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Abstract.   In this study, inelastic displacement ratios are investigated for existing systems with known 
lateral strength considering soil structure interaction. For this purpose, SDOF systems for period range of 
0.1-3.0 s with different hysteretic behaviors are considered for a number of 18 earthquake motions recorded 
on soft soil. The effect of stiffness degradation on inelastic displacement ratios is investigated. The Modified 
Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to 
reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. Soil 
structure interaction analyses are conducted by means of equivalent fixed base model effective period, 
effective damping and effective ductility values differing from fixed-base case. For inelastic time history 
analyses, Newmark method for step by step time integration was adapted in an in-house computer program. 
A new equation is proposed for inelastic displacement ratio of system with SSI with elastoplastic or 
degrading behavior as a function of structural period (T̃), strength reduction factor (R) and period 
lengthening ratio (T̃/T). The proposed equation for C̃R which takes the soil-structure interaction into account 
should be useful in estimating the inelastic deformation of existing structures with known lateral strength. 
 

Keywords:   soil-structure interaction; inelastic displacement ratio; strength reduction factor; lateral strength; 
stiffness degradation; seismic analysis 

 
 
1. Introduction 
 

Current performance-based seismic design methods use displacements rather than forces as 
basic demand parameters for the design, evaluation and rehabilitation of structures. 
Performance-based seismic design methodologies aim at controlling earthquake damage to 
structural elements and many types of nonstructural elements by limiting lateral deformations on 
structures. In general, nonlinear time history analyses of structures may produce a good estimation 
of global and local deformation demands for a given acceleration time history. However these 
analyses are still considered unpractical for everyday design situations. Thus, simple, yet reliable 
methods for estimating lateral inelastic displacements demands on structures are needed for the 
design of new structures or during the seismic evaluation and rehabilitation of existing structures. 
Generally accepted standpoints of seismic design methodologies establish that structures should be  
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capable of resisting relatively frequent, minor intensity earthquakes without structural damage or 
damage to nonstructural elements, moderate earthquakes without structural damage, or with some 
nonstructural damage, and severe, infrequent earthquakes with damage to both the structural 
system elements and nonstructural components. Thus, implementation of displacement-based 
seismic design criteria into structural engineering practice requires simplified analysis procedures 
to estimate seismic demands by applying the nonlinear static procedure or pushover analysis 
presented in FEMA273 (1997), FEMA356 (2000), or ATC-40 guidelines (1996). A common and 
key step for the estimation of peak inelastic deformation demands is the use of inelastic 
displacement ratios (CR

Inelastic displacement ratios have been the topic of several investigations so far. The first well-
known studies were conducted by Veletsos and Newmark (1960, 1965) using the response of 
SDOF systems having elastoplastic hysteretic behavior and predefined levels of displacement 
ductility, µ, when subjected to a limited range of earthquake ground motions and periods of 
vibration. Since then, several researchers have performed statistical studies to evaluate constant-
ductility inelastic displacement ratios using larger sets of ground motions and for wider range of 
periods than those pioneer studies. Recently, Miranda et al. (2000, 2004, 2006), Decanini et al. 
(2003), Chopra and Chintanapakdee (2004) studied on inelastic displacement ratios and presented 
a series of new functions based on statistical studies to obtain the ratio of the maximum inelastic to 
the maximum elastic displacement for SDOF systems. Aviles and Perez-Rocha (2005) investigated 
displacement modification factors for a single elastoplastic structure with flexible foundation 
excited by vertically propagating shear waves and a site-dependent reduction rule proposed 
elsewhere for fixed-base systems were adjusted for systems with SSI.  

) that allows the estimation of peak inelastic displacement demands from 
peak elastic displacement demands. Inelastic displacement ratio can be described as the ratio of 
peak inelastic displacement to peak elastic displacement for a system with same damping ratio and 
period of vibration.  

In addition, there are many other researches focusing on soil structure interaction concept. 
Hatzigeorgiou and Beskos presented a simple and effective method for the inelastic displacement 
ratio estimation of a structure under repeated or multiple earthquakes and obtained expressions for 
this ratio, in terms of the period of vibration, the viscous damping ratio, the strain-hardening ratio, 
the force reduction factor and the soil class (Hatzigeorgiou and Beskos 2009). Roy and Dutta 
examined the inelastic seismic response of low-rise buildings through adequate idealization of 
structure and sub-soil medium. It is concluded that, buildings depicts that inelastic response of the 
asymmetric structure relative to its symmetric counterpart is not appreciably influenced due to 
soil–structure interaction (Roy and Dutta 2010). In another study an equivalent ductility factor for 
the combined structure and foundation is derived to determine the design strength (Aviles and 
Perez-Rocha 2011). The effect of foundation nonlinearity on the structural response of low-rise 
steel moment-resisting frame buildings in terms of base moment, base shear, story drift, and 
ductility demand was investigated (Raychowdhury 2011). The nonlinear interaction analysis of a 
two-bay ten-storey plane building frame- layered soil system under seismic loading has been 
carried out using the coupled finite-infinite elements (Agraval and Hora 2012). As an another 
research, performance-based framework for soil-structure systems using simplified rocking 
foundation models has been conducted and it is concluded that soil foundation system can 
inherently have deformation capacity well in excess of the demand and thus act as a source of 
energy dissipation that protects the structural integrity of the shear walls (Smith-Pardo 2011).  The 
effect of soil-structure interaction on inelastic displacement ratio of structures has been studied by 
Eser and co-workers (2011, 2012). They proposed new equations for inelastic displacement ratio 
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of system with SSI with elastoplastic behavior, as a function of structural period, strength 
reduction factor or ductility and period lengthening ratio.  

The aim of this study is to present the results of an investigation whose main goal was to 
provide more information on the soil structure interaction effects on inelastic displacement ratios 
for stiffness degrading structures with known lateral strength built on soft soils when subjected to 
earthquake ground motions. In particular this study tried to: (1) study on SDOF systems with 
period range of 0.1-3.0 s and six levels of known lateral strength (R = 1.5, 2, 3, 4, 5, 6);  (2) focus 
on stiffness degrading structures with strain hardening ratios of α = 0, 2%, 5% and 10%; (3) 
analyze SDOF systems with SSI for five aspect ratios (h/r = 1, 2, 3, 4, 5); and (4) propose new 
equations for inelastic displacement ratio of system with SSI with elastoplastic and degrading 
behavior as a function of structural period (T̃), strength reduction factor (R) and period lengthening 
ratio (T̃/T). 
 
 
2. Modelling of system with SSI 
 

A SDOF system represented with mass, m, height, h is used to model the structure as shown in 
Fig. 1. The SDOF system may be viewed as representative of more complex multistory buildings 
that respond as a single oscillator in their fixed-base condition. In this case, the parameters m and h 
denote the effective mass and effective height, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 SDOF system 
 
 

For interacting case, the foundation is modeled as a circular rigid disk with radius r. The soil 
under the foundation is considered as a homogenous half-space and characterized by shear wave 
velocity Vs, dilatational wave velocity Vp

 

, mass density ρ and Poisson’s ratio υ. The supporting 
soil is replaced with springs and dampers for the horizontal and rocking modes. The foundation is 
represented for all motions using a spring-dashpot-mass model with frequency-independent 
coefficients. The modeling of the foundation on deformable soil is performed in the same way as 
that of the structure and is coupled to perform a dynamic SSI analysis (Wolf 1997). A 
schematically view considering soil structure interaction modeling of supports is shown in Fig. 2. 
More details regarding the stiffness and damping coefficients for the horizontal and rocking modes 
can be found in (Wolf 1994). 

m 

r 

h 
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Fig. 2 Mathematical model of supports with soil structure interaction 
 
 
3. Hysteretic models considered in this study 
 

Load-deformation characteristics of RC structures subjected to reverse cyclic loading have 
been presented by many hysteretic models. One of the first models to include the effect of stiffness 
degradation was the one proposed by Clough and Johnston (1966). This model has an elasto-
plastic-perfectly-plastic envelope, however it differs from the EPP model in that, after the initial 
yielding, further loading branches are directed towards the furthest unloading point in the direction 
of loading, thus with a lateral stiffness smaller than the initial stiffness. A trilinear model, 
commonly used and known as the Takeda model has been proposed based on experimental results 
of a number of medium-sized reinforced concrete members subjected to cyclic loading (Takeda et 
al. 1970). In the present study, the Modified Clough model is used to represent structures with 
stiffness degradation. This model is based on the Clough model, and several studies have 
concluded that the Modified Clough model is capable of reproducing the behavior of properly 
designed reinforced concrete structures where shear failure is avoided and the behavior is 
primarily flexural (Miranda and Ruiz-Garcia 2002). The influence of stiffness degradation on the 
seismic demands of structures has been the topic of several studies (Clough and Johnston 1966, 
Rahnama and Krawinkler 1993, Borzi et al. 2001, Gupta and Krawinkler 1998, Gupta and 
Kunnath 1998). Also Miranda and his co-workers have studied on the effects of stiffness 
degradation on structures subjected to ground motions recorded on very soft soils (Miranda and 
Ruiz-Garcia 2002, Ruiz-Garcia and Miranda 2004, 2006). 

As FEMA guidelines proposed a series of coefficients C1 to C4 to evaluate inelastic 
displacement ratios, C2 modification factor is defined to represent the effect of pinched hysteretic 
shape, stiffness degradation and strength deterioration on maximum displacement response 
without soil structure interaction. Values of C2 modification factor for different framing systems 
and Structural Performance Levels shall be obtained from aforementioned guidelines. 
Alternatively, use of C2

In a more recent study conducted by Chenouda and Ayoub, a newly developed model that 
incorporates degradation effects into seismic analysis of structures is presented and a new energy-
based approach is used to define several types of degradation effects. Approximate methods are 
proposed for estimating maximum inelastic displacements of degrading systems for use in 
performance-based seismic code provisions (Chenouda and Ayoub 2008). Another research 
conducted by the same authors has focused on the development of response spectra plots for 

 = 1.0 is permitted for nonlinear procedures (FEMA 356 2000, FEMA 440 
2005). In 2009, to advance the understanding of degradation and dynamic instability by 
developing practical suggestions, where possible, to account for nonlinear degrading response in 
the context of current seismic analysis procedure FEMA P440A guideline was prepared (FEMA 
P440A 2009). 

Cθ 
Kx Kθ 

 Cx 
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inelastic degrading structural systems subjected to seismic excitations and conclusions regarding 
the behavior and collapse potential of different structural systems are drawn (Ayoub and Chenouda 
2009). In 2012, Erberik and co-workers studied on the inelastic displacements of reinforced 
concrete systems by employing an energy-based approach and developed a hysteresis model is that 
accounts for stiffness degradation, strength deterioration and pinching based on experimental data 
(Erberik et al. 2012). However, none of existing studies has considered the influence of soil 
structure interaction phenomenon. Therefore, the present study focuses on the effect of stiffness 
degradation on inelastic displacement ratios for soil structure interacting case. For this purpose, 
elastoplastic and Modified Clough hysteretic models shown in Fig. 3 are considered in this study. 

 
 

4. Analysis method 
 

For fixed-base case, dynamic time history analyses have been conducted for specified strength 
reduction factors and inelastic displacement ratios (CR) are computed for the constant relative 
strength. Unlike the constant ductility inelastic displacement ratio (Cµ) that has to be computed 
through iteration on the lateral strength until the computed displacement ductility demand is within 
a certain tolerance equal to the target ductility ratio, the constant relative strength inelastic 
displacement ratio (CR) can be computed without any iteration and thus, for a given acceleration 
time history, it is significantly faster to compute. For system with SSI, analyses have been repeated 
for the same yield strength of the fixed -base case . Thus, inelastic displacement ratios (C̃R

The soil structure analysis may be conducted either in the frequency domain using harmonic 
impedance functions or in the time domain using impulsive impedance functions. However, the 
frequency-domain analysis is not practical for structures that behave nonlinearly. On the other 
hand, the time-domain analysis can be conducted by using constant springs and dampers 
regardless of frequency to represent the soil (Wolf and Somaini 1986). In the present study, the 
described soil-structure model is analyzed in time domain. For inelastic time history analyses, 
Newmark method for step by step time integration was adapted in an in-house computer program. 

) of 
systems with SSI are computed for the constant yield strength.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Load-deformation hysteretic models used in this study: (a) Elastoplastic; (b) Modified Clough 

 (a)  (b) 
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  Table 1 Earthquake ground motions used in analyses 

Earthquake M Station Station no Dist.(km) Comp. 1 PGA(g) PGV(cm/s) Comp. 2 PGA(g) PGV(cm/s)

Loma Prieta 18/10/89 7.1 Appel 2 Redwood City 1002 47.9 A02043 0.274 53.6 A02133 0.22 34.3 

Northridge 17/01/94 6.7 Montebello 90011 86.8 BLF206 0.179 9.4 BLF296 0.128 5.9 

Superstition Hills 
24/11/87 6.6 Salton Sea Wildlife Refuge 5062 27.1 WLF225 0.119 7.9 WLF315 0.167 18.3 

Loma Prieta 18/10/89 7.1 Treasure Island  58117 82.9 TRI000 0.1 15.6 TRI090 0.159 32.8 

Kocaeli 17/08/99 7.8 Ambarli - 78.9 ATS000 0.249 40 ATS090 0.184 33.2 

Morgan Hill 24/04/84 6.1 Appel 1 Redwood City 58375 54.1 A01040 0.046 3.4 A01310 0.068 3.9 

Düzce  12/11/99 7.3 Ambarlı - 193.3 ATS030 0.038 7.4 ATS300 0.025 7.1 

Kobe 16/01/95 6.9 Kakogawa 0 26.4 KAK000 0.251 18.7 KAK090 0.345 27.6 

Kobe 16/01/95 6.9 Shin-Osaka 0 15.5 SHI000 0.243 37.8 SHI090 0.212 27.9 
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A set of earthquake acceleration time-histories recorded on soft soil used in this study are listed in 
Table 1. More details on the selection of earthquake records and site classes can be found in (Eser 
and Aydemir 2011). 

A total 155520 of analyses have been conducted for SDOF structures with period range of 0.1-
3.0 s for five aspect ratios (h/r = 1, 2, 3, 4, 5) and fixed-base case, six values of strength reduction 
factor  (R = 1.5, 2, 3, 4, 5, 6), 18 ground motions, four strain hardening ratios (α = 0, 2%, 5%, 
10%) and two types of hysteretic behavior (EP and SD). 
 

4.1 Analogy of equivalent fixed-base model 
 
The most common approach to consider soil structure interaction effects is to use a single 

degree of freedom replacement oscillator with effective period and damping of the system. The 
first well-known studies on the use of replacement oscillator were conducted by Veletsos and his 
co-workers (Veletsos and Meek 1974, Veletsos and Nair 1975, Veletsos 1977). Effective period 
and damping of the system are denoted by T̃ and β,̃ respectively, as they are used in current U.S. 
codes (ATC-3-06 1984, FEMA-450 2003). Effective period of the system with SSI is given by the 
equation below 









++=

θK
hK

1
K
k1TT~

2
x

x
                                                  (1) 

Rearranging this equation gives the equivalent stiffness of the system with SSI as follows 
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++=                                                        (2)  

Effective damping for the system with SSI is given by the equation below 

30

T
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05.0~









+= ββ                                                           (3) 

where β0

For elastic range, it is adequate to modify structural period and damping ratio of system with 
SSI to consider elastic interaction effects whereas the ductility capacity of the structure has to be 
modified to consider inelastic interaction effects in the inelastic range. Based on this approach an 
effective ductility for the system with SSI has to be defined. Effective ductility of system with SSI 
is defined as providing the same yielding force of the fixed-base structure. The yielding forces are 
selected in a way to produce presumed ductility demand for the fixed-base structure. Also it is 
possible to obtain effective ductility of the system with SSI with the equation given below as 
proposed by some researches in the past (Muller and Keintzel 1982, Ghannad and Ahmadnia 2002, 
Aviles and Perez-Rocha 2003) 

 denotes the foundation damping factor and values for this factor should be read from the 
figure given in current U.S. codes (ATC-3-06 1984, FEMA-450 2003). 
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5. Results of statistical study  
 

5.1 Mean inelastic displacement ratios 
 
In Fig. 4, variations of mean inelastic displacement ratios against period are shown for cases 

with (dashed line) and without (solid line) interaction. Results are presented for systems with 
strength reduction factor of 1.5, 3 and 6 and aspect ratio of 3. The left graph shows the results for 
strain hardening ratio of 0% and the right graph shows the results for strain hardening ratio of 10%. 
It can be seen from the figure that, inelastic displacement ratios of fixed-base and interacting cases 
are very close to each other and approximately equal to unity for long period range. This behavior 
is in accordance with well-known “equal displacement rule” for long period range. Especially for 
short period region, inelastic displacement ratios of fixed-base and system with SSI are 
considerably different for increasing strength reduction factors. 
Variations of mean inelastic displacement ratios against period for increasing values of aspect ratio 
are shown in Fig. 5. Results are presented for systems with strength reduction factor of 4 and strain  
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4 Variations of mean inelastic displacement ratios against period with (dashed line) and without (solid 
line) interaction for α = 0 and 10%. Results correspond to a system with SSI for h/r = 3 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5 Variations of mean inelastic displacement ratios against period and increasing values of aspect ratio 
for α = 0 and 10%. Results correspond to a system with SSI for R = 4. 
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hardening ratio of 0% and 10%.  It can be seen from the figure that, aspect ratio is an effective 
parameter for inelastic displacement ratios in high frequency region for all strain hardening ratios.  
There is a decrease tendency up to a certain period, say 0.8 s, for increasing values of aspect ratio, 
but from this period point the effect of aspect ratio on inelastic displacement ratios is negligible. 
 

5.2 Effect of hysteretic behavior  
 

Variations of mean inelastic displacement ratios with strength reduction factor for elastoplastic 
(dashed line) and Modified Clough (solid line) behavior are shown in Fig. 6. Results are presented 
for a system with SSI for α = 5% and h/r = 3. It is seen from Fig. 6 that, mean inelastic 
displacement ratios for degrading systems are greater than the corresponding ones of non-
degrading systems up to period of nearly 1.0 s and from this period point vice versa. It can also be 
seen that, although the upper curve in the graph corresponds to a strength reduction factor value of 
6 for period range before the mentioned certain period, this curve has the smallest inelastic 
displacement ratio values from this period point. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Variations of mean inelastic displacement ratios for elastoplastic behavior (dashed line) and Modified 
Clough (solid line) behavior against period for α = 5%. Results correspond to a system with SSI for h/r = 3 

 
 

 
 
 
 
 
 
 
 

 
 

Fig. 7 Variations of mean inelastic displacement ratios for elastoplastic behavior (dashed line) and Modified 
Clough (solid line) behavior against period and increasing values of aspect ratio for α = 5%. Results 
correspond to a system with SSI for R = 4 

T (s) 

T (s) 

C̃
R
 

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 0.5 1 1.5 2 2.5 3

R=1.5

R=1.5

R=2

R=2

R=3

R=3

R=4

R=4

R=5

R=5

R=6

R=6

C̃
R
 

T (s) 

0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

0 0.5 1 1.5 2 2.5 3

h/r=1

h/r=1

h/r=2

h/r=2

h/r=3

h/r=3

h/r=4

h/r=4

h/r=5

h/r=5

h/r = 3, α= 5%  

R = 4, α= 5%  

749



 
 
 
 
 
 

Müberra Eser Aydemir 

In Fig. 7, variations of mean inelastic displacement ratios with aspect ratio for elastoplastic 
(dashed line) and Modified Clough (solid line) behavior for a system with SSI for α = 5% and 
strength reduction factor of 4 are given. It is seen from Fig. 7 that, mean inelastic displacement 
ratios for degrading systems are smaller than the corresponding ones of non-degrading systems 
from the period of nearly 1.0 s. But before this period point, aspect ratio is an effective parameter 
on inelastic displacement ratios that, as the aspect ratio increases, inelastic displacement ratio 
decreases. 

In order to study further the effect of stiffness degradation on the structural displacement 
demands, non-degrading to degrading inelastic demand ratios were computed. Variation of these 
ratios is shown in Fig. 8. The graph shows the ratio of the inelastic displacement ratios in non -
degrading system, C̃R(EP), to inelastic displacement ratios in stiffness degrading system, C̃R (SD)

It can be seen from Fig. 8 that, there are spectral regions in which inelastic displacements of 
stiffness degrading systems are larger than those of elastoplastic systems (typically for small 
period values), while in other spectral regions the opposite is true (primarily for T > 1.0 s). It can 
be seen that limiting period values that separate spectral regions where inelastic displacements are 
larger for stiffness-degrading system from spectral regions where inelastic displacements are larger 
for elastoplastic systems are not constant and increase as the strength reduction factor increases.  

.  

Fig. 9 shows the ratio of mean inelastic displacement ratios for cases with and without 
interaction against structural period for all strength reduction factor levels and aspect ratios. The 
left graph shows the ratios for systems with elastoplastic behavior whereas the right graph shows 
the ratios for systems with Modified Clough behavior. The results demonstrate that fixed-base 
inelastic displacement ratios are greater than the corresponding ones of systems with SSI. 
Especially the considered ratios are much greater for systems with elastoplastic behavior. 
Although the maximum ratio of mean inelastic displacement ratio for cases with and without 
interaction is nearly 20 for Modified Clough behavior, this ratio becomes much more than 20 for 
elastoplastic behavior in the high frequency region. It can be seen from analysis results that the 
period, aspect ratio and strength reduction factor values corresponding to the highest value of the 
considered ratio, are found to be T = 0.1s, aspect ratio (h/r) of 5 and strength reduction factor (R) 
of 5 and 6. It can be emphasized that the main reason for such high ratios is due to the high values  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Variation of the ratio between elastoplastic behavior and Modified Clough behavior against period for 
α = 5%. Results correspond to a system with SSI for h/r = 3 
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of inelastic displacement ratios for fixed-base rather than systems with SSI. For periods smaller 
than 0.5s, inelastic displacement ratios are strongly dependent on the period of vibration and on the 
lateral strength ratio. In general, in this spectral region maximum inelastic displacements become 
much larger than maximum elastic displacements as the strength reduction factor  increases (i.e., 
as the lateral strength decreases with respect to the lateral strength required to maintain the system 
elastic) and as the period of vibration decreases. When soil structure interaction is considered, due 
to period elongation, the periods increase even for systems with small period values, which lead to 
lower inelastic displacement ratios than fixed-base systems. Furthermore, constant relative 
strength inelastic displacement ratios tend towards ∞ as the period of vibration tends to zero, 
which means that existing structures with very short periods may undergo very large inelastic 
displacement demands relative to their elastic counterparts unless they have lateral strengths that 
allow them to remain elastic or nearly elastic.  

 
5.3 Effect of strain hardening ratio  
 
Variations of mean inelastic displacement ratios with strain hardening ratio for systems with 

elastoplastic (left) and Modified Clough behavior (right) are shown in Fig. 10. Results are 
presented for a system with R = 6 and h/r = 5. As mentioned above, the considered strain hardening  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Ratio of mean inelastic displacement ratios for cases with and without interaction for all strength 
reduction levels and aspect ratios 

 
 
 

 
 
 
 
 
 
 

Fig. 10 Variations of mean inelastic displacement ratios with strain hardening ratio for elastoplastic (left) 
and degrading (right) systems. Results correspond to a system with R = 6 and h/r = 5 
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ratio values in analyses are α = 0, 2%, 5%, 10%, respectively. It is clearly seen from Fig. 10 that, 
there is a significant strain hardening effect on inelastic displacement demands. Especially, mean 
inelastic displacement ratios for systems with elastoplastic behavior are quite sensitive to strain 
hardening for almost entire period range. But, for stiffness degrading systems, effect of strain 
hardening ratio on inelastic displacement demands can be neglected for periods greater than 1.0 s. 
The figure illustrates that, for a given lateral strength, maximum inelastic deformation demands 
decrease as the level of post-yield stiffness ratio increases, and that the reduction in displacement 
demands depends on the spectral region. 
 

5.4 Nonlinear regression analysis 
 
In order to obtain an appropriate formula to represent the mean inelastic displacement ratios of 

systems with SSI for all records, strength reduction factors, aspect ratios and structural periods 
combined, nonlinear regression analyses are carried out. Using the Levenberg-Marquardt method 
(Bates and Watts 1988) in the regression module of STATISTICA (Statsoft Inc. 1995), nonlinear 
regression analysis was conducted to derive a simplified expression for estimating mean inelastic 
displacement ratios of systems with SSI. The resulting regression formula is appropriately 
simplified and expressed as 

)dT~R(
R

)1R(a1C~ cb
R ++

−
+=                                               (5) 

In Eq. (5), a, b, c and d are coefficients which take into account the influence of vibration period of 
system with SSI and period lengthening ratio. In this work, the aforementioned coefficients are 
given by the following empirical expressions 

T~aaa 10 ⋅+=                                                                (6) 

T~bbb 10 ⋅+=                                                                (7) 

T
T~ccc 10 ⋅+=                                                                (8) 

T~d
T
T~ddd 210 ⋅+⋅+=                                                       (9) 

 The coefficients a, b, c and d and correlation coefficient (r2

Fig. 11 shows the fitness of the regressed function of the mean 

) are summarized in Table 2 for 
Modified Clough (SD) and elastoplastic (EP) hysteretic behaviors. 

RC~ factor with stiffness 
egrading behavior for different strain hardening ratios. In this figure, the dashed line represents the 
values obtained from the regressed function (Eq. 5) and the solid line represents the actual mean 
values of RC~ factors obtained from non-linear dynamic analyses. Results are presented for systems 
with SSI for R = 1.5 and h/r = 3 in top figures and R = 6 and h/r = 3 in bottom figures.  
Fig. 12 shows the fitness of the regressed function of the mean RC~ factor with elastoplastic 
behavior for different strain hardening ratios. As in the previous figure, the dashed line represents 
the values obtained from the regressed function (Eq. 5) and the solid line represents the actual 
mean values of RC~ factors obtained from non-linear dynamic analyses. Results are presented for 
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systems with SSI for R = 1.5 and h/r = 3 in top figures and R = 6 and h/r = 3 in bottom figures. In 
Figs. 11 and 12, coefficient C2 defined in the FEMA guidelines (FEMA 356 and FEMA 440) is 
also shown with dotted line. As the coefficient C2

 

 defined in the FEMA guidelines is constant for 
different period range, this coefficient is almost always smaller than the calculated inelastic 
displacement ratios for high values of strength reduction factors. 

 
  Table 2 Parameter Summary for Eq. (5) 

)dT~R(
R

)1R(a1C~ cb
R ++

−
+=   Eq. (5) 

Hys. beh. Parameter r Hys. beh. 2 Parameter r2 

SD 

a 0.542 0 

0.94 EP 

a 0.316 0 

0.94 

a -0.095 1 a -0.171 1 
b0 0.825   b0 1.943   
b -0.535 1 b -2.687 1 
c0 -1.407   c0 -1.557   
c -0.035 1 c 0.025 1 
d0 -2.808   d0 -1.666   
d -0.193 1 d -0.085 1 
d 0.6 2 d 0.857 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

Fig. 11 For Modified Clough hysteretic behavior comparison of mean inelastic displacement ratios (solid 
line) with interaction to those computed with Eq. (5) (dashed line) for a system with SSI (a) R = 1.5 and 
h/r=3 (b) R = 6 and h/r=3. (Dotted line corresponds to coefficient C2
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(b) 
Fig. 11 Continued 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
Fig. 12 For elastoplastic hysteretic behavior comparison of mean inelastic displacement ratios (solid line) 
with interaction to those computed with Eq. (5) (dashed line) for a system with SSI (a) R = 1.5 and h/r = 3 
(b) R = 6 and h/r = 3 (Dotted line corresponds to coefficient C2

0.0

0.5

1.0

1.5

2.0

0 0.5 1 1.5 2 2.5 3
0.0

0.5

1.0

1.5

2.0

0 0.5 1 1.5 2 2.5 3

0.0

0.5

1.0

1.5

2.0

0 0.5 1 1.5 2 2.5 3
0.0

0.5

1.0

1.5

2.0

0 0.5 1 1.5 2 2.5 3

)

T (s) T (s) 

α = 0 α = 2% 

α = 5% α = 10% 

C̃
R
 

 

C̃
R
 

 

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0 0.5 1 1.5 2 2.5 3
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0 0.5 1 1.5 2 2.5 3

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0 0.5 1 1.5 2 2.5 3 0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0 0.5 1 1.5 2 2.5 3

T (s) T (s) 

α = 0 

α = 5% 

C̃
R
 

 

C̃
R
 

 

α = 10% 

α = 2% 

754



 
 
 
 
 
 

Inelastic displacement ratios for evaluation of stiffness degrading structures with soil structure interaction 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

          (b) 
Fig. 12 Continued 

 
 
6. Conclusions  
 

In this study, inelastic displacement ratios are investigated for SDOF systems with degrading 
and non-degrading behavior for period range of 0.1-3.0 s considering soil structure interaction for 
earthquake motions recorded on soft soil. For this purpose, the Modified Clough model is used to 
represent structures that exhibit significant stiffness degradation and the elastoplastic model is 
used to represent non-degrading structures. The analyses are performed by using an analogy with 
an equivalent fixed base model defined by an effective ductility in addition to the effective period 
and damping of the system for the elastic condition and a limited number of 18 earthquake records. 
A new equation is proposed for mean inelastic displacement ratio of systems with degrading and 
non-degrading behavior of systems with SSI as functions of structural period (T̃), strength 
reduction factor (R) and period lengthening ratio (T̃/T). Based on the solution for an equivalent 
fixed base model the following conclusions can be drawn from the results of this study. 
• Inelastic displacement ratios of fixed-base and interacting cases are very close to each other and 
approximately equal to unity for long period range. This behavior is in accordance with well-
known “equal displacement rule” for long period range. Especially for short period region, 
inelastic displacement ratios of fixed-base system and system with SSI are considerably different 
for increasing strength reduction factors. 
• Aspect ratio is an effective parameter for inelastic displacement ratios in high frequency region 
for all strain hardening ratios. There is a decrease tendency up to a certain period, say 0.8 s, for 
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increasing values of aspect ratio, but from this period point the effect of aspect ratio on inelastic 
displacement ratios is negligible. 
• Mean inelastic displacement ratios for degrading systems are greater than the corresponding ones 
of non-degrading systems up to period of nearly 1.0 s and from this period point vice versa.  
• Mean inelastic displacement ratios for degrading systems are smaller than the corresponding 
ones of non-degrading systems from the period of nearly 1.0 s. But before this period point, aspect 
ratio is an effective parameter on inelastic displacement ratios that, as the aspect ratio increases, 
inelastic displacement ratio decreases.  
• Fixed-base inelastic displacement ratios are greater than the corresponding ones of systems with 
SSI. Especially the considered ratios are much greater for systems with elastoplastic behavior. 
• Especially, mean inelastic displacement ratios for systems with elastoplastic behavior are quite 
sensitive to strain hardening for almost all period range. But, for stiffness degrading systems, 
effect of strain hardening ratio on inelastic displacement demands can be neglected for periods 
greater than 1.0 s. For a given lateral strength, maximum inelastic deformation demands decrease 
as the level of post-yield stiffness ratio increases, and that the reduction in displacement demands 
depends on the spectral region. 
• A new equation (Eq. (5)) is proposed to represent the mean inelastic displacement ratios of 
elastoplastic and degrading behavior for all records, strength reduction factors, aspect ratios, strain 
hardening ratios and structural periods as a function of structural period of system with SSI (T̃), 
strength reduction factor (R) and period lengthening ratio (T̃/T). The proposed simplified 
expression provides a good approximation of mean inelastic displacement ratios of SDOF systems. 
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