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Abstract.    In this paper, the problem of axisymmetric deformation of the circular membrane fixed at its 
perimeter under the action of uniformly-distributed loads was resolved by exactly using power series method, 
and the solution of the problem was presented. An investigation into the so-called Hencky transformation 
was carried out, based on the solution presented here. The results obtained here indicate that the well-known 
Hencky solution is, without doubt, correct, but in the published papers the statement about its derivation is 
incorrect, and the so-called Hencky transformation is invalid and hence may not be extended to use as a 
general mathematical method. 
 

Keywords:    axisymmetric deformation; membrane; power series method; Hencky transformation; 
Hencky solution 
 
 
1. Introduction 
 

Membrane structures have found increasing applications in many fields (Chien and Chen 1985, 
Arjun and Wan 2005, Chucheepsakul et al. 2009, Ersoy et al. 2009, Xu et al. 2009, Zhao et al. 
2010, Lee and Han 2011, Zheng et al. 2011). Hencky (1915) originally investigated the problem of 
axisymmetric deformation of the circular membrane fixed at its perimeter under the action of 
uniformly-distributed loads, and presented the solution of the problem, based on the given stress 
and deflection patterns in power series. A computational error in Hencky (1915) was corrected by 
Chien (1948) and Alekseev (1953). The problem dealt with by Hencky (1915) is usually called 
Hencky problem or circular membrane problem for short, and its solution is usually called well-
known Hencky solution (or circular membrane solution for short). This solution is the first solution 
of circular membrane problems and is often cited with regard to this problem. Alekseev (1951) 
originally studied the problem of axisymmetric deformation of the circular membrane centrally 
connected with a rigid plate under the action of a centrally concentrated load, and presented only a 
partial solution of the problem. Also, the problem dealt with by Alekseev (1951) is usually called 
Alekseev problem (or annular membrane problem for short), and its solution is called annular 
membrane solution for short. The annular membrane solution is the second solution of circular 
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membrane problems after the well-known Hencky solution. Sun et al. (2010) presented the 
complete solution of Alekseev problem. The third solution of circular membrane problems is about 
the axisymmetric deformation problem of the circular membrane under the action of uniformly-
distributed loads in its central portion, which was presented by Chien et al. (1981). The problem of 
axisymmetric deformation of the circular membrane under the action of concentrated load, which 
is also called concentrated load problem for short, was dealt with by Chen and Zheng (2003) with 
the application of a so-called extended Hencky transformation. Also Jin (2008a) dealt with the 
concentrated load problem under the given restriction condition that the stress component (radial 
or circumferential) is nonnegative. Without any additional restriction condition, Sun et al. (2011) 
dealt with the concentrated load problem by using limiting method, based on the complete solution 
of Alekseev problem. Due to the somewhat intractable nonlinear equations, closed-form solutions 
of membrane problems are available in a few cases, but usually a shooting method is utilized to 
obtain numerical solutions for displacements, strains, and stresses (Plaut 2008). 

The solving process about the well-known Hencky problem is always described as follows: the 
general solution of the membrane equation (Z2Z" + x2 = 0) may be derived from a particular 
solution of the equation, Z(x), with the application of the transformation c−4/3Z(cx). Here, c−4/3Z(cx) 
or the transformation from Z(x) to c−4/3Z(cx) is called Hencky transformation. As stated by Chien 
(1948) and Chien et al. (1981), it can easily be proved that if Z(x) is a particular solution of the 
equation Z2Z" + x2 = 0, then c−4/3Z(cx) is also a solution of the equation, in which c is an arbitrary 
constant. So, this implies that solving a second-order boundary value problem needs only one 
boundary condition if a particular solution and a so-called transformation can be obtained in 
advance. It seems to be a novel mathematical method for solving nonlinear differential equation of 
the second order. 

As a general mathematical method, however, the theoretical basis of the so-called Hencky 
transformation cannot be found in existing mathematical theory. By extending the so-called 
Hencky transformation, i.e., with a so-called extended Hencky transformation, Chen and Zheng 
(2003) solved the problem of large deformation of circular membrane under the concentrated load. 
But the works of Jin (2008a, b), Jin and Wang (2008), and Sun et al. (2011) indicate that the 
solution presented by Chen and Zheng (2003) is valid only when Poisson’s ratio is equal to 1/3, in 
spite of the fact that by using modern immovable point theorems, Hao and Yan (2006) attested to 
the validity of the solution presented by Chen and Zheng (2003). Then, it is inevitable for us to 
answer some questions, such as whether the so-called Hencky transformation does exist, whether 
the so-called Hencky transformation can be extended to use as a general mathematical method, 
especially whether the well-known Hencky solution is correct. 

In order to answer the questions mentioned above, we resolved the well-known Hencky 
problem by exactly using power series method. The results obtained here indicate that the well-
known Hencky solution is, without doubt, correct, but in the published papers the statement about 
its derivation is incorrect, and the so-called Hencky transformation is invalid and hence may not be 
extended to use as a general mathematical method. 
 
 
2. Membrane equation and its power series solution 
 

The problem dealt with by Hencky (1915) is shown in Fig. 1. An initially flat, linearly elastic, 
rotationally symmetric, taut circular membrane with Young’s modulus of elasticity E, Poisson’s 
ratio v, thickness h, and radius a is clamped at its perimeter. A transverse uniformly-distributed 
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Fig. 1 Hencky problem 

 

 
Fig. 2 The equilibrium diagram of the central portion (r ≤ a) of the circular membrane 

 
 

loads q is applied quasi-statically onto the film surface. Suppose that the radial coordinate is r, the 
radial strain is er, the circumferential strain is et, the radial displacement is u(r), and the transversal 
displacement is w(r). Let us take a piece of the central portion of the circular membrane whose 
radius is 0 ≤ r ≤ a, with a view of studying the static problem of equilibrium of this membrane 
under the joint action of the uniformly-distributed loads q and the membrane force σrh acted on the 
boundary, just as it is shown in Fig. 2. 

Here there are two vertical forces, i.e., the total force πr2q (in which 0 ≤ r ≤ a) of the uniformly-
distributed loads q and the total vertical force 2πrhσr, sinθ, which is produced by the membrane 
force σrh, in which θ is the slope angle. The equilibrium condition is 

22 sinrrh r q     (1)

Generally, θ < 15°, as far as physical phenomenon is concerned. Then we may have 

sin
dw

dr
    (2)

Substituting Eq. (2) into Eq. (1), we obtain the equilibrium equation (which is perpendicular to the 
plane of the circular membrane) 

1

2r

dw
h rq

dr
    (3)

In the plane of the circular membrane, there are the actions of the radial membrane force σrh and 
the circumferential membrane force σth, the equilibrium equation is 

633



 
 
 
 
 
 

Jun-yi Sun, Yang Rong, Xiao-ting He, Xiao-wei Gao and Zhou-lian Zheng 

( ) 0r t

d
rh h

dr
    (4)

Then there are the relations of the strain and displacement of the large deflection problem 

21
( )

2r t

du dw u
e ,  e

dr dr r
    (5a, b)

The relations of the stress and strain are 

2 2
( ), ( )

1 1r r t t t r

E E
e e    e e   

 
   

 
 (6a, b)

Substituting Eq. (5a, b) into Eq. (6a, b), we may obtain 

2
2

1
[ ( ) ]

21r

Eh du dw u
h

dr dr r
 


  


 (7a)

and 

2
2

[ ( ) ]
21t

Eh u du dw
h

r dr dr

 


  


 (7b)

By means of Eqs. (7a, b) and (4), we may obtain 

1 1
( ) [ ( ) ]t r r r

u d
h h rh h

r Eh Eh dr
          (8)

If we substitute the u of Eq. (8) into Eq. (7a), then 

2 21
[ ( )] ( ) 0

2r

d d Eh dw
r r h

dr r dr dr
    (9)

The detailed derivation from Eq. (4) to Eq. (9) may be obtained from any general theory of plates 
and shells. It is not necessary to discuss this problem here.  

Eqs. (3) and (9) are two equations for the solutions of er and dw/dr. Let us introduce the 
following nondimensional variables 

224 2

4 2 2 2
, , , ,tr

r t

aaa q w r
Q W S S x

hh E Eh Eh a


      (10a, b, c, d, e)

and transform Eqs. (9), (3) and (4) into 

2
2

2

1
( ) ( ) 0

2r

d dW
xS

dxdx
   (11)

4r

dW Q
S

dx
 

 
(12)

and 

2 r
t r

dS
S S x

dx
   (13)
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The boundary conditions, under which Eqs. (11) ~ (13) may be solved, are 

rS   the finite value at 0x   (14a)

and 

u/r = 0, W = 0 at x = 1 (14b, c)

Eliminating dW/dx from Eqs. (11) - (12), we may obtain an equation which contains only Sr 

2 2

2 2
( ) 0

32
r

r

d Q
xS

dx S
   (15)

Let us substitute Z(x) for xSr, i.e., let 

2/31
( )

2 2r

Q
xS Z  (16)

Substituting Eq. (16) into Eq. (15), we may obtain a nonlinear equation 

2 2

2 2
0

d Z x

dx Z
   (17)

Based on the given condition of Eq. (14a), Z can be expanded to the power series of the x 

0

( ) n
n

n

Z x b x




  (18)

It is well known that the power series solution of Eq. (17) should have two undetermined constants, 
i.e., b0 and b1. After substituting Eq. (18) into Eq. (17), it can easily be seen that b1 ≡ 0. We here 
substitute b for b1. Then, the general solution of Eq. (17) may be written as 

2 3 4 5 6 7
2 5 8 11 14 17

8 9 10
20 23 26

11 12
29 32

1 1 13 17 37 1205
( )

2 6 144 288 864 36288
219241 6634069 51523763

8128512 292626432 2633637888
998796305 118156790413

......
57940033536 7648084426752

Z x bx x x x x x x
b b b b b b

x x x
b b b

x x
b b

      

  

  

 (19)

or 

2 3 4 5 6
3 6 9 12 15 18

7 8 9
21 24 27

10 11
30 33

1 1 13 17 37 1205
( ) (1

2 6 144 288 864 36288
219241 6634069 51523763

8128512 292626432 2633637888
998796305 118156790413

......
57940033536 7648084426752

Z x bx x x x x x x
b b b b b b

x x x
b b b

x x
b b

      

  

   )

 (20)

If we let b = c−1/3, we can easily transform Eq. (20) into 
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4/3 2 3 4 5 6

7 8 9

10 11

1 1 13 17 37 1205
( ) [1 ( ) ( ) ( ) ( ) ( )

2 6 144 288 864 36288
219241 6634069 51523763

( ) ( ) ( )
8128512 292626432 2633637888

998796305 118156790413
( ) ( )

57940033536 7648084426752

Z x c cx cx cx cx cx cx cx

cx cx cx

cx cx

      

  

   ......]

 (21)

So, we may further write Eq. (21) into 

4/3( ) ( ) ( )Z x c cx f cx  (22)

in which f(x) is 

2 3 4 5 6 7

8 9 10 11

1 1 13 17 37 1205 219241
( ) 1

2 6 144 288 864 36288 8128512
6634069 51523763 998796305 118156790413

......
292626432 2633637888 57940033536 7648084426752

f x x x x x x x x

x x x x

       

    
 (23)

Thus, from Eqs. (16) and (22), we may obtain 

2 /3 1
( ) ( )

2 2r

Qc
S f cx

c
  (24)

According to Eq. (8), we have 
2

2

2
2/3

2

1
[ ( ) ] [2 (1 ) ]

( ) [2 ( ) (1 ) ( )]
22

r
r r r

dSu d h
rh h x S

r Eh dr dxa

h Qc
cxf cx f cx

a c

   



    

  

 (25)

From Eq. (12), we have 

1/ 3 1 1/3( ) [ ( )] ( ) ( )
2 2

dW Qc Qc
f cx h cx

dx
     (26)

in which h(x) is 

2 3 4 5 6 7

8 9 10 11

1 1 5 55 35 205 17051 2864485
( ) 1

( ) 2 12 144 96 576 48384 8128512

103863265 135239915 42367613873 14561952041
......

292626432 376233984 115880067072 39020838912

h x x x x x x x x
f x

x x x x

        

    
 (27)

We obtain from the integral of Eq. (26) 

1/3( ) ( )
2

Qc
W g cx x A    (28)

where A is another undetermined integral constant, and g(x) is 
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2 3 4 5 6 7

0

8 9 10 11

1 1 5 55 7 205 17051 2864485
( ) ( ) 1

4 36 576 96 3456 338688 65028096
103863265 27047983 42367613873 14561952041

......
2633637888 752467968 1274680737792 468250066944

x
g x h x dx x x x x x x x

x

x x x x

        

    


 (29)

From Eqs. (25) and (28), Eqs. (14b, c) give 

12 ( ) ( ) 1cf c f c    (30)

and 

1/ 3( / 2) ( )A Qc g c  (31)

Hence, for the concrete problem in which the value of v is known in advance, all the undetermined 
constants, c and A, can thus be determined by using Eqs. (30) - (31). So, from Eqs. (10), (28) and 
(31), we may finally obtain 

4 1/3 1/3 2 2 2 2( ) ( / ) ( / 2) [ ( ) ( / ) / ]w r a q Eh c g c g cr a r a   (32)

and the maximum deflection of the membrane, at the central point (r = 0), is 

4 1/3 1/3(0) ( / ) ( / 2) ( )mw w a q Eh c g c   (33)

The relation between c and v is shown in Fig. 3, and the relation between w(r)/(a4q/Eh)1/3 and r  
while v takes 0.1, 0.2, 0.3, 0.4 and 0.5, respectively, is shown in Fig. 4. 
 
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

1.0a  0.8a 0.6a 0.4a 0.2a 0   0.2a 0.4a 0.6a 0.8a 1.0a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v=0.5
v=0.4
v=0.3
v=0.2
v=0.1

Fig. 3 Variation of c with v Fig. 4 Variation of w(r)/(a4q/Eh)1/3 with r 
 
 
3. Results and discussions 
 

The solution obtained above is usually called well-known Hencky solution. It should include 

c



4
1/3

( )

( )

w r

a q
Eh

r
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the works of Hencky (1915), Chien (1948) and Alekseev (1953). But the derivation here, from Eq. 
(18) to Eq. (24), is firstly presented by this paper. In the published papers, for example in Chien et 
al. (1981), it was always stated as follows. 

In order to satisfy the condition of Eq. (14a) at x = 0, Z must be expanded to the power series of 
the x 

( ) ( )Z x xf x  (I)

in which f(x) is  

2 3 4 5 6 71 1 13 17 37 1205 219241
( ) 1 ......

2 6 144 288 864 36288 8128512
f x x x x x x x x         (II)

We can easily prove that if Z(x) is a solution of Eq. (17), then c−4/3Z(cx) is also a solution of Eq. 
(17), in which c is the undetermined integral constant. Thus the general solution (satisfies the 
boundary condition (14a)) of Eq. (17) is 

2 /3 1
( ) ( )

2 2r

Qc
S f cx

c
  (III)

The statement above is based on the following derivation. From Eq. (17) we can have 

2 2

2 2

( ) ( )
0

( ) ( )

d Z cx cx

d cx Z cx
   (34)

Hence, substituting c−4/3Z(cx) into the left of Eq. (17), we may have 

2 2 2 2
4/3 2 2/3

2 8/3 2 2 2

( ) ( ) ( )
[ ] [ ] 0

( ) ( ) ( ) ( )

d Z cx x d Z cx cx
c c c

d cx c Z cx d cx Z cx


     (35)

Eqs. (34) - (35) mean that if Z(x) is a solution of Eq. (17), then c−4/3Z(cx) is also a solution of 
the equation. 

However, the statement above seems to emphasize that the particular solution of an equation 
can be transformed into the general solution of the equation by using a so-called transformation. 
Here, the expression c−4/3Z(cx), or the transformation from Z(x) to c−4/3Z(cx), was usually called 
Hencky transformation by the subsequent scholars. But the question is, from Eqs. (34) - (35) we 
cannot derive a conclusion that if Z(x) is a particular solution of Eq. (17), then c−4/3Z(cx) is the 
general solution of the equation. 

It should emphatically be pointed out that, based on the power series method for differential 
equation, after being expanded to the power series of the x the expression of the Z(x) in Eq. (17) 
should be the Eq. (18), rather than Eq. (I). Please notice that Eq. (18) is the general solution of Eq. 
(17), and yet Eq. (I) is only a particular solution of Eq. (17). However, this mistake in the 
statement above has not been pointed out, and misled the subsequent scholars. In fact, the 
derivation here from Eq. (18) to Eq. (24) clearly shows that the general solution of Eq. (17) is no 
other than the expression c−4/3Z(cx) itself.  

Let us give an example to show that the so-called Hencky transformation, c−4/3Z(cx), does not 
work in fact. We can easily prove that Z(x) = −(9/4)1/3x4/3 is a particular solution of Eq. (17), and 
yet we cannot derive the general solution of Eq. (17) from the transformation c−4/3Z(cx), for 
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4 /3 4 /3 1/3 4 /3 1/3 4 /39 9
( ) [ ( ) ( ) ] ( )

4 4
c Z cx c cx x      (36)

Obviously, the transforming result of c−4/3Z(cx) does not include an arbitrary constant c. So, the so-
called Hencky transformation c−4/3Z(cx) does not work. 

As for the problem of large deformation of circular membrane under the concentrated load, 
which Chen and Zheng (2003) dealt with, the membrane equation is Z″Z2 + 1 = 0. We can easily 
prove that if Z(x) is a solution of the equation, then c−2/3Z(cx) (obtained by Chen and Zheng 

(2003)) is also a solution of the equation. We can easily prove that Z(x) = ( 23/ )2/2x2/3 is a 
particular solution of the equation Z″Z2 + 1 = 0, and yet we cannot derive the general solution of 
the equation from the transformation c−2/3Z(cx), for 

2 /3 2 /3 2 3 2 3 2 3 2 33 3
( ) [( ) ( ) ] ( )

2 2
c Z cx c cx x    (37)

Also, the transforming result of c−2/3Z(cx) does not include an arbitrary constant c. So, the so-called 
extended Hencky transformation c−2/3Z(cx) does not also work. Hence, the solution presented by 
Chen and Zheng (2003) is an incorrect one. Here it is not necessary to discuss whether there were 
problems in the use of modern immovable point theorems (Hao and Yan 2006). 

Let us give an example further. It can be easily proved that if Z(x) is a solution of the equation 
Z″ = 5, then c−2Z(cx) is also a solution of the equation. Also we can easily prove that Z(x) = 2.5x2 + 
c1x + c2 is the general solution of the equation Z″ = 5, in which, c1 and c2 are the arbitrary constants. 
So, Z(x) = 2.5x2 + 2x + 3 and Z(x) = 2.5x2 + 5x + 7 should be the two particular solutions of the 
equation. Then, from Z(x) = 2.5x2 + 2x + 3, c−2Z(cx) gives 

2 2
2

2 3
( ) 2.5c Z cx x x

c c
     (38)

Obviously, Eq. (38) cannot be used as the general solution of the equation Z″ = 5, for it cannot 
include the case of Z(x) = 2.5x2 + 5x + 7. Further, with a given boundary value, for example   
Z(1) = 1 and Z(2) = 2, from Z(x) = 2.5x2 + c1x + c2 we can easily obtain the solution of the problem, 
Z(x) = 2.5x2 – 6.5x + 5. But, if Eq. (38) is used to solve this boundary value problem, it will be 
seen that no solution can be found in the interval of real number. This is the consequence of using 
the so-called extended Hencky transformation c−2Z(cx). 

All in all, from the discussions above we may see that the particular solution of a differential 
equation and the so-called transformation are, on the one hand, difficult to be obtained in advance, 
for example the equation Z″Z2 + 1 = 0 and the transformation c−2/3Z(cx), and on the other hand, 
even if they can be obtained in advance we cannot still ensure that the transforming result does be 
the general solution of the equation, for example the equation Z″ = 5 and the transformation 
c−2Z(cx). Then, under such a situation, what on earth can we do with a so-called transformation? 

 
 
4. Conclusions 

 
Based on the power series solution obtained in Section 2 and the discussions in Section 3, we 

may conclude as follows: 
The well-known Hencky solution is, without doubt, a correct solution, but in the published 
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papers the statement about its derivation is incorrect. It can be used under the condition that the 
membrane is initially flat, linearly elastic, and with a small rotation. We here firstly presented a 
correct version about the derivation of the well-known Hencky solution. 

The so-called Hencky transformation (or extended) cannot ensure that the transformed result 
does be the general solution of the solved differential equation, and hence it may not be used as a 
general mathematical method.  

The investigation presented here is significant to solving the allied problems of mechanics. 
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