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Abstract.   Pendulums can be used as passive vibration control devices in several structures and machines. 
In the present work, the nonlinear behavior of a pendulum-tower system is studied. The tower is modeled as 
a bar with variable cross-section with concentrated masses. First, the vibration modes and frequencies of the 
tower are obtained analytically. The primary structure and absorber together constitute a coupled system 
which is discretized as a two degrees of freedom nonlinear system, using the normalized eigenfunctions and 
the Rayleigh-Ritz method. The analysis shows the influence of the geometric nonlinearity of the pendulum 
absorber on the response of the tower. A parametric analysis also shows that, with an appropriate choice of 
the absorber parameters, a pendulum can decrease the vibration amplitudes of the tower in the main 
resonance region. The results also show that the pendulum nonlinearity cannot be neglected in this type of 
problem, leading to multiplicity of solutions, dynamic jumps and instability. In order to improve the 
effectiveness of the control during the transient response, a hybrid control system is suggested. The added 
control force is implemented as a non-linear variable stiffness device based on position and velocity 
feedback. The obtained results show that this strategy of nonlinear control is attractive, has a good potential 
and can be used to minimize the response of slender structures under various types of excitation. 
 

Keywords:  tower; nonlinear oscillations; passive control; pendulum absorber; hybrid control; variable 
stiffness spring 
 
 
1. Introduction 
 

High-rise buildings, free standing towers, chimneys, smoke or ventilation stacks and tall poles 
are vulnerable, due to its height and slenderness, to the occurrence of extreme vibrations caused by 
environmental loads, such as wind and earthquakes. The action of the wind is of utmost 
importance in the design of tall structures, since it generates flexural vibrations, causing large 
displacements and rotations in the top of the structure. These vibrations usually are caused by 
vortex shedding. In towers, the worst case occurs when vortex-shedding frequencies coincide with 
the frequency of the first vibration mode of the tower (Korenev and Reznikov 1993). An 
alternative to minimize these vibrations, widely studied in the last decades, is the use of structural 
vibration control. It is capable of absorbing and dissipating part of the vibratory energy of the 
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system, reducing in this way the response of the main structure. The endeavor to minimize 
vibrations is motivated by necessity to assure the safety of structures, eliminate dangerous fatigue 
stresses, serviceability, should they be used for the installation of sensitive measuring equipment, 
and human health or comfort, which can be impaired by excessive movements. Basic concepts, 
experiments and practical applications of these control devices are found in Soong and Dargush 
(1997), amongst others. For an extensive monograph dealing with dynamic absorbers, see Korenev 
and Reznikov (1993). 

A control device increasingly used in practical applications is the tuned mass dampers (TMDs). 
A tuned mass damper is a classical passive controller of excessive vibrations around the resonant 
frequencies of lightly damped structures (Den Hartog 1985). This type of structural control has 
shown to be robust, trustworthy and economic. Therefore, the TMDs have become object of the 
attention of researchers and engineers worldwide. The TMD is usually designed to bring the 
amplitude of the resonance peak to its lowest possible value, so that smaller amplifications of the 
response of the structure in the neighborhood of the main resonance frequency can be reached 
(Soong and Dargush 1997, Den Hartog 1985). The magnitude of the control forces depends only 
on its physical properties of mass, stiffness and damping. However there are some limitations in 
the use of this technology, since the passive devices are designed to work efficiently within a small 
frequency range. One passive control device proposed in literature is the pendulum absorber. 

Mustafa and Ertas (1995) investigated the dynamic response of a large flexible beam with a tip 
mass–pendulum system. The system is proposed as a conceptualization of a vibration-absorbing 
device for large flexible structures with tip appendages. Later, Ertas et al. (2000) studied the 
effectiveness of pendulum-type passive vibration absorber attached to a primary structure with a 
varying orientation about a vertical plane. Collette (1998) studied numerically and experimentally 
the vibration control capability of a combined tuned absorber and pendulum impact damper under 
a random excitation. 

Cicek (2002) analyzed experimentally the response of this system to a wide-band random 
excitation. Gerges and Vickery (2003) conducted an extensive experimental study of a single-
degree-of-freedom system with a nonlinear pendulum-type TMD and compared its frequency 
response functions to those of equivalent optimized linear TMDs. Battista et al. (2003) studid the 
efficiency of a non-linear pendulum-like damper on the dynamic behavior and stability of 
transmission line towers under wind forces. The analysis of the orientation effect of non-linear 
flexible systems on performance of the pendulum absorber was also studied by Yaman and Sen 
(2004). Pendulum absorbers have already been used in several structures such as the Cristal Tower 
in Tokyo and the Taipei 101 super-tall building (Nagase and Hisatoku 1992, Li et al. 2011, 
Kourakis 2007). 

Pendulum absorbers have also been used as auto parametric vibration absorbers. Vyas and 
Bajaj (2001) analyzed the dynamics of a resonantly excited single-degree-of-freedom linear 
system coupled to an array of non-linear auto parametric vibration absorbers (pendulums) and 
showed that the frequency interval of the unstable single-mode response, or the absorber 
bandwidth, can be enlarged compared to that of a single pendulum absorber by adjusting the 
internal mistuning of the pendulums. Warminski and Kecik (2009) studied the instabilities in the 
main parametric resonance area of a nonlinear mechanical oscillator with an attached damped 
pendulum. The analytical results are verified by numerical simulations and experimental tests. 
Regions of regular oscillations, chaotic motions, and full rotation of the pendulum are confirmed 
experimentally. Macias-Cundapi et al. (2008) dealt with the passive/active vibration control 
problem for damped Duffing systems, using a nonlinear pendulum-type vibration absorber. Wu 
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(Wu 2009, Wu et al. 2011) proposed an active spatial pendulum vibration absorber with a spinning 
support for neutralization of vertical excitations. The frequency of the absorber is dynamically 
tuned by varying its rotational speed. Náprstek and Fischer (2009) investigated the auto-parametric 
semi-trivial and post-critical response of a spherical pendulum damper modeled as a two degree of 
freedom strongly non-linear auto-parametric system. The excitation is considered to be horizontal 
and harmonically variable in time.  

The characteristic frequency of a simple pendulum is a function of the suspension length and 
gravity only. In some applications the tuned pendulum may require extremely long or short 
suspensions. In such cases, it is possible to replace the classical pendulum by similar devices. 
Pirner (2002) described the theory, experiments and practical application of the ball vibration 
absorber for horizontal movement, as well as its efficiency in comparison with that of the 
pendulum absorber. Fischer (2007) compared the effect of pendulum, ball and sloshing liquid 
absorbers and assesses the effectiveness of each of them. Matta and De Stefano (2009) evaluated 
the performance of circular and cycloid rolling-pendulum TMD type for the seismic protection of 
buildings, a configuration characterized by mass-independent natural period, in order to illustrate 
their respective advantages as well as the drawbacks inherent in their non-linear behavior. 

Another way of controlling the dynamics of slender structures proposed in literature is the 
switched stiffness approach. Nitzsche et al. (1999, 2004) proposed the so called smart spring 
concept to actively control combinations of dynamic impedance characteristics of a structure, such 
as the stiffness, damping, and effective mass to suppress vibration in an indirect manner, without 
requiring large forces and deflections simultaneously. Ramaratnam et al. (2004) suggested a semi-
active vibration control device using piezoelectric-based switched stiffness. Later, Ramaratnam 
and Jalili (2006) proposesd a semi-active structural vibration control based on switching the 
system equivalent stiffness between two distinct values. This vibration control method leads to 
change in the stored potential energy, which results in reduced total energy of the system. The 
switched stiffness can be implemented using a bi-stiffness spring setting, with the resulting relay-
type control logic based on the position and velocity feedback. A heuristic control law is used to 
switch the stiffness values through a hard switching or on–off (relay) control (Clark 2000). Wu et 
al. (2005) demonstrated that active variable stiffness systems may be effective for response control 
of building structures subjected to earthquake excitations. This control law exhibits strong 
nonlinearity. Nagarajaiah and Varadarajan (2005) presented a short time Fourier transform 
algorithm for wind response control of buildings with variable stiffness TMD. Winthrop et al. 
(2005) compared several variable stiffness devices found in the literature in terms of their ability to 
change stiffness. Azadi et al. (2009, 2011) presented the concept of variable stiffness elements 
based on antagonistic forces (prestress) in cable-driven mechanisms and discuss the challenges of 
implementing such device in practical applications. González Rodríguez et al. (2011) advocated an 
adjustable-stiffness actuator composed of two antagonistic non-linear springs, which consists of 
two pairs of leaf springs working in bending conditions under large displacements. Owing to this 
geometric non-linearity, the global stiffness of the actuator can be adjusted by modifying the shape 
of the leaf springs. 

The hybrid control approaches combine active controllers with passive devices. The active 
portion of a hybrid system requires much less power than a similar active system, while providing 
better structural response than the passive system alone (Oueini et al. 1999, Gonçalves and 
Orlando 2007). Spencer and Nagarajaiah (2003), in a review article, present a large number of 
existing tall buildings and bridges where hybrid control systems have been employed due to its 
good performance. 
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Here a hybrid control approach is proposed based on the simultaneous use of a nonlinear 
pendulum absorber with an active variable stiffness device. The active force is based on the basic 
ideas of the switched stiffness approach (Wu et al. 2005). The tower is modeled as a bar with 
constant or variable cross-section (Korenev and Reznikov 1993, Qiusheng et al. 1994) and 
concentrated masses. First, the vibration modes and frequencies of the tower are obtained 
analytically. Using these vibration modes as interpolating functions, the natural frequencies and 
modes of the column-pendulum system are obtained by the Rayleigh-Ritz method. For a pendulum 
tuned to the lowest frequency of the tower (first flexural mode), only the two first vibration modes 
and frequencies of the tower-pendulum system are important, since the subsequent frequencies of 
the cantilevered tower are much higher than the first ones. So, using these two vibration modes, a 
simplified two degrees of freedom nonlinear system is obtained, which is a useful tool in early 
design stages. The resulting equations are highly nonlinear due to the variable stiffness spring and 
the inertial and geometric nonlinearities of the moving pendulum. These equations are solved 
numerically using the Runge-Kutta method. Floquet theory is used in the stability analysis of the 
responses. In order to study the non-linear behavior of the controlled system, several numerical 
strategies were used to obtain Poincaré maps, stable and unstable fixed points, bifurcation 
diagrams and basins of attraction. 

 
 

2. Formulation of the problem 
 
The tower is modeled as a clamped-free column with variable cross-section. Fig. 1 shows the 

tower and pendulum geometric parameters used in the problem formulation. Platforms, antennas 
and other equipment can be modeled as discrete masses along the tower, as shown in Fig. 1. The 
pendulum is considered as a discrete element. 

The behavior of the column-pendulum system shown in Fig. 1 is described by the following 
Lagrange function (Orlando 2006) 
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, (2.1)

where w(L) is the displacement at the top of the tower, θ is the angle of the pendulum rotation, EI0 
is the flexural stiffness at the base of the column, N0, the normal force at the base, M0, the mass per 
unit length at the base, Mc, a concentrated mass at a distance L1 from the base, L, the length of the 
column, m, the mass of the pendulum, Kp, the stiffness of the pendulum, l, the pendulum length 
and g is the acceleration of the gravity. Finally η and n are parameters that define the variation of 
the column cross-section. One can approximate by the suitable choice of η and n a large number of  
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(a) 

 
(b) 

Fig. 1 Variable cross-section tower with a pendulum absorber: main parameters and reference system 
 
 
column profiles found in practical applications (Korenev and Reznikov 1993, Qiusheng et al. 
1994). 

The nonlinear partial differential equations of motion for the column-pendulum system are 
obtained from Eq. (2.1) using the tools of variational calculus. They are 
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where δ is the Dirac delta function. 
 
 

3. Low dimensional model 
 
To derive a consistent low dimensional model, a tower (without concentrated mass) with height 

L = 360m, cross sectional area A = 2.97m2, mass per unit volume ρ = 4176kg/m3, modulus of 
elasticity E = 2.1 × 1011N/m2 and area moment of inertia I = 133.61m4 is considered in the analysis. 
A pendulum with a mass m = 44740kg (1.0% of the total mass of the column), length l = 6.0m and 
g = 9.81m/s2  is adopted. The pendulum is tuned to the lowest natural frequency of the tower 
(Korenev and Reznikov 1993, Den Hartog 1985). The lowest natural frequencies of the clamped-
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free column is ωc = 1.255rad/s  and that of the pendulum is  l/gp 1.279rad/s. Considering 

a linear damped pendulum, the optimal damping of the pendulum is found to be 12% (Orlando 
2006). 

The column deflection can be approximated by the following series of orthogonal functions 

               
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
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j
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  (3.1)

where Aj are the time-dependent amplitudes and j  are the linear vibration modes of the column. 

For the tower with variable cross section the vibration modes are given by (Orlando 2006) 
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where Jn(d), Yn(d), In(d) and Kn(d) are Bessel functions of the nth order, and 
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with Ne = N0/2EI0 and s4 = M0 ωc
2/EI0. 

For a column of constant cross section the eigenfunctions are 

           )(cosh)(senh)(cos)(sen)( 4321 xkCxkCxkCxkCx jjjj   (3.4)

where, for a clamped-free column, kj is the jth root of 2 + cos(βj)cosh(βj) = 0 with βj = kjL. 
The four lowest vibration modes and associated natural frequencies for the present example are 

shown in Fig. 2. As observed, the two lowest vibration frequencies are associated with the first 
tower flexural mode and pendulum mode, being the other natural frequencies much higher. If the 
analysis is restricted, as usual, to the lower frequency range, the pendulum-tower system can be 
approximated by a two d.o.f. model, as illustrated in Fig. 3 where d index denotes the modal 
properties. In Fig. 3, Md, Cd and Kd are the modal mass, damping and stiffness coefficients 
associated with the first vibration mode, respectively, F0 is the excitation magnitude and ωe, the 
excitation frequency, while md and Kpd are, respectively, the mass and stiffness of the pendulum 
absorber and ld , the pendulum length. 

So, in the present work, first the free vibration modes and frequencies of the column (with and 
without concentrated masses) are obtained analytically using symbolic algebra. Then, these modes 
are used together with the Rayleigh-Ritz method to obtain the free vibration modes and 
frequencies of the column-pendulum system. Finally, a two degrees of freedom model, capable of 
describing with precision the behavior of the system in the neighborhood of the basic frequency of 
the column, is derived, from which the following set of nonlinear equations of motion, in non-
dimensional form, is obtained 
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(a) 1st mode - ω1= 1.145rad/s (b) 2nd mode – ω2= 1.401rad/s 

  
(c) 3rd mode - ω3= 8.05rad/s (d) 4th mode – ω4= 22.591rad/s 

Fig. 2  Vibration modes and frequencies of the column-pendulum system L = 360m, A = 2.97m2, ρ = 
4176kg/m3, E = 2.1 × 1011N/m2, I = 133.61m4, m = 44740kg, l = 6.0m and g = 9.81m/s2 

 

Fig. 3  Discrete 2dof mass-pendulum system 
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where ζ = w/L, τ = ωet, is the nondimensional time parameter, ωc is the natural frequency of the 
column; ξc is the damping ratio of the column; ωp is the pendulum frequency, ξp is damping ratio 
of the pendulum absorber; μ is the mass ratio; ζs is the amplitude of the excitation force and ωe is 
the excitation frequency. 

The external control force is applied directly to the main structure in the opposite direction of 
the excitation force. It is given, in its non-dimensional form, as 

                   ),tanh(fFc   (3.6)

being a function of the displacement and velocity of the column. The control force depends the 
parameters f and β and is a function of the tower displacement (ζ) and velocity (ζ,τ). The use of 
tanh  function enables a smooth continuous variation of the nonlinear control force between the 
lower and upper values of the force (±Fc) and the parameter β controls the smoothness of this 
transition (see Fig. 9). In the literature usually the sign(x) is usually used, but this represents an 
instantaneous change of the force (Winthrop et al. 2005, Leitmann 1994, Sonneborn and Van 
Vleck 1965), leading, in a nonlinear system, to a complex behavior (non-smooth system) and 
instabilities. A similar function is used to model magneto rheological dampers (Tang et al. 2004, 
Warminski and Kecik 2012). 

Considering the external control force, the state equations are 
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(3.7)

where y1 = ζ  is the displacement, y2 = ζ,τ, the velocity and 2y = ζ,ττ, the acceleration of the column, 

and y3 = θ is the displacement, y4 = θ,τ, the velocity and 4y = θ,ττ, the acceleration of the pendulum 
absorber. 
Although here, as in previous investigations (Wu et al. 2005, Winthrop et al. 2005, Azadi et al. 
2009, 2011), the variable stiffness force has been applied to the main structure, to introduce the 
active force as an internal reaction force between the column and the pendulum in the hybrid case 
is also possible. 
 
 
4. Nonlinear behavior of the column-pendulum system 
 

First the nonlinear behavior of the tower-pendulum system is investigated. The main 
parameters of the system used in this investigation are: ωc = 1.255rad/s, ξc = 0.7%, ξp = 0.0% 
(damping ratio of the pendulum is zero), μ = 0.04 (4.0% of the modal mass of the first mode) and 
ζs = 0.007  (amplitude of the excitation force). 

There are three frequency parameters in Eq. (3.5): ωc, the natural frequency of the column; ωp, 
the pendulum frequency; and ωe, the excitation frequency. The efficiency of the passive control 
systems depends on the relative values of these three parameters. Fig. 4 shows the variation of the 
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maximum steady-state amplitude of the tower with (continuous curve) and without (dashed line) 
the pendulum absorber as a function of ωp for three different values of the ωe/ωc  ratio, illustrating 
the three possible behavior of the absorber. For ωe/ωc = 0.7965 (Fig. 4(a)), that is, for ωe < ωc, the 
pendulum is effective only in the lower frequency range. For ωp > 1 the pendulum increases the 
maximum vibration amplitude as compared to that of the uncontrolled tower. Also, a significant 
decrease only occur around ωp = 1.0, when the vibration maximum amplitude approaches zero. If 
ωe/ωc = 1.0 (Fig. 4(b)), the pendulum is effective in the whole frequency range here analyzed, the 
maximum decrease of the column response occurs around ωp = 1.2. For ωe/ωc = 1.1151 (Fig. 4(c)), 
that is, for ωe > ωc, the behavior is just the opposite of that shown in Fig. 4(a) for ωe < ωc. So, the 
pendulum may increase or decrease the tower vibration amplitudes, depending on the forcing 
amplitude, which is unknown in practical applications, and the tuning of the pendulum-tower 
system. Several studies have shown that the nonlinearity of the pendulum play an important role 
on the vibrations of the tower, especially in extreme forcing cases, when the control system must 
be most effective (Mustafa and Ertas 1995, Warminski and Kecik 2009, Náprstek and Fischer 
2009). On the other hand, the geometric nonlinearity of the tower has a negligible influence on the 
results (Orlando 2006). 

 
 

          
(a) ωe = 1.0rad/s and ωe/ωc = 0.7965 (b) ωe = ωc and ωe/ωc = 1.0 

(c) ωe = 1.4rad/s and ωe/ωc = 1.1151 
Fig. 4 Behavior of the maximum amplitude of displacement of the column in the permanent state. ωc = 
1.255rad/s, ξc = 0.7%, ξp = 0.0% (damping ratio of the pendulum is zero), μ = 0.04 (4,0% of the modal mass of 
the first mode) and ζs = 0.007 (amplitude of the excitation force) 
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Fig. 5 shows a comparison between the resonance curve of the tower and the pendulum, 
considering for the pendulum a linear and fully nonlinear modeling. It is clear that the 
consideration of a linear pendulum leads to an incomplete and incorrect evaluation of the 
pendulum damper on the maximum vibration amplitudes. The nonlinearity modifies the vibration 
amplitude and leads to a softening behavior with multiplicity of solutions and possible jumps 
between coexisting attractor in some frequency ranges. The results in Figs. 4 and 5 show that the 
pendulum nonlinearity may lead to complex dynamic behavior, depending on the relative values of 
the frequency parameters. Bifurcation diagrams of the Poincaré map as a function of ωp for 
increasing values of the ωe/ωc  ratio are shown in Fig. 6. The bifurcation diagrams are obtained by 
the numerical integration of the state Eq. (3.5) by the fourth order Runge-Kutta method together 
with the brute-force algorithm. Complex responses are detected, particularly for low values of ωp. 
Some of these responses are illustrated in Figs. 7 and 8 where time responses, phase-plane 
responses and Poincaré sections are shown for, respectively, the column and the pendulum. While 
the tower shows nonlinear oscillations of different periods and quasi-periodic responses, as 
observed in the Poincaré maps, with small influence on the time response, the pendulum displays a 
complex oscillatory quasi-periodic behavior due to the influence of incommensurate frequencies. 
So, the trajectory is no longer closed, and the limit cycle becomes a limit torus. 

These results show that the pendulum nonlinearity, although effective in reducing the 
frequency amplitudes in the main resonance region when properly tuned, may lead to unwanted 
complex solutions and jumps in an evolving dynamic environment. The response of the column-
pendulum system can be improved and stabilized by adding to the structure some active control 
force, as shown in the next section. 

 

 
(a) Absolute angular displacement of the pendulum 

 
(b) Absolute displacement of the column 

Fig. 5 Comparison of the response considering a linear and nonlinear pendulum model. The influence of the 
nonlinearity is observed in the main resonance regions. ωp/ωc = 1.018, ωc = 1.255rad/s, ξc = 0.7%, ξp = 
0.0%, μ = 0.04 and ζs = 0.007 
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5. Hybrid control approach 
 

To improve the effectiveness of the control during the transient response, a hybrid control 
system is suggested. The added control force is a non-linear variable stiffness device based on 
position and velocity feedback. The added force, as shown in Eq. (3.6), depends on two 
parameters, where f is the force magnitude and β controls the smoothness of the force in the 
transition zone. Fig. 9 shows the influence of parameter β on the control force (x = ζ ζ,ζ ). As β 

 
 

(a) ωe = 0.3rad/s and ωe/ωc = 0.2389 (b) ωe = 0.7rad/s and ωe/ωc = 0.5575 

(c) ωe = 1.0rad/s and ωe/ωc = 0.7965 (d) ωe = ωc and ωe/ωc = 1.00 

(e) ωe = 1.4rad/s and ωe/ωc = 1.1151 (f) ωe = 1.7rad/s and ωe/ωc = 1.3541 

Fig. 6 Bifurcation diagrams of the Poincaré map. ωc = 1.25rad/s, ξc = 0.7%, ξp = 0.0%, μ = 0.04 and ζs = 
0.007 
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(a) ωp = 0.4rad/s and ωe/ωc = 0.5575 

 
(b) ωp = 0.6rad/s and ωe/ωc = 0.7965 

 
(c) ωp = 0.1rad/s and ωe/ωc = 1.00 

 
(d) ωp = 0.4rad/s and ωe/ωc = 1.1151 

 
(f) ωp = 0.6rad/s and ωe/ωc = 1.3541 

Fig. 7 Time response, phase plane and Poincaré map of the steady-state response of the tower. ωc = 
1.255rad/s, ξc = 0.7%, ξp = 0.0%, μ = 0.04 and ζs = 0.007 
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(a) ωp = 0.4rad/s and ωe/ωc = 0.5575 

 
(b) ωp = 0.6rad/s and ωe/ωc = 0.7965 

 
(c) ωp = 0.3rad/s and ωe/ωc = 1.00 

 
(d) ωp = 0.4rad/s and ωe/ωc = 1.1151 

 
(f) ωp = 0.2rad/s and ωe/ωc = 1.3641 

Fig. 8 Time response, phase plane and Poincaré map of the steady-state response of the pendulum. ωc = 
1.255rad/s, ξc = 0.7%, ξp = 0.0%, μ = 0.04 and ζs = 0.007 
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Fig. 9 Behavior of the function tanh(βx) for increasing values of β . x = ζ ζ,τ 

 

(a) Column without control (b) Column with hybrid control 

(c) Control force (d) Pendulum absorber 
Fig. 10 Behavior of the system with hybrid control. f = 1.0, β = 6000, ωc = ωp = ωe = 1.255rad/s, ξc = 0.07%, 
ξp = 0.0%, μ = 0.04 and ζs = 0.007 

 
increases, the force approach asymptotically the function Fc = fsign(ζ ζ,τ), when an abrupt change 
in the stiffness occurs (Winthrop et al. 2005, Leitmann 1994, Sonneborn and Van Vleck 1965). 
The latter function may lead to instability of the system in the presence of time delay. Also, in 
practical situations an instantaneous change of the sign of the force from + f to − f may not be 
possible. So, the description used in the present work seems to be more feasible and will lead to a 
more stable control system. 

Fig. 10 clarifies the influence of the present control strategy on the behavior of the tower. Figs. 
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10(a) and 10(b) show, respectively, the uncontrolled and controlled response of the tower 
(maximum normalized displacement vs. time). A marked decrease in vibration amplitudes is 
obtained. The same is observed for velocities and accelerations. Fig. 10(c) shows the evolution of 
the control force, while Fig. 10(d) shows the response of the pendulum. First, while the response 
of the pendulum increases steadily from rest, the added control force acts to control the response of 
the tower but soon tends to zero as the pendulum reaches its full potential, absorbing most of the 
vibration energy. In this analysis is adopted ωc = ωp = ωe = 1.255rad/s, ξc = 0.7%, ξp = 0.0%, μ = 
0.04 and ζs = 0.007, and the control force is computed considering f = 1.00 and β = 6000. 

Table 1 shows, considering β = 60 and f varying from zero to two, the influence of the 
parameter f on maximum displacement, velocity and acceleration of the tower. It is observed that, 
as parameter f increases, the hybrid control becomes more efficient. However this increase is very 
small, which is an attractive aspect in a control mechanism, since a small force can be adopted 
leading to less energy consume. The maximum amplitude of the column in the steady-state regime 
is not affected by the variation of f. This is explained, as shown previously, by the fact that the 
pendulum is the responsible for the control of the vibrations in this phase, being the control force 
practically zero. 

Now, the parameter β varies while the parameter f is taken equal to 1.00. Table 2 shows the 
behavior of the maximum displacement, velocity and acceleration of the column. As β increases 
the function tanh(βξξ,τ) tends asymptotically to the behavior of the function sign(ζζ,τ) and the 
efficiency of the control force increases markedly decreasing the maximum values that occur 
during the transient response. The amplitudes of the steady-state response are not altered by the 
value of β. 

Fig. 11 shows a comparison of the steady-state response of the tower with passive and hybrid 
control for ωc = ωp = 1.255rad/s, ξc = 0.7%, ξp = 1.0, μ = 0.04, ζs = 0.007, f = 1.00 and β = 60. The 
stable responses are represented by continuous lines, while the unstable responses are denoted by 
dotted lines. Comparing the two resonance curves, a strong decrease in the maximum vibration 
amplitude due to the hybrid control is observed. Also the hybrid control leads to the disappearance 
of the unstable branches. 

To evaluate the efficiency of the hybrid control, results were also obtained for ωe/ωc = 0.8991 
resulting in ωe = 1.13rad/s. This point, Fig. 12(a), coincides with the point where the absorber-
tower system reaches the maximum amplitude. Fig. 12(b) shows a comparison of the tower and 
pendulum steady-state response with and without the active force. The results show that the hybrid 
control system practically eliminates the vibrations in the main resonance region of the coupled 
system. 

In active, hybrid or adaptive control systems where feedback strategies are used, a certain 
amount of time is necessary to obtain and process the signal and, after that, evaluate and apply the 
control force. This time delay may cause a deterioration of the control system and can even cause 
instability (Liu et al. 2011). So, the influence of time delay is an essential step in the design of a 
given control system. Here the time delay, Td, is given as a percentage of the period of the tower 
response; T. Fig. 13 show the bifurcation diagram for a system without time delay and with a time 
delay equal to half of the period of the force, Td = Tf /2. It is observed that at the main resonance 
region the response becomes unstable. Based on these observations, a parametric analysis was 
conducted to evaluate the critical values of f and β as a function of the time delay. The results are 
presented in Figs. 14 and 15, where the variations of the critical values are shown as a function of 
the time delay. The worst case occurs when Td /T= 0.5. From the results, one can conclude that 
reasonable values of f and β can be used without instability problems due to time delay. However  
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(a) Passive control 

 
(b) Hybrid control 

Fig. 11 Comparison of the steady-state response of the tower with passive and hybrid control for ωc = ωp =  
1.255rad/s, ξc = 0.7%, ξp = 1.0%, , ζs = 0.007, f = 1 and β = 60. Continuous line – stable, dotted line – 
unstable 

 

 
(a) Bifurcation diagram – Passive control 

 
(b) Time history for ωe/ωc = 0.8991 (worst case) 

Fig. 12 Comparison of the amplitude of displacement with and without the control force. f = 1 and β = 6000, 
ωc = 1.255rad/s, ωp/ωc = 1.018, ξc = 0.7%, ξp = 7.0% and ζs = 0.007 
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(a) Td = 0 

(b) Td = Tf/2 

Fig. 13 Influence of time delay. ωc = 1.255rad/s, ωp/ωc = 1.018, ξc = 0.7%, ξp = 7.0%, ζs = 0.007, f = 1, β = 60

 

 
Fig. 14 Variation of the critical value of β as a function of time delay. ωc = ωp = ωe  = 1.255rad/s, ξc = 0.7%, 
ξp = 0.7%, ζs = 0.007 and f = 1 

 

 
Fig. 15 Variation of the critical value of f as a function of time delay. ωc = ωp = ωe  = 1.255rad/s, ξc = 0.7%, 
ξp = 0.0%, ζs = 0.007 and β = 60 
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if higher values of f and β are required, several compensation methods including modifications of 
phase shift of the measured state variables in the modal domain and methods of updating the 
measured quantities can be found in literature (Soong 1988). 

Based on the seminal ideas of Den Hartog (Den Hartog 1985, Korenev and Reznikov 1993, 
Soong and Dargush 1997), the optimal parameters of a tuned mass damper are usually obtained 
considering a harmonic excitation. This is rarely true in practical situations where loads do not 
lend themselves to explicit time description, being random or including at least some kind of 
noise. So it is important to know how departures from an ideally perfect harmonic excitation may 
affect the performance of a control device. Consider that the applied load is composed of an 
harmonic deterministic portion plus a random term, such that (Gonçalves and Santee 2008) 

                                  ),F;t(G)tcos(F)t(Ft   (5.1)

where the random term G(t; F, Ω) depends the frequency Ω and amplitude F of the deterministic 
term and G has expected value zero, that is E[G(t; F, Ω )] = 0. 

The description of a stochastic process is usually made in the frequency domain. Here it is 
assumed that the random term has a spectral density function given by 

                            
l

GG
GG 




2
)(

2

      for     
22

ll 



  (5.2)

where 2
GG  is the variance of the random force amplitude and ωl is the frequency bandwidth. 

Additionally, it is considered that the standard deviation of the random force amplitude is 
proportional to the deterministic force amplitude, thus σGG = aF, where a is the standard deviation  

 
 

(a) ωl = 0.75 

(b) ωl = 1.5 
Fig. 16 Influence of random force. ωc = ωp = ωe  = 1.255rad/s, ξc = 0.7%, ξp = 0.0%, ζs = 0.007 and f = 1, β 
= 60 and a = 0.3 
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(a) Hybrid Control, for ωe/ωc = 0.80, 0.95, 1.05, 1.20 

(b) Passive control, for ωe/ωc = 0.80 (c) Passive control, for ωe/ωc = 0.95 

(d) Passive control, for ωe/ωc = 1.05 (e) Passive control, for ωe/ωc = 1.20 
Fig. 17 Transient basins of attraction of the stable steady-state response. Number of forcing cycles necessary 
for the perturbed response converge to the fixed point of the Poincaré map. Black: 0-200, Red: 201-400 
cycles. ωc = ωp = 1.255rad/s, ξc = 0.7%, ξp = 1.0%, ζs = 0.007 and f = 1, β = 60 
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parameter. Two analyses considering ωc = ωp = ωe = 1.255rad/s, ξc = 0.7%, ξp = 0.0%, ζs = 0.007, f 
= 1 and β = 60, are shown in Fig. 16 for two values of ωl and a = 0.3. While the response of the 
uncontrolled tower exhibits large vibration amplitudes (dashed curve), the response of the tower-
pendulum system exhibits a strong decrease of the vibration amplitudes of the tower response (red 
curve) which is further decreased by the addition of the variable stiffness device (black curve).  

The evaluation of the safety and integrity of a nonlinear dynamical system is a subject of 
theoretical and practical importance in engineering. One way of investigating the dynamical 
integrity is through the analysis of the evolution of the basins of attraction of the various solutions. 
This issue was first addressed by Thompson and co-workers (Thompson 1989, Soliman and 
Thompson 1989). They introduced the concepts of safe basin and erosion profiles. This issue was 
further analyzed by several authors and nowadays it is agreed that the safety of a nonlinear 
mechanical system or structure depends not only on the stability of their solutions but also on the 
continuous and uncorrupted basin surrounding each solution, the total erosion of a given basin 
corresponding to the system failure (Rega and Lenci 2005). The integrity of a basin of attraction 
depends on the topology of the basin boundary, which can be smooth or fractal, and on the way 
that the basins of the various co-existing solutions interfere with each other (Soliman and 
Gonçalves 2003, Gonçalves et al. 2011). 

Thompson and Soliman also introduced the concept of transient basin of attraction (Soliman 
and Thompson 1989, Soliman 1994). This tool can be used to measure the velocity with which a 
given attractor is approached and consequently the efficiency of a control system to damp the 
transient vibrations. 

Fig. 17 shows the transient basins of attraction of the stable steady-state response of the tower 
with hybrid (Fig. 17(a)) and passive control. Each point in the basin of attraction corresponds to a 
set of two nonhomogeneous initial conditions of the tower (initial displacement field and velocity) 
thus accounting for a sudden application of the forcing or a sudden disturbance of the structure, 
leading to a transient response. The color scheme refers to the number of forcing period necessary 
to damp completely the transient response. As shown in Fig. 17(a), for the system with hybrid 
control all solutions converge to the desired attractor independent of the disturbance 
magnitudewithin 200 periods independent of the forcing frequency. For the passive case, the time 

 
 

   
(a) ωe/ωc = 1.05. Black points, attractor (-0.207, -
0.231), Red points, attractor (0, 0.013) 

(b) ωe/ωc = 0.85. Black points, attractor (-0.002, 
0.038), Red points, attractor (-0.003, 0.038) 

Fig. 18 Basin of attraction – multiplicity of solution for the passive case. ωc = ωp = 1.255rad/s, ξc = 0.7%, ξc 
= 0.7%, ξp = 0.0% and ζs = 0.007 
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necessary to damp the transient response is much larger and depends on the value of the forcing 
frequency, as shown in Figs. 17(b)-17(e). 

In the passive case, as already shown in Figs. 5 and 11, multiplicity of solutions may occur due 
to the nonlinearity of the resonance curves. Fig. 18 shows the basin of attraction for two cases 
where two competing solutions occurs (red and black basins). In Fig. 18(a) the basin boundary is 
smooth while in Fig. 18(b) the basin boundary is fractal. This leads to an uncertain outcome when 
the structure is subjected to a sudden disturbance and may lead to unwanted and even dangerous 
jumps between attractors in an evolving dynamic environment. 

For the linear passive damper (Den Hartog 1985, Orlando 2006) it is found that a damping ratio 
of 12% leads to the optimal solution of the passive damper for the steady state response. However 
a high damping has a deleterious effect on the energy dissipation during the transient response. 
Considering the optimal value, ξp = 12.0%, Fig. 19 compare the transient basins of attraction of the 
stable steady-state response of the tower with hybrid and passive control. As in Fig. 17, each point 
corresponds to a set of initial conditions of the tower (initial displacement field and velocity), 
leading to a transient response. The color scheme refers to the number of forcing period necessary 
to damp completely the transient response. Fig. 19 shows that, even for this high damping level, 
the hybrid control display a more efficient performance on the rate of energy dissipation. This is  

 
 

       
(a.1) Passive control (a.2) Hybrid control 

(a) ωe/ωc = 0.80 

       
(b.1) Passive control (b.2) Hybrid control 

(b) ωe/ωc = 1.00 
Fig. 19 Transient basins of attraction of the stable steady-state response. Number of forcing cycles necessary 
for the perturbed response converge to the fixed point of the Poincaré map. Black: 0-25, Red: 26-50, Blue: 
51-75, Gray: 76-100. ωc = ωp = 1.255rad/s, ξc = 0.7%, ξp = 12.0%, ζs = 0.007 and f = 1, β = 60 
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(c.1) Passive control (c.2) Hybrid control 

(c) ωe/ωc = 1.20 

Fig. 19 Continued 
 

(a.1) Displacement (a.2) Velocity 
(a) ζ(0)= 0.04  

(b.1) Displacement (b.2) Velocity 
(b) ζ(0)= 0.08 

Fig. 20 Time history for ωc = ωp = ωc = 1.255rad/s, ξc = 0.7%, ξp = 12.0%, ζs = 0.0 and f = 1, β = 60 
 
 

also observed in Fig. 20, where the time responses of the tower displacement, ζ(τ), and velocity, 
ζ,τ(τ), considering a nonzero initial condition for the tower displacement, ζ(0), and both passive 
and hybrid control responses are compared. 

Several devices have been proposed for the fabrication of variable stiffness springs in literature, 
including devices appropriate for tall buildings (Pnevmatikos et al. 2004, Winthrop et al. 2005, 
Azadi et al. 2009, 2011, Rodriguez et al. 2011). To verify the numerical simulation results 

174



 
 
 
 
 
 

Hybrid nonlinear control of a tall tower with a pendulum absorber 

experiments implementing the above control algorithm should be carried out. Although here, as in 
previous investigations (Wu et al. 2005, Winthrop et al. 2005, Azadi et al. 2009, 2011), the 
variable stiffness force has been applied to the main structure, to introduce the active force as an 
internal reaction force between the column and the pendulum mass in the hybrid case may be more 
feasible. The effectiveness of this alternative will be explored in a future work. 

 
 

6. Conclusions 
 

The analysis of a tall tower with a pendulum absorber was analyzed in the present work. The 
results show that the influence of the inertial and geometric nonlinearity of the pendulum cannot 
be disregarded in this class of problem. The results obtained without considering the damping of 
the pendulum present a strong nonlinearity of the softening type, where a decrease of the natural 
frequency with the vibration amplitude is observed, leading the sudden changes in vibration 
amplitudes. On the other hand, the nonlinearities decrease the vibration amplitudes in the 
resonance region during the steady-state response when compared with the usual linearized 
models. Although the increase of the damping of the pendulum improves the behavior of the 
system in the resonance region, it may be unfavorable during the transient regimen. 

To improve the efficiency of the control, a hybrid control mechanism is proposed. Results 
demonstrate that the control force acts when the pendulum absorber starts to move. After the 
absorber reaches the amplitude necessary to control the oscillations of the column, the amplitude 
of the control force diminishes significantly. It is also observed that this control can practically 
eliminate the oscillations of the system in the main resonance region of the coupled pendulum-
tower system. Results show that time delay has a major influence on the stability of the controlled 
response and that a proper choice of the active force parameters to avoid instability is an essential 
step in the control design. However additional studies and experimental analyses are necessary so 
that the efficiency of the proposed hybrid control can be properly evaluated. 
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