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Abstract.    In this study, strength reduction factors and inelastic displacement ratios are investigated for 
SDOF systems with period range of 0.1-3.0 s considering soil structure interaction for earthquake motions 
recorded on soft soil. The effect of stiffness degradation on strength reduction factors and inelastic 
displacement ratios is investigated. The modified-Clough model is used to represent structures that exhibit 
significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used 
to represent non-degrading structures. The effect of negative strain – hardening on the inelastic displacement 
and strength of structures is also investigated. Soil structure interacting systems are modeled and analyzed 
with effective period, effective damping and effective ductility values differing from fixed-base case. For 
inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-
house computer program. New equations are proposed for strength reduction factor and inelastic 
displacement ratio of interacting system as a function of structural period (T̃, T), ductility (µ) and period 
lengthening ratio (T̃/T). 
 

Keywords:  soil-structure interaction; stiffness degradation; strength reduction factor; inelastic 
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1. Introduction 
 

Current earthquake – resistant design provisions allow the nonlinear response of building 
structures in the event of severe earthquake ground motions because of economic factors. Such a 
design approach requires the usage of strength reduction factor (Rµ) in seismic design codes. For a 
single-degree-of freedom system, strength reduction factor can be defined as the ratio of elastic 
base shear to the one required for a target ductility level, µ. Besides, current performance-based 
seismic design procedures aim at controlling earthquake damage to structural elements and many 
types of nonstructural elements by limiting lateral deformations on structures. Generally accepted 
standpoints of seismic design methodologies establish that structures should be capable of resisting 
relatively frequent, minor intensity earthquakes without structural damage or damage to 
nonstructural elements, moderate earthquakes without structural damage, or with some 
nonstructural damage, and severe, infrequent earthquakes with damage to both the resisting 
systems and to nonstructural components. Therefore, it is important to estimate lateral structural 
displacement demands for the design, evaluation and rehabilitation of structures. With this purpose, 
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inelastic displacement ratios (Cµ) are used to estimate peak inelastic displacement demands from 
peak elastic displacement demands. Inelastic displacement ratios can be described as the ratio of 
peak inelastic displacement to peak elastic displacement for a system with same damping ratio and 
period of vibration.  

Strength reduction factors and inelastic displacement ratios have been the topic of several 
investigations so far. The first well-known studies on strength reduction factors were conducted by 
Veletsos and Newmark (1960) and Newmark and Hall (1973). They proposed formulas for 
strength reduction factors as functions of structural period and displacement ductility to be used in 
the short-, medium- and long period regions. Riddell and Newmark proposed new formulas for 
strength reduction factors considering the effect of stiffness degrading on strength reduction 
factors. Similarly to the previous study by Newmark, these formulas depend on structural period 
and displacement ductility but also on the damping ratio, β, (1979). Alternative formulas were 
proposed by Lai and Biggs (1980) and Riddell et al. (1989). The effect of stiffness degrading was 
also studied by Vidic et al. (1992). The effect of different hysteretic models on strength reduction 
factors was studied by Lee et al. (1999). The first study that considered the effects of soil 
conditions on the strength reduction factors was conducted by Elghadamsi and Mohraz (1987). 
Strength reduction factors were computed using the ground motions recorded on rock and 
alluvium. Another study which considered the site effects on the strength reduction factors was 
conducted by Nassar and Krawinkler, also considering the effects of yield level, strain hardening 
ratio and the type of inelastic material behavior (1991). More recently, Miranda (1993) studied the 
influence of local site conditions on strength reduction factors, using a group of 124 ground 
motions classified into three groups as; ground motions recorded on rock, alluvium and very soft 
soil. Afterwards, mean strength reduction factors were computed for each soil group. As a 
consequence of site effects, the formulas for strength reduction factors on soft soil depend on the 
ratio of structural period to predominant period of ground motion whereas strength reduction 
factors on rock and alluvium depend on the structural period. During last decade, soil-structure 
interaction effects on strength reduction factors have been the topic of some investigations. Aviles 
and Perez-Rocha (2005) investigated strength reduction factors and displacement modification 
factors for a single elastoplastic structure with flexible foundation excited by vertically 
propagating shear waves and a site-dependent reduction rule proposed elsewhere for fixed-base 
systems were adjusted for interacting systems. In another study of the same authors, an equivalent 
ductility factor for the combined structure and foundation is derived to determine the design 
strength (Aviles and Perez-Rocha, 2011). Also Ghannad et al. (2007) studied on strength reduction 
factors for two different aspect ratios (h/r = 1, 3) two values of non-dimensional frequency (a0 = 1, 
3) and three levels of nonlinearity (µ = 2, 4, 6). The effect of foundation nonlinearity on the 
structural response of low-rise steel moment-resisting frame buildings in terms of base moment, 
base shear, story drift, and ductility demand was investigated (Raychowdhury 2011). The effect of 
soil-structure interaction on strength reduction factors has been studied by Eser et al. (2012). They 
proposed a new equation for strength reduction factor of interacting system with elastoplastic 
behavior, and concluded that soil structure interaction reduces the strength reduction factors for 
soft soils, therefore, using the fixed-base strength reduction factors for interacting systems lead to 
nonconservative design forces.  

The first well-known studies on inelastic displacement ratios were conducted by Veletsos and 
Newmark (1960, 1965) using the response of SDOF systems having elastoplastic hysteretic 
behavior and predefined levels of displacement ductility, µ, when subjected to a limited range of 
earthquake ground motions and periods of vibration. Since then, several researchers have 
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performed statistical studies to evaluate constant-ductility inelastic displacement ratios using larger 
sets of ground motions and for wider range of periods than those pioneer studies. Ruiz-Garcia and 
Miranda have studied the effects of post-yield stiffness and stiffness and strength degradation on 
inelastic displacement ratios of SDOF systems on soft soils. They have concluded that, structures 
with stiffness degradation, having periods shorter than the predominant period of the ground 
motion, can experience lateral strength demands larger than those of non-degrading structures 
whereas the opposite is valid for structures with periods equal or longer than the predominant 
period of the ground motion (Miranda and Ruiz-Garcia 2002, Ruiz-Garcia and Miranda 2004, 
2006). Also, Decanini et al. (2003) and Chopra and Chintanapakdee (2004) studied on inelastic 
displacement ratios and presented a series of new functions based on statistical studies to obtain 
the ratio of the maximum inelastic to the maximum elastic displacement for SDOF systems. Roy 
and Dutta studied the inelastic seismic response of low-rise buildings through adequate 
idealization of structure and sub-soil medium. They concluded that, buildings depicts that inelastic 
response of the asymmetric structure relative to its symmetric counterpart is not appreciably 
influenced due to soil–structure interaction (Roy and Dutta 2010). The effect of soil-structure 
interaction on inelastic displacement ratio of structures has been studied by Eser and co-workers 
(2011, 2012). They proposed new equations for inelastic displacement ratio of interacting system 
with elastoplastic behavior, as a function of structural period, strength reduction factor or ductility 
and period lengthening ratio. 

The objective of this study is to present the results of an investigation conducted to provide 
more information on the soil structure interaction effects on strength reduction factors and inelastic 
displacement ratios for stiffness degrading structures built on soft soils when subjected to 
earthquake ground motions. In particular this study tried to: (1) study on SDOF systems with 
period range of 0.1-3.0 s and five levels of ductility (µ = 2, 3, 4, 5, 6);  (2) focus on stiffness 
degrading structures with strain hardening ratios of α = -10%, -5%, -2%, 0, 2%, 5% and 10%; (3) 
analyze interacting SDOF systems for five aspect ratios (h/r = 1, 2, 3, 4, 5); (3) use a set of ground 
motions recorded on soft soil; and (4) propose new equations for strength reduction factor and 
inelastic displacement ratio of interacting system as a function of structural period (T̃, T), ductility 
ratio (µ) and period lengthening ratio (T̃/T). 

 
 

2. SSI system and simplified reference model 
 

A SDOF system represented with mass, m, height, h used to model the structure and 
schematical view considering soil structure interaction modeling of supports are shown in Fig. 1(a) 
and Fig. 1(b). The SDOF system may be viewed as representative of more complex multistory 
buildings that respond as a single oscillator in their fixed-base condition.  

For interacting case, the foundation is modeled as a circular rigid disk of radius r. The soil 
under the foundation is considered as a homogenous half-space and characterized by shear wave 
velocity Vs, dilatational wave velocity Vp, mass density ρ and Poisson’s ratio υ. The foundation is 
represented for all motions using a spring-dashpot-mass model with frequency-independent 
coefficients. More details on the method of modelling can be found in Eser and Aydemir (2011).  

The stiffness and damping coefficients for the horizontal (Kx, Cx) and rocking modes (Kθ, Cθ) of 
soil medium are defined as follows (Wolf 1994) 
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Fig. 1(a) SDOF system; (b) mathematical model of supports with soil structure interaction 
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3. Load-deformation hysteretic models 
 

Many hysteretic models have been proposed to represent the load-deformation characteristics 
of reinforced concrete structures when subjected to reverse cyclic loading. One of the first models 
to include the effect of stiffness degradation was the one proposed by Clough and Johnston (1966). 
This model has an elasto-plastic-perfectly-plastic envelope, however it differs from the EPP model 
in that, after the initial yielding, further loading branches are directed towards the furthest 
unloading point in the direction of loading, thus with a lateral stiffness smaller than the initial 
stiffness. In order to represent structures with stiffness degradation the modified-Clough model is 
used in this study. This model is based on the Clough model, and several studies have concluded 
that the modified-Clough model is capable of reproducing the behavior of properly designed 
reinforced concrete structures where shear failure is avoided and the behavior is primarily flexural 
(Miranda and Ruiz-Garcia 2002). The influence of stiffness degradation on the seismic demands of 
structures has been the topic of several studies (Clough and Johnston 1966, Rahnama and 
Krawinkler 1993, Gupta and Krawinkler 1998, Gupta and Kunnath 1998, Borzi et al. 2001). Also 
Miranda and his co-workers have studied on the effects of stiffness degradation on structures 
subjected to ground motions recorded on very soft soils (Miranda and Ruiz-Garcia 2002, Ruiz-
Garcia and Miranda 2004, 2006). In 2009, to advance the understanding of degradation and 
dynamic instability by developing practical suggestions, where possible, to account for nonlinear 
degrading response in the context of current seismic analysis procedure FEMA P440A guideline 
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was prepared (FEMA P440A 2009). Another research conducted by Ayoub and Chenouda (2009) 
has focused on the development of response spectra plots for inelastic degrading structural systems 
subjected to seismic excitations and conclusions regarding the behavior and collapse potential of 
different structural systems are drawn. However, none of these studies has considered the 
influence of soil structure interaction phenomenon. Therefore, the present study focuses on the 
effect of stiffness degradation on strength reduction factors and inelastic displacement ratios for 
soil structure interacting case. For this purpose, elastoplastic and modified-Clough hysteretic 
models shown in Figure 2 are considered in this study. Besides, different strain hardening ratios  
(α = -10%, -5%, -2%, 0, 2%, 5% and 10%) for both elastoplastic and modified-Clough hysteretic 
models are considered in analyses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Load-deformation hysteretic models used in this study: (a) elastoplastic; (b) modified-clough 
 
 
4. Negative strain hardening 
 

P-delta effect caused by gravity loads acting on the deformed configuration of the structure will 
always lead to a decrease in stiffness and effective strength and an increase in lateral 
displacements. If the P-delta effect causes a negative post-yield stiffness in any one story, it may 
affect significantly the interstory drift and may lead to incremental collapse if the structure has not 
sufficient strength. Therefore, if certain target ductility is required, more strength must be provided 
for the structural system. In the present study, strain hardening ratios of α = -10%, -5%, -2%, 0, 
2%, 5% and 10% are considered, respectively, to study the strain hardening / softening effect on 
structural behavior parameters. 
 
 
5. Method of analysis 
 

The soil structure analysis may be conducted either in the frequency domain using harmonic 
impedance functions or in the time domain using impulsive impedance functions. As the 
frequency-domain analysis is not practical for structures that behave nonlinearly, the time-domain 
analysis can be conducted by using constant springs and dampers regardless of frequency to 

 (a)  (b)
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represent the soil (Wolf and Somaini 1986). With this simplification, the convolution integral 
describing the soil interaction forces is avoided, and thus the integration procedure of the 
equilibrium equations is carried out as for the fixed-base case. In the present study, the soil-
structure model is analyzed in time domain with Newmark method adapted in an in-house 
computer program for inelastic time history analyses. A set of earthquake acceleration time-
histories recorded on soft soil (site classes C and D) are used in this study. Details of selected 
ground motions are listed in Table 1. More details on the selection of earthquake records and site 
classes can be found in (Eser and Aydemir 2011).  

A total of 403200 analyses have been conducted for SDOF structures with period range of 0.1-
3.0 s for five aspect ratios (h/r = 1, 2, 3, 4, 5) and fixed-base case, five levels of ductility (µ = 2, 3, 
4, 5, 6), 32 ground motions, seven strain hardening ratios (α = -10%, -5%, -2%, 0, 2%, 5%, 10%) 
and two types of hysteretic behavior (EP and MC). 

 
5.1 Equivalent fixed-base model 

 
The most common approach to consider soil structure interaction effects is to use a single 

degree of freedom replacement oscillator with effective period and damping of the system. The 
first well-known studies on the use of replacement oscillator were conducted by Veletsos and his 
co-workers (Veletsos and Meek 1974, 1975, Veletsos 1977). Effective period and damping of the 
system denoted by T ̃ and β̃, respectively, are given by the equations below, as they are used in 
current U.S. codes (ATC-3-06 1984, FEMA 450 2003). 
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(9)

where 0  denotes the foundation damping factor and values for this factor should be read from 

the figure given in aforementioned codes. More details regarding equivalent fixed-base model can 
be found in (Eser and Aydemir 2011). 
 
 
6. Statistical study for mean inelastic displacement ratios and strength reduction 
factors 
 

6.1 Effective structural parameters for inelastic displacement ratios and strength 
reduction factors  

 
A complete nonlinear regression analysis is carried out on the basis of the data obtained by the 

procedure described above. The relation of the inelastic displacement ratio and strength reduction 
factor versus the structural period of interacting system and ductility demand is regressed for the 
series of the aforementioned analyses. Correlations of structural variables on inelastic 
displacement ratios and strength reduction factors are given in Table 2.  
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Table 1 Earthquake ground motions used in analyses 

Earthquake M Station Station no Dist. (km) Comp. 1 PGA 
(g) 

PGV 
(cm/s) Comp. 2 PGA

(g) 
PGV

(cm/s) Site class

Landers 28/06/92 7.4 Yermo Fire Station 22074 26.3 YER270 0.245 51.5 YER360 0.152 29.7 C 

Loma Prieta 18/10/89 7.1 Hollister - South & Pine 47524 28.8 HSP000 0.371 62.4 HSP090 0.177 29.1 C 

Northridge 17/01/94 6.7 Downey-Birchdale 90079 40.7 BIR090 0.165 12.1 BIR180 0.171 8.1 C 

Northridge 17/01/94 6.7 LA-Centinela 90054 30.9 CEN155 0.465 19.3 CEN245 0.322 22.9 C 

Imperial Valley 15/10/79 6.9 Chihuahua 6621 28.7 CHI012 0.27 24.9 CHI282 0.254 30.1 C 

Imperial Valley 15/10/79 6.9 Delta 6605 32.7 DLT262 0.238 26 DLT352 0.351 33 C 

Loma Prieta 18/10/89 7.1 Gilroy Array #4 57382 16.1 G04000 0.417 38.8 G04090 0.212 37.9 C 

Düzce  12/11/99 7.3 Bolu Bolu 17.6 BOL000 0.728 56.4 BOL090 0.822 62.1 C 

Loma Prieta 18/10/89 7.1 Appel 2 Redwood City 1002 47.9 A02043 0.274 53.6 A02133 0.22 34.3 D 

Northridge 17/01/94 6.7 Montebello 90011 86.8 BLF206 0.179 9.4 BLF296 0.128 5.9 D 
Superstition Hills 
24/11/87 6.6 Salton Sea Wildlife Refuge 5062 27.1 WLF225 0.119 7.9 WLF315 0.167 18.3 D 

Loma Prieta 18/10/89 7.1 Treasure Island 58117 82.9 TRI000 0.1 15.6 TRI090 0.159 32.8 D 

Kocaeli 17/08/99 7.8 Ambarli - 78.9 ATS000 0.249 40 ATS090 0.184 33.2 D 

Morgan Hill 24/04/84 6.1 Appel 1 Redwood City 58375 54.1 A01040 0.046 3.4 A01310 0.068 3.9 D 

Düzce  12/11/99 7.3 Ambarlı - 193.3 ATS030 0.038 7.4 ATS300 0.025 7.1 D 

Kobe 16/01/95 6.9 Kakogawa 0 26.4 KAK000 0.251 18.7 KAK090 0.345 27.6 D 
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     Table 2 Correlation matrix of structural variables on mean strength reduction factors and inelastic  
                  displacement ratios 

µ T α h/r T̃ R̃µ C̃µ T̃/T 

µ 1.00 

T 0.00 1.00 

α 0.00 0.00 1.00 Sym. 

h/r 0.00 0.00 0.00 1.00 

T̃ 0.00 1.00 0.00 0.05 1.00 

R̃µ 0.85 0.40 0.04 0.04 0.40 1.00 

C̃µ 0.09 -0.72 -0.09 -0.13 -0.72 -0.42 1.00 

T̃/T 0.00 -0.41 0.00 0.24 -0.35 -0.18 0.34 1.00 

 
 

6.2 Mean inelastic displacement ratios 
 
In Fig. 3, variations of mean inelastic displacement ratios against period are shown for cases 

with (dashed line) and without (solid line) interaction. The top graphs show the results for site 
class C whereas the bottom graphs show the results for site class D. Results are presented for 
systems with ductility demands of 2, 4 and 6 and aspect ratio of 3.  It is seen from the both top and 
bottom figures that, inelastic displacement ratios of fixed-base and interacting cases are very close 
to each other and approximately equal to unity for periods longer than 0.5 s. This behavior is in 
accordance with well-known “equal displacement rule” for long period range. But especially for 
short period region, inelastic displacement ratios of fixed-base and interacting system are 
considerably different for increasing ductility levels.  

Variations of mean inelastic displacement ratios against period for increasing values of h/r are 
shown in Fig. 4. Results are presented for systems with ductility demand of 4 and strain hardening 
ratio of 10% and -10%.  The top graphs show the results for site class C whereas the bottom 
graphs show the results for site class D. It can be seen from the figure that, aspect ratio is an 
effective parameter for inelastic displacement ratios in high frequency region for all strain 
hardening ratios. There is a decrease tendency up to a certain period, say 0.8 s, for increasing 
values of aspect ratio, but from this period point the effect of aspect ratio on inelastic displacement 
ratios is negligible. 

 
6.3 Mean strength reduction factors  

 
Variations of mean strength reduction factors against period with (dashed line) and without 

(solid line) interaction is shown in Fig. 5. The top graphs show the results for site class C whereas 
the bottom graphs show the results for site class D. Results are presented for systems with ductility 
demands of 2, 4 and 6 and aspect ratio of 3. It can be seen from the figure that, interaction effects 
can’t be neglected for soft soil. Also it should be noted that, strength reduction factors of 
interacting systems are almost always smaller than the fixed-base strength reduction factors.  

Variations of mean strength reduction factors against period for increasing values of h/r are 
shown in Fig. 6. The top graphs show the results for site class C whereas the bottom graphs show 
the results for site class D. Results are presented for systems with ductility demand of 4 and strain 
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hardening ratio of 10% and -10%.  It can be seen from the figure that, – as inelastic displacement 
ratios – aspect ratio is an effective parameter for strength reduction factors in short period region 
for all strain hardening ratios. There is an increase tendency for increasing values of aspect ratio up 
to nearly 0.8 s, but from this period point the effect of aspect ratio on strength reduction factors is 
negligible. 

 
6.4 Effect of hysteretic behavior  

 
In this section, the effect of hysteretic behavior on mean strength reduction factors and inelastic 

displacement ratios is studied by considering the well-known elastoplastic model and Modifed-
Clough model to represent non-degrading and degrading structural systems. For this purpose, 
variations of mean strength reduction factors with ductility for elastoplastic (dashed line) and 
Modified Clough (solid line) behavior for an interacting system with α = 5% and h/r = 3 are 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

  
 

Fig. 3 Variations of mean inelastic displacement ratios against period with (dashed line) and without (solid 
           line) interaction for α= 5% and -5%. Results correspond to an interacting system with h/r = 3 
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Fig. 4 Variations of mean inelastic displacement ratios against period and increasing values of aspect ratio 
           for α= 10% and -10%. Results correspond to an interacting system with µ= 4 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Variations of mean strength-reduction factors against period with (dashed line) and without (solid  
           line) interaction for α= 5% and -5%. Results correspond to an interacting system with h/r = 3 
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Fig. 6 Variations of mean strength reduction factors against period and increasing values of aspect ratio  

           for α = 10% and -10%. Results correspond to an interacting system with µ = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Variations of mean strength reduction factors for elastoplastic behavior (dashed line) and Modified 
          Clough (solid line) behavior against period for α= 5%. Results correspond to an interacting system 
          with h/r = 3 
 
 
presented in Fig. 7. The left graph shows the results for site class C whereas the right graph shows 
the results for site class D. It can be seen from Fig. 7 that, in general, mean strength reduction 
factors are smaller than the target ductility up to a certain period, but from this period, mean 
strength reduction factors are significantly greater than the target displacement ductility ratio. Also 
it should be noted that, the strength reduction factors for degrading systems are smaller than the 
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corresponding ones of non-degrading systems up to period of nearly 0.8 s and from this period 
point vice versa. 

Variations of mean inelastic displacement ratios with ductility for elastoplastic (dashed line) 
and Modified Clough (solid line) behavior are also shown in Fig. 8. Results are presented for an 
interacting system with α = 5% and h/r = 3 and the left graph shows the results for site class C 
whereas the right graph shows the results for site class D. It is seen from Figure 8 that, mean 
inelastic displacement ratios for degrading systems are greater than the corresponding ones of non-
degrading systems up to period of nearly 1.0 s and from this period point vice versa. It can also be 
seen that, although the upper curve in the graph corresponds to a ductility value of 6 for period 
range before the mentioned certain period, this curve has the smallest inelastic displacement ratio 
values from this period point. 

Variations of mean strength reduction factors with aspect ratio for elastoplastic (dashed line) 
and Modified Clough (solid line) behavior for an interacting system with α = 5% and ductility 
demand of 3 are presented in Fig. 9. It can be seen from the figure that, strength reduction factors 
for degrading systems are much greater than the corresponding ones of non-degrading systems 
from the period of nearly 0.8 s for all aspect ratios but before this period point, strength reduction 
factors for degrading and non-degrading systems are very close to each other. 

In Fig. 10, variations of mean inelastic displacement ratios with aspect ratio for elastoplastic 
(dashed line) and Modified Clough (solid line) behavior for an interacting system with α = 5% and        
ductility demand of 3 are given. It is seen from Fig. 10 that, mean inelastic displacement ratios for 
degrading systems are smaller than the corresponding ones of non-degrading systems from the 
period of nearly 1.0 s. But before this period point, aspect ratio is an effective parameter on 
inelastic displacement ratios that, as the aspect ratio increases, inelastic displacement ratio 
decreases. 

In order to study further the effect of stiffness degradation on the structural demands, and 
particularly to quantify the effect of stiffness degradation on lateral strength and displacement 
demands, non-degrading to degrading inelastic demand ratios were computed. Variation of these 
ratios is shown in Fig. 11. The left graph shows the ratio of the strength reduction factors in non-
degrading system, R̃µ(EP), to the strength reduction factors in stiffness degrading system, R̃µ(MC), 
and the right graph shows the ratio of inelastic displacement ratios in non-degrading system, C̃µ(EP), 
to inelastic displacement ratios in stiffness degrading system, C̃µ (MC). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Variations of mean inelastic displacement ratios for elastoplastic behavior (dashed line) and Modified 
Clough (solid line) behavior against period for α = 5%. Results correspond to an interacting system with h/r = 3 
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Fig. 9 Variations of mean strength reduction factors for elastoplastic behavior (dashed line) and Modified 
           Clough (solid line) behavior against period for α = 5%. Results correspond to an interacting system 
           with µ = 3 
 
 
 
 
 
 
 

 
  

 
 
 
 
 

Fig. 10 Variations of mean inelastic displacement ratios for elastoplastic behavior (dashed line) and 
                 Modified Clough (solid line) behavior against period for α= 5%. Results correspond to an 
                 interacting system with µ = 3 
 
 

It can be seen from Fig. 11 that, spectral regions and ductility ratios, where this ratio is larger 
than one, correspond to situations in which strength reduction factors of non-degrading systems 
are larger than those of degrading systems. Similarly, values in which this mean ratio is smaller 
than one correspond to situations in which the strength reduction factors of degrading systems are 
larger than those of non-degrading systems. It can be seen that, up to a certain period value this 
ratio is larger than one, from that period is smaller than one. These limiting values divide the 
region where it is unconservative to neglect the effects of stiffness degradation from spectral 
regions where it is conservative to neglect the effects of stiffness degradation. These limiting 
period values are not constant and increase as the level of inelastic behavior increases. Besides, it 
can be seen that there are spectral regions in which inelastic displacements of stiffness degrading 
systems are larger than those of elastoplastic systems (typically for small period values), while in  
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Fig. 11 Variations of the ratio between elastoplastic behavior and Modified Clough behavior against period 

            for α= 5%. Results correspond to an interacting system with h/r = 3 
 

 
other spectral regions the opposite is true (primarily for T > 1.0 s). It can be seen that limiting 
period values that separate spectral regions where inelastic displacements are larger for stiffness-
degrading system from spectral regions where inelastic displacements are larger for elastoplastic 
systems are not constant and increase as the level of inelastic behavior increases. 
 

6.5 Effect of strain hardening ratio  
 

In Fig. 12, variations of mean strength reduction factors with strain hardening ratio for fixed-
base (left) and interacting cases (right) are shown for site class D. Results are presented for a 
system with µ = 6 and h/r = 5. As mentioned above, the considered strain hardening ratio values in 
analyses are α = -10%, -5%, -2%, 0, 2%, 5%, 10%, respectively. It can be seen from Fig. 12 that, 
mean strength reduction factors of fixed-base case are almost always smaller than the 
corresponding ones of interacting case for all strain hardening ratios. Also it is seen that, strain 
hardening / softening has a significant effect on seismic response. Mean strength reduction factors 
decrease as the strain hardening ratio values decrease (i.e., for systems with negative hardening). 
Therefore, the strength of systems with a negative hardening stiffness needs to be increased 
considerably compared to hardening systems in order to limit the inelastic deformations to the 
same ductility ratio. 

Variations of mean inelastic displacement ratios with strain hardening ratio for fixed-base (left) 
and interacting cases (right) are shown in Fig. 13 for a system with µ = 6 and h/r = 5 and for site 

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 0.5 1 1.5 2 2.5 3

µ=2 µ=3 µ=4 µ=5 µ=6

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 0.5 1 1.5 2 2.5 3

µ=2 µ=3 µ=4 µ=5 µ=6

R
µ̃

 (
E

P
) /

 R̃
µ

 (
M

C
) 

C
µ̃

 (
E

P
) /

 C̃
µ

 (
M

C
) 

T (s) T (s) 

Site class C Site class D

T (s) T (s) 

R
µ̃

 (
E

P
) /

 R̃
µ

 

C
µ̃

 (
E

P
) /

 C̃
µ

 

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 0.5 1 1.5 2 2.5 3

µ=2 µ=3 µ=4 µ=5 µ=6

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 0.5 1 1.5 2 2.5 3

µ=2 µ=3 µ=4 µ=5 µ=6

Site class C Site class D

668



 
 
 
 
 
 

Soil structure interaction effects on structural parameters for stiffness degrading systems built 

 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 12 Variations of mean strength reduction factors with strain hardening ratio for fixed-base (left) and 
            interacting cases (right). Results correspond to a system with µ = 6 and h/r = 5 
 
 
 
 
 
 
 
 
 
 

 
 

  
 

Fig. 13 Variations of mean inelastic displacement ratios with strain hardening ratio for fixed-base (left) 
              and interacting cases (right). Results correspond to a system with µ = 6 and h/r = 5 
  
 
class D. It is clearly seen from Fig. 13 that, mean inelastic displacement ratios of fixed base case 
are almost always greater than the corresponding ones of interacting case for all strain hardening 
ratios. Also, there is a significant strain hardening / softening effect on inelastic displacement 
demands. The figure illustrates that, for a given ductility, maximum inelastic deformation demands 
decrease as the level of post-yield stiffness ratio increases, and that the reduction in displacement 
demands depends on the spectral region. Fig. 14 shows the variation of mean strength reduction 
factors and mean inelastic displacement ratios with strain hardening ratio for site class C for a 
system with µ = 6 and h/r = 5. It can be seen from the figure that, the same tendency of the results 
of site class D is also valid for the results of site class C. 
 
 
7. Nonlinear regression analysis 
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Fig. 14 Variations of mean strength reduction factors and inelastic displacement ratios with strain hardening 
            ratio interacting cases. Results correspond to a system with µ = 6 and h/r=5 
 
 

In order to obtain appropriate formulas to represent the mean strength reduction factors and 
inelastic displacement ratios for all records, ductility values, aspect ratios, structural periods and 
strain hardening ratios combined, a nonlinear regression analysis is carried out. Using the 
Levenberg-Marquardt method (Bates and Watts 1988) in the regression module of STATISTICA 
(Statsoft Inc., 1995) nonlinear regression analyses were conducted to derive simplified expressions 
for estimating mean strength reduction factors and inelastic displacement ratios. The resulting 
regression formulas are appropriately simplified and expressed as 

TbTaR
~

/1)
~

1)(1(1
~

                                                    (12) 

)
~

)(1(1
~

cTaC b                                                  (13) 

The coefficients a  c are summarized in Table 3 for all data. 
Fig. 15 shows the fitness of the regressed function of the mean Rμ̃ and C̃μ factors for all records, 

ductility values, aspect ratios and strain hardening ratios. The horizontal axis shows the calculated 
Rμ̃ and C̃μ values whereas the vertical axis shows the corresponding values obtained with proposed 
equations (Eqs. (12) and (13)). 

Fig. 16 shows the fitness of the regressed function of the mean R ̃µ factor for different strain 
hardening ratios. In this figure, the dashed line represents the values obtained from the regressed 
function (Eq. 12) and the solid line represents the actual mean values of R ̃µ factors obtained from 
non-linear dynamic analyses. Results are presented for an interacting system with µ = 4 and h/r = 3. 
 
 
           Table 3 Parameter Summary for Eq. (12) and Eq. (13) 

Parameter a b c Correlation coefficient 
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Fig. 15 Comparison of calculated strength reduction factors and inelastic displacement ratios for interacting  
            systems with corresponding values obtained with proposed equation (Eq. (12) and Eq. (13))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 16 Comparison of mean strength reduction factors (solid line) with interaction to those computed with 
             Eq. (12) (dashed line). Results correspond to an interacting system with µ = 4 and h/r = 3 
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Fig. 17 Comparison of mean inelastic displacement ratios (solid line) with interaction to those computed 
            with Eq. (13) (dashed line). Results correspond to an interacting system with µ = 4 and h/r = 3 
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Fig. 18 Comparison of mean inelastic displacement ratios (solid line) for fixed-base case for µ = 4 to those 
            computed with rearranged Eq. (13) (dashed line) 
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Fig. 17 shows the fitness of the regressed function of the mean C̃μ factor for different strain 
hardening ratios. In this figure, the dashed line represents the values obtained from the regressed 
function (Eq. 13) and the solid line represents the actual mean values of C̃μ factors obtained from 
non-linear dynamic analyses. Results are presented for an interacting system with µ = 4 and h/r = 3.  
Although Eq. (13) is derived for inelastic displacement ratios considering soil structure interaction, 
it is possible to use this function to obtain fixed-base inelastic displacement ratios. Replacing 
effective period of interacting system (T̃) with fixed base period (T), the fixed base inelastic 
displacement ratios can be obtained. Fitness of the rearranged function of the mean Cμ factor for 
fixed base case is shown in Fig. 18. 
 
 
8. Conclusions  
 

In this study, inelastic displacement ratios and strength reduction factors are investigated for 
SDOF systems with degrading and non-degrading behavior for period range of 0.1-3.0 s 
considering soil structure interaction for earthquake motions recorded on soft soil. For this purpose, 
the modified-Clough model is used to represent structures that exhibit significant stiffness 
degradation and the elastoplastic model is used to represent non-degrading structures. The effects 
of negative strain hardening on the demand and strength of structures are also investigated. New 
equations are proposed for mean inelastic displacement ratio and strength reduction factor of 
interacting systems as functions of structural period (T ̃,T), ductility ratio (µ) and period 
lengthening ratio (T̃/T). The following conclusions can be drawn from the results of this study. 

• Aspect ratio is an effective parameter for both inelastic displacement ratios and strength 
reduction factors in high frequency region for all strain hardening ratios. There is a decrease 
tendency for inelastic displacement ratios and an increase tendency for strength reduction factors 
up to a certain period, say 0.8 s, for increasing values of aspect ratio, but from this period point the 
effect of aspect ratio is negligible. 

• Strength reduction factors of interacting systems are almost always smaller than the fixed-
base strength reduction factors for both elastoplastic and Modified Clough behavior. Therefore, 
interaction effects should be considered for soft soil. 

• The strength reduction factors against ductility for degrading systems are smaller than the 
corresponding ones of non-degrading systems up to period of nearly 0.8 s and from this period 
point vice versa. Mean inelastic displacement ratios against ductility for degrading systems are 
greater than the corresponding ones of non-degrading systems up to period of nearly 1.0 s and 
from this period point vice versa. 

• Strain hardening / softening has a significant effect on seismic response and inelastic 
displacement demands. Mean strength reduction factors decrease as the strain hardening ratio 
values decrease (i.e. for systems with negative hardening). Therefore, the strength of systems with 
a negative hardening stiffness needs to be increased considerably compared to hardening systems 
in order to limit the inelastic deformations to the same ductility ratio. Also it is found that, for a 
given ductility, maximum inelastic deformation demands decrease as the level of post-yield 
stiffness ratio increases, and that the reduction in displacement demands depends on the spectral 
region. 

• Two new equations (Eqs. (12) and (13)) are proposed to represent the mean strength reduction 
factors and inelastic displacement ratios for all records, ductility values, aspect ratios, strain 
hardening ratios and structural periods as a function of structural period of interacting system (T̃), 
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ductility ratio (µ) and period lengthening ratio (T̃/T). The proposed simplified expressions provide 
a good approximation of mean strength reduction factors and mean inelastic displacement ratios of 
SDOF systems having degrading behavior. 

• Although Eq. (13) is derived for inelastic displacement ratios considering soil structure 
interaction, it is possible to use this function to estimate fixed-base inelastic displacement ratios. 
Replacing effective period of interacting system (T̃) with fixed base period (T), the fixed base 
inelastic displacement ratios can be obtained. This simplification satisfies the mean Cµ factor for 
fixed base case. 
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