4.2.2 The effect of measurement noise 
In order to evaluate the robustness of the proposed damage detection method, the effect of 

measurement noise on the performance of the method is investigated. To reduce the noise effect on 
the accuracy of the method for locating damage, the diagonal matrix [1/ω2] in Eq. (2) is assumed 
to be an identity matrix. Therefore, the measurement noise is applied only to the mode shapes of 
the structure. To this, the numerical mode shapes are perturbed using a maximum error of ±3% 
generating by a uniformly distributed random numbers. Figs. 7(a)-(c) show the mean values of 
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FSEBE for 100 independent runs for damage scenarios 1 to 3, respectively when the first 5 mode 
shapes considered are randomly polluted using the noise. As can be observed, the high competence 
of the FSEBI for locating the damaged elements is demonstrated when the measurement noise is 
considered. As shown in the figures, the potentially damaged elements identified by FSEBI for 
damage scenario 1 are elements 11, 25 and 26; for damage scenario 2 are element 16; and for 
damage scenario 3 are elements 1, 2 and 6. In the case of considering noise, those elements whose 
indices exceed 0.10 are selected as suspected damaged elements. 
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Fig. 7(a) The FSEBI value for damage case 1 of 31-bar planar truss considering noise 
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Fig. 7(b) The FSEBI value for damage case 2 of 31-bar planar truss considering noise 
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Fig. 7(c) The FSEBI value for damage case 3 of 31-bar planar truss considering noise 
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5. Conclusions 
 

An efficient method for structural damage identification using a combination of flexibility and 
strain energy methods has been proposed. The columnar coefficients of the flexibility matrix, 
approximated through modal analysis information have been used to evaluate strain energy stored 
in different elements of the structure. A relative change of strain energy of an element before and 
after damage has been utilized to introduce an indicator named here as FSEBI for structural 
damage detection. Two illustrative test examples having different damage scenarios have been 
selected to assess the efficiency of the proposed method. Numerical results have shown that the 
method can accurately locate the multiple damage cases by considering only the first few modes of 
the structures. It has also been revealed that the amount of the FSEBI is proportional to the damage 
severity. The method has shown a superior efficiency when compared with a powerful damage 
indicator provided in the literature. As a final point, the method has shown a good performance 
when the measurement noise was considered in damage detection. 
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