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Abstract.    A semi-analytical finite strip method is developed for analyzing the post-buckling behavior of 
rectangular composite laminated plates of arbitrary lay-up subjected to progressive end-shortening in their 
plane and to normal pressure loading. In this method, all the displacements are postulated by the appropriate 
harmonic shape functions in the longitudinal direction and polynomial interpolation functions in the 
transverse direction. Thin or thick plates are assumed and correspondingly the Classical Plate Theory (CPT) 
or Higher Order Plate Theory (HOPT) is applied. The in-plane transverse deflection is allowed at the loaded 
ends of the plate, whilst the same deflection at the unloaded edges is either allowed to occur or completely 
restrained. Geometric non-linearity is introduced in the strain–displacement equations in the manner of the 
von-Karman assumptions. The formulations of the finite strip methods are based on the concept of the 
principle of the minimum potential energy. The Newton–Raphson method is used to solve the non-linear 
equilibrium equations. A number of applications involving isotropic plates, symmetric and unsymmetric 
cross-ply laminates are described to investigate the through-thickness shearing effects as well as the effect of 
pressure loading, end-shortening and boundary conditions. The study of the results has revealed that the 
response of the composite laminated plates is particularly influenced by the application of the Higher Order 
Plate Theory (HOPT) and normal pressure loading. In the relatively thick plates, the HOPT results have 
more accuracy than CPT. 
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1. Introduction 
 

In various branches of engineering, such as aerospace and marine engineering, composite 
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laminated plates and plate structures are increasingly used as structural components. These 
structures are often employed in situations where they are subjected to in-plane compressive 
loading. Thus, it is important to accurately predict the buckling and post-buckling behavior of such 
structures. The post-local-buckling behavior of elastic plates or plate structures is a geometric non-
linear problem. The non-linearity occurs as a result of relatively large out-of-plane deflections, 
which necessitates the inclusion of non-linear terms in the strain-displacement equations. The 
finite strip method (FSM) is well suited to the accurate and efficient analysis of both single 
rectangular plates and complicated prismatic plate structures (Cheung 1976). In the field of linear 
buckling and vibration analysis the method has been developed extensively for the analysis of 
complicated plate structures formed of composite laminated material having very general material 
properties. Such development relates to analyses based on the use of both Classical Plate Theory 
(CPT) and first-order Shear Deformation Plate Theory (FSDT) (Dawe and Peshkam 1989, Dawe 
and Craig 1988, Dawe and Peshkam1990, Peshkam and Dawe1989, Dawe and Peshkam1990). In 
the context of CPT, and for homogeneous materials only, the finite strip method has been 
employed in geometrically non-linear analyses (Graves-Smith and Sridharan1978, Sridharan and 
Graves-Smith 1981, Hancock 1981, Bradford and Hancock 1984). These works are concerned 
with the prismatic plate structures as well as single plates, and have concentrated on post-local-
buckling behavior. Through-thickness shear effects have been included in geometrically non-linear 
finite strip analysis by employing the first-order FSDT in considering the large deflection of 
isotropic plates (Azizian and Dawe 1985, Dawe and Azizian 1986). Finite strip approach has been 
implemented on the non-linear response of laminates subjected to progressive uniform end 
shortening, using both CPT and FSDT (Dawe et al. 1992, Lam et al. 1993, Wang and Dawe 1999). 
Allowance has been made for general lamination, including anisotropy and bending-stretching 
material coupling. Finally, for the readers’ information, it is noted that a good state-of-the-art 
summary of the use of the finite strip method in composite plates has been provided (Dawe 2002). 
Recently, several contributions have been made by developing two different versions of finite strip 
method, namely semi-analytical (S-a FSM) and spline finite strip methods and applied to the 
analysis of the geometrically non-linear response of flat, (Ovesyand Ghannadpour 2005, Ovesy et 
al. 2005) or imperfect rectangular composite laminated plates of arbitrary lay-up to progressive 
end-shortening in their plane (Ovesy et al. 2005). The non-linear response of  thin laminates 
subjected to progressive uniform end shortening and normal pressure loading, using CPT finite 
strip approach has been studied (Ovesy et al. 2006). 

Large deflection of functionally graded plates under pressure loads and also post-buckling 
stiffness of I-sections and isotropic plates have been investigated before by using finite strip 
method (Ovesyand Ghannadpour 2007, Ghannadpour and Ovesy 2008, Ovesy and Ghannadpour 
2009). Recently, in the case of composite plates buckling, the higher order semi-analytical finite 
strip has been implemented in linear analysis of the composite plates (Ovesy et al. 2010). Another 
higher order method called zigzag plate theory and spline finite strip are used for analysis of 
composite plates (Akhras and Li 2007). This type of FSM is recently developed for piezoelectric 
composite plates to analyze free vibration and stability (Akhras and Li 2011). In buckling and 
post-buckling analysis of anisotropic laminated thin shells with external pressure loading, a 
boundary layer theory is also extended when subjected to axial compression and also external 
pressure (Shen 2008a, b). Also nonlinear analysis of moderately thick anisotropic laminated 
cylindrical shell of finite length subjected to lateral pressure, hydrostatic pressure and external 
liquid pressure has been investigated (Li and Lin 2010).  

More recently, for nonlinear response of laminated plates, the effect of in-plane deformation  
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has been investigated when the structure is subjected to dynamic loads (Kazancı and Turkmen 
2012). A new element called higher-order triangular plate bending element is already used for 
analyzing sandwich plates and laminated composites (Rezaiee et al. 2012). 

In the current paper, the application of the semi-analytical finite strip method (S-a FSM) is 
extended to the analysis of non-linear behavior of thin or thick rectangular isotropic/ laminated 
plates with different boundary conditions when subjected to uniform end shortening in their plane 
and normal pressure loading. The theoretical developments of the semi-analytical finite strip 
method are based on the concept of the Higher Order Plate Theory (HOPT), which incorporate 
additional degrees of freedom for each nodal line. Therefore, this method is more universal in 
dealing with different plate thicknesses and has more accuracy in comparison with CPT method, 
specifically in the relatively thick plates. 

 
 

2. Theoretical development 
 

In this section, the fundamental elements of the theory of the developed finite strip method 
(FSM) are briefly outlined. It is noted that a composite material and a perfectly flat finite strip are 
assumed throughout the theoretical developments of this paper. Moreover, the finite strips are 
assumed to be simply supported out-of-plane at the loaded ends where the in-plane lateral 
deflection is allowed to occur. Fig. 1 shows a typical finite strip which forms part of a rectangular 
plate of length A and width B (with B ≥ b). The edges running parallel to the y-axis are assumed to 
be subjected to a uniform end-shortening loading. As a result of the HOPT assumption (Reddy 
2004) 
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Fig. 1 A typical finite strip 
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Where u, v and w are components of displacement at a general point, whilst u0, v0 and w0 are 

similar components at the middle surfaces (z = 0). The quantities x  and y  are the rotations 

of the initial normals to the mid-plane about y and x directions respectively. It is noted that if 
xwx  /0 and ywy  /0  the Higher Order Plate Theory (HOPT) changes to Classical 

Plate Theory (CPT). Using Eq. (1) in the Green’s expressions for in-plane non-linear strains and 
neglecting lower-order terms in a manner consistent with the usual von-Karman assumptions, the 
following expressions for strains at a general point are obtained. 
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(3)

Where C1, C2 are stated as C1 = 4/3h2, C2 = 3C1 = 4/h2. The stress-strain relationship at a general 
point for the plate becomes 
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Where )6,2,1,( jiQij  are plane-stress stiffness coefficients and )5,4,( jiQij are through-
thickness shear stiffness coefficients. The constitutive equations for a plate can be obtained 
through the use of Eqs. (2) to (4) and appropriate integration through the uniform thickness. These 
equations can be of a very general form which includes general anisotropy and full coupling 
between in-plane and out-of-plane behaviors and now extended to account for the through-
thickness shear effect. The stress resultants are achieved by 
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And the plate stiffness coefficients are defined as 
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The strain energy per unit volume is 1/2σTε. Using Eqs. (2) and (4) to form the strain energy 
and integrating through the thickness with respect to z gives an expression for the strain energy of 
the finite strip which can be put into the form 
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(7)

In the expression for Us in Eq. (7), there are three contributions that depend upon quadratic, 
cubic and quartic of the displacements. The uniformly distributed pressure load of intensity Pw acts 
in the z-direction over the whole strip surface and is of fixed intensity in any particular application, 
whilst the end-shortening is applied progressively. For any finite strip the change in potential 
energy of the normal pressure loading during the deformation process is given by Eq. (8) and the 
total potential energy of any strip is described by 
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A

wsp VUVdxdywPV  (8)

Solution of the non-linear problem is sought through the application of the principle of 
Minimum Potential Energy. This, of course, requires the assumption of displacement fields to 
represent the variations of u0, v0 and w0 over the middle surfaces. Here, the displacement fields 
adopted for typical finite strip shown in Fig.1 are Eq. (9) 
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Where ε is the prescribed end-shorteningstrain and ε is a constant. The Ui(x), Vi(x), )( ),( xx yixi   

and Wi(x) are longitudinal functions satisfying the kinematics conditions prescribed at the strip 
ends. These functions could be of a variety of forms, but in the present work they are sine or 
cosine functions. The ),(),( ygyg v

i
u
i )( yg x

i
 , )( yg y
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 are transverse polynomial 

interpolation functions of various types and orders, involving undetermined displacement 
coefficients. In HOPT analysis, the strain energy expression contains second derivatives of w and 

first derivative of u, v and yx  , . This implies a requirement of C1 type continuity for w and C0 

type continuity for u, v and also yx  , . It means that Hermitian shape functions should be used for 

w and Lagrangian shape function should be used for u, v and yx  ,  in the y direction. 
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Where η = 2y/b. 
Considering the facts that the plate is subjected to uniform end-shortening, as indicated by the 

presence of the term involving ε in the expression for u0 in Eq. (9), and is simply supported out-of-
plane at its loaded ends, the kinematics conditions at its loaded ends are 

00,0,
2

 xy andwAu 

 
(12)

Consequently, the longitudinal series in the expression for u, w, y  and x  are defined as 

)cos()sin()()(
A

xi
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A

xi
xWxU xiyiii

   (13)
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The kinematics condition for the in-plane lateral deflection v at the loaded ends corresponds to 
a free boundary condition (i.e., τxy = 0). Thus, v displacement is defined as follows 

 
(14)

It is noted that the term corresponding to i = 0, i.e., the constant value v0, is included in 
Vi(x).The αεy term is included in Eq. (9) in order to represent precisely the response of a flat 
unbuckled plate to uniform end compression so that a trivial primary equilibrium path is invoked 
without involving any un-prescribed degrees of freedom. 
With the establishment of the finite strip displacement fields according to the equations that 
mentioned above, the potential energy of a strip can ultimately be expressed in the form 
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Here K, K1, K2 and K*
 are symmetric square stiffness matrices. The coefficients of K and K* are 

constant whilst those of K1 and K2are linear and quadratic functions of the displacements, 
respectively. The column matrix ds contain the strip degrees of freedom. C is a column matrix of 
constants which becomes a null matrix for isotropic or symmetric orthotropic laminates. In 
evaluating Vs all integrations in the x and y directions are determined analytically. 

For the whole plate, comprising an assembly of finite strips, the total potential energy is simply 
the summation of the potential energies of the individual finite strips. Correspondingly, whole 
plate matrices which are equivalent of those appearing in Eq. (15) for the individual finite strip are 
generated by appropriate summations in the standard fashion. Thus, the potential energy for whole 
plate can be expressed as 

  PdddddddCd TTTTT KKKεKεV  
21 12

1

6

1

2

1
 (16)

Where the over bar indicates a whole plate quantity. The plate equilibrium equations are obtained 
by applying the principle of minimum potential energy. That is to say the partial differentiation of 
the plate potential energy with respect to each degree of freedom in turn gives a set of non-linear 
equilibrium equations 

0C-0
3

1

2

1
C- 21   P-dP-d sKε         or  )KKK-εK(ε

 
(17)

Where sK  is the global/structural stiffness matrix, and  d  is a vector, which includes the 

degrees of freedom for the whole structure. The latter set of equations needs to be modified by 
applying the appropriate zero-displacement boundary conditions at the longitudinal exterior edges 
of the plate (i.e., at the unloaded edges of the plate). After the application of any appropriate zero-
displacement boundary conditions, the equations must be solved. In the present study the Newton-
Raphson (N-R) iterative procedure is selected for solving the equations. Once the global 
equilibrium equations are solved and the nodal degrees of freedom are found for a particular 

prescribed end shortening, it is possible to calculate the displacements ,, 00 vu x0 , y0 and 0w  at 

any point in any finite strip using Eq. (9) , and to determine force and moment quantities through 
use of Eq. (5). In particular, the average longitudinal force, Nav, is determined by considering the 


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membrane stress resultant Nxx (given by the first of Eq. (5)) and integrating over the strip middle 
surface area to give the longitudinal force acting on a strip. Then, the total longitudinal force 
acting on a plate, corresponding to a prescribed end strain, will imply the summation of such strip 
end forces, i.e. 

/2

/2 0
( , )

b A

xb
av

N x y dxdy
N

A




 

 (18)

 
 
3. Application and results 
 

It is noted that the plates are assumed to be simply supported on all edges as far as the out-of-
plane deflection is concerned, and a pressure load factor is defined as Q = 36.09 PwA4/E2h

4. It is 
also noted that for all examples under consideration the FSM analyses are accomplished by 
utilizing the series representation in the longitudinal direction of the form sin 2, 4, 6/cos 0, 2, 4, 

6/sin1, 3/sin 1, 3/cos 1, 3 for 
yiiii xWxVxU ),(),(),( and xi respectively. For comparison purposes, 

the CPT semi-analytical finite strip analysis is also carried out. In the case of CPT analysis, sin 2, 
4, 6/cos 0, 2, 4, 6/sin1, 3 are utilized for Ui(x), Vi(x) and Wi(x) respectively. Moreover, the 
convergence studies with regard to the number of strips have revealed that 40 finite strips are 
sufficient to obtain converged results in both cases of HOPT and CPT analyses. 

 
3.1 Isotropic simply-supported square plate 
 
The length to thickness ratio of the plate is A/h = 120 (i.e., the thin plate), and the Poisson ratio 

is υ = 0.3. It is noted that the assumed boundary conditions are the same as those adopted by 
Ovesy et al. (2006) for the analysis of the same plate. It is emphasized that the lateral expansion of 
the unloaded edges is completely prevented. 

 

Fig. 2(a) Variation of load factor F* with end- 
         shortening for isotropic thin plate 

Fig. 2(b) Variation of load factor F* with central 
         deflection for isotropic thin plate 
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Fig. 3(a) Variation of load factor P* with end-
shortening for isotropic thick plate (A/h) = 10 

Fig. 3(b) Variation of load factor P* with central 
deflection for isotropic thick plate (A/h) = 10 

 

 
Fig. 4(a) Variation of load factor F with end-shortening for symmetric cross-ply relatively thick  

            laminated (A/h) = 20 
 

 
Fig. 4(b) Variation of load factor F with central deflection for symmetric cross-ply relatively thick  

           laminated (A/h)=20 
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A fixed normal pressure load is applied corresponding to values of a pressure load factor Q of 0, 
300 and 1500 in turn, in conjunction with a progressive end-shortening. It is assumed that the 
pressure load remains constant, whilst the loaded ends progressively approach each other 
(corresponding to positive ε), or progressively move away from each other (corresponding to 
negative ε). 

In presenting the results a load factor F*, which is defined as F*= 10.92ANav/Eh3, is introduced. 
The variations of load factor with end-shortening and central deflection are depicted in Figs. 2(a) 
and 2(b) respectively. The results are compared with the corresponding ones, which are obtained 
based on the CPT assumptions (Ovesy et al. 2006). It is clearly seen that the two sets of results 
compare very closely and thus two methods of HOPT and CPT finite strips have similar results in 
the cases of thin isotropic plates. 

In the case of thick plates with no lateral pressure being applied, Fig. 3(a) shows the variation 
of the non-dimensional load P* = Nav.A/(π2D) with the non-dimensional end-shortening U* = 
εA2hE/(π2D) for an isotropic thick plate (A/h = 10) with material properties as E = 207000MPa and 
υ = 0.3. Fig. 3(b) shows the non-dimensional load-peak deflection variations for the same plate. It 
can be concluded that for the case of thick plates, the present HOPT finite strip method is capable 
of predicting the post-buckling behavior with a better degree of accuracy compared to that 
predicted by the CPT finite strip method. 

 
3.2 Symmetric cross-ply square laminate 
 
The symmetrically laminated cross-ply [0/90]s square plate, which are constructed of plies 

having the properties E1/E2 = 40, G12/E2 = 0.5, G23/E2 = 0.6 and υ12 = 0.3 are studied. The length to 
thickness ratio of the laminate is A/h = 20 (i.e., relatively thick), and the plies are of equal 
thickness. The unloaded edges are free to expand laterally in their plane. A fixed normal pressure 
load is applied corresponding to values of a pressure load factor Q of 0, 2000, 10000 and 50000 in 
turn, in conjunction with a progressive end-shortening. In presenting the results a load factor F, 
which is defined as F = Nav.A/E2h

3, is introduced. It is worth noting that in the case of zero normal 
pressure loading, the laminate is seen to demonstrate a very clear bifurcational characteristic 
similar to that experienced in Fig. 2(b) with reference to isotropic plate when subjected to zero 
normal pressure. This occurs due to the bending-stretching coupling terms being zero for the 
symmetric laminate, allowing the laminate to remain flat before the buckling point is reached. The 
comparison of the results has indicated that the HOPT assumption has resulted in more accuracy 
than that obtained by the application of CPT assumptions (Fig. 4(a) and Fig.4 (b)). 

 
3.3 Unsymmetric cross-ply square laminate 
 
In order to verify the results for unsymmetrical laminates, an unsymmetric cross-ply laminate 

[0/90]4, with material properties: E1/E2 = 40, G12/E2 = 0.5, G23/E2 = 0.6 and υ12 = 0.3 is considered. 
The length to thickness ratio of the laminate is A/h = 20 and the plies are of equal thickness. The 
boundary conditions for all edges are simply supported give in-plane boundary conditions at the 
unloaded edges. Figs. 5(a), 5(b) respectively show the non-dimensional load factor F = Nav.A/E2h

3

 
with the end-shortening and the non-dimensional load factor with central-deflection. The presented 
results are compared with those obtained by first order shear deformation theory (Wang and Dawe 
1999). In both figures, there is good agreement between presented results and the reference. 

The square unsymmetric laminate [90/0/90/0], which are constructed of plies having the same  

686



 
 
 
 
 
 

Pressure loading, end- shortening and through- thickness shearing effects 

Fig. 5(a) Variation of load factor F with end-
shortening for unsymmetric cross-ply relatively 
thick laminated (A/h) = 20 

Fig. 5(b) Variation of load factor F with central 
deflection for unsymmetric cross-ply relatively thick 
laminated (A/h) = 20 

 

Fig. 6(a) Variation of load factor F with end-shortening for unsymmetric cross-ply relatively thick  
           laminated (A/h) = 20 
 

Fig. 6(b) Variation of load factor F with central deflection for unsymmetric cross-ply relatively  
            thick laminated (A/h) = 20 
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properties as those assumed for the case of symmetric laminate is studied. The length to thickness 
ratio is A/h = 20 (i.e., relatively thick), and the laminate is composed of equal-thickness layers. It 
is noted that for this laminate, the non-zero coupling coefficients are B11 and B22, with B11 = B22. 
The In-plane boundary conditions at the unloaded edges are the same as those considered earlier 
for the case of symmetric laminate. 

A fixed normal pressure load is applied corresponding to values of a pressure load factor Q of -
1600, -800, 0, 800 and 1600 in turn, in conjunction with a progressive end-shortening ε. The 
reason for including both positive and negative pressure load is that the laminate response are 
expected to be different for positive and negative pressure loadings of equal magnitude, due to the 
presence of the B11 and B22 coefficients. In presenting the results, the same load factor F as that 
adopted earlier for the case of symmetric laminate are considered. The longitudinal force-end 
shortening and the longitudinal force-central deflection variation are presented in Figs. 6(a) and 
6(b), respectively. Once again, the HOPT assumptions have resulted in more accuracy than that 
obtained by the application of CPT assumptions for the case of relatively thick plate. 

It is worth noting that due to the presence of bending-stretching coupling terms, the 
unsymmetric laminate is seen to demonstrate no bifurcational characteristic for all the cases of 
normal pressure under consideration, including the case of zero normal pressure loading. It is seen 
in Fig. 6(b) that for the cases of positive normal pressure loading, i.e., Q = 800 and 1600, where 
the pressure load produces deflection in the same sense as that produced by the coupling terms for 
the case of un-pressurized laminate when subjected to positive end-shortening, the interaction 
between positive pressure loading and the coupling characteristics of the laminate has caused 
pronounced out-of-plane deflection when the load factor F is positive. 

However, a somewhat different behavior is seen to exist for the cases of negative normal 
pressure loading, i.e., Q = -800 and -1600. That is to say, as the load factor F increases, the 
negative pressure loading acts against the effects of coupling terms, causing the laminate to remain 
almost flat in the case of Q = -800, or even to deflect in the negative direction in the case of Q = -
1600. However, this kind of behavior is seen to exist up to a certain level of positive load factor F 
is reached, for a given value of negative normal pressure loading. At this level of load factor F, the 
fixed normal pressure loading can no longer overcome the coupling effects, and hence the initial 
load path becomes unstable and the laminate deflects in the positive direction (Fig. 6(b)). 

To examine the effects of boundary conditions on the post-buckling behavior, one square 
unsymmetric laminate [90/0/90/0], which are constructed of plies having the same properties as 
those assumed for the case of symmetric laminate is studied. The length to thickness ratio is A/h = 
20 (i.e., relatively thick), and the laminate is composed of equal-thickness layers. In this case, a 
fixed normal pressure Q = 800 is applied while the boundary conditions in the y direction are 
imposed in the form of Eq. (19). 
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Fig. 7(a) Variation of load factor F with end-        
shortening for unsymmetric cross-ply relatively 
thick laminated (A/h) = 20 for different boundary 
conditions 

Fig. 7(b) Variation of load factor F with central 
deflection forunsymmetric cross-ply relatively 
thick laminated (A/h) = 20 for different boundary 
conditions 

 
From the presented results in Fig. 7(a) and Fig. 7(b), it is seen that by changing simply 

supported condition to clamped, plate becomes stiffer and when both unloaded edges are clamped, 
its response to the pressure loading and end shortening is more different from that with simply 
supported edges.  
 
 
4. Conclusions 
 

The application of the semi-analytical finite strip method (S-a FSM) is extended to the analysis 
of non-linear behavior of thin or thick rectangular composite laminated plates of arbitrary lay-up 
subjected to progressive end-shortening as well as normal pressure loading. For thin plates, the 
CPT predicts the post-buckling behavior reasonably accurately. Through the comparison of results, 
the validity of the formulation of the developed HOPT finite strip methods is approved. The study 
of the results has revealed that the response of the laminates is significantly influenced by the 
application of the normal pressure loading. Particularly, the response of unsymmetric laminates is 
strongly affected by the sign of the normal pressure loading. The results have been compared with 
FSDT results and the effects of different boundary conditions are also investigated. The post-
buckling equilibrium path of laminates under end-shortening is discussed in detail. Moreover, it is 
revealed that for the case of relatively thick laminate, the HOPT assumptions have resulted in 
more accuracy than that achieved by the application of CPT assumptions. 
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