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Abstract.  The free vibration of axially functionally graded tapered arches including shear deformation and 
rotatory inertia are studied through solving the governing differential equation of motion. Numerical results 
are presented for circular, parabolic, catenary, elliptic and sinusoidal arches with hinged-hinged, 
hinged-clamped and clamped-clamped end restraints. In this study Differential Quadrature element of lowest 
order (DQEL) or Lagrangian Interpolation technique is applied to solve the problems. Three general taper 
types for rectangular section are considered. The lowest four natural frequencies are calculated and 
compared with the published results. 
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1. Introduction 
 

Functionally graded materials (FGM) are multi-phase composites with the volume fraction of 
phase varying though a direction.  FGM was first proposed by materials scientists in the Sendai 
area in Japan in 1984 (Koizumi 1993, 1997) as thermal barrier material. Since then, these materials 
have been employed in many engineering application fields such as aircrafts, space vehicles, 
defense industries, electronics and biomedical sectors. FGM possesses properties that vary 
gradually through a direction. One advantage of FGM compared to laminated composites is that 
the material properties continuously vary in thickness or lengthwise directions as opposed to being 
discontinuous across adjoining layers as they are in laminated composites. For functionally graded 
arches, gradient variation may be oriented in the cross section / and in the axial direction. For the 
former, there have been a large number of researches devoted to bending vibration and stability 
(Malekzadeh 2009, Malekzadeh et al. 2010). For axially graded arches similar problem becomes 
more complicated because of the governing equation with variable coefficients. Many 
investigators such as Den Hartog (1928), Wolf (1971), Velestos et al. (1972), Laura et al. (1988) 
have investigated the vibration of elastic circular arches for various boundary conditions whereas 
Volterra and Morell (1960), Romanelli and Laura (1972), Wang (1975) investigated the free 
vibration of elastic arches with various geometries. 
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Lee and Wilson (1989) studied the free vibration of arches with variable curvatures. Much 
research concerned with free vibration of beams are cited by Chidamparam and Leissa (1993).  
Kang et al. (1995) carried out vibration analysis of shear deformable circular arches by the 
differential quadrature method. Oh et al. (1998a, b) arrived at the differential equations governing 
free in-plane vibrations of circular arches with variable cross sections and solved using numerical 
technique of Lee and Wilson (1989) and Wilson et al. (1984). For non-circular arches with 
variable cross section, Wang (1975) computed only the fundamental frequency of a clamped 
parabolic arch by Rayleigh Ritz method. Gutierrez et al. (1989) calculated the lowest frequencies 
in flexure by using polynomial approximation. Maurizi et al. (1991, 1993) obtained the lowest 
frequency of clamped circular arcs of linearly tapered width.  Kawakami et al. (1995) obtained the 
free vibration frequencies for in and out of plane vibration of curved members by using discrete 
Green functions and the numerical integration method. Oh et al. (1998a, b, 2000) analyzed for free 
vibrations of circular arches and non-circular arches with variable cross-sections considering 
rotatory inertia and shear deformation. Oh et al. (2000) conducted experimental investigation for 
finding frequencies and mode shapes of non circular tapered arches and compared the 
experimental results with those predicted by theory. Free out-of-plane vibration of a circular arch 
with uniform cross section are investigated by Tufekci and Dogruer (2006) taking into account the 
effect of shear and rotatory inertia due to both flexural and torsional vibrations. The governing 
differential equations were solved exactly using initial value and the results are compared with 
previous results. Kim and Lee (2008) investigated the role of higher order interpolation functions 
and consistent stress resultant functions in developing two-node hybrid mixed finite element 
model including shear deformation for free vibration of arches with rectangular section. Zhao and 
Kang (2008) derived the governing equations for the free vibration of cable arch using Hamilton’s 
principle and transfer matrix method was used for studying the free vibration of uniform and 
variable cross sections. In-plane and out-of-plane stability of functionally graded curved beams 
was first given by Shafiee et al. (2006). Malekzadeh and Setoodeh (2009) applied differential 
quadrature method for moderately thick laminated circular arches with general boundary 
conditions. The authors used Reissner-Naghdi type shell theory including the effect of shear 
deformation and rotary inertia. Analysis of in-plane free vibration of functionally graded (FG) 
thin-to-moderately thick deep circular arches in thermal environment was presented by 
Malekzadeh et al. (2009). The material properties were assumed to be temperature dependent and 
graded in the thickness direction. The differential quadrature method is adopted to solve thermo 
elastic equilibrium equations and the equations of motion. Parametric studies were conducted to 
study the effect of the temperature rise, boundary conditions and material graded index on the 
natural frequency of FG arches. Malekzadeh (2009) also investigated the in-plane free vibration 
analysis of FG thick circular arches subjected to initial stress under thermal environment.  
Malekzadeh (2009, 2010) investigated the in-plane free vibration using elasticity theory for 
functionally graded (FG) thick circular arches subjected to initial stresses due to the thermal 
environment. The material properties are assumed to be graded in thickness direction. Malekzadeh 
et al. (2010), Malekzadeh (2010)  investigated out-of plane free vibration of functionally graded 
circular curved beams and assumed that properties are graded in thickness direction. The 
formulation is based on first order shear deformation theory (FSDT) which includes the effect of 
shear deformation and rotary inertia. A formulation for the free vibration analysis of functionally 
graded spatial curved beam is presented by taking into account the effects of thickness and 
curvature by Yousefi and Rastgoo (2011) based on FSDT. One dimensional model of curved beam 
with graded properties is developed by incorporating in and out of plane motions to investigate the 

570



 
 
 
 
 
 

Free vibration of tapered arches made of axially functionally graded materials 

dynamics and buckling by Piovan et al. (2012). They employed Ritz method to obtain the natural 
frequencies.  To the best of author’s knowledge, there is no study available in the open literature to 
show the free vibration of axially functionally graded non circular tapered arches considering shear 
deformation and rotatory inertia effects. 

The main purpose of this paper is to present both the fundamental and some higher free 
vibration frequencies for axially functionally graded linear elastic circular and non circular arches 
with variable cross section for different support conditions. The equations taking  into  account  
both  shear  deformation  and   rotary   inertia   given  by  Oh  et al. (1998a, 1998b, 2000) and 
Huang et al. (1998) are considered in this paper. The equations were solved by Oh et al. (1998, 
2000) using Runge-Kutta method and by Huang et al. (1998) using Frobenius method.  Romanelli 
and Laura (1972) obtained the fundamental frequency of non-circular elastic hinged arcs. In this 
paper the equations are solved numerically by using Differential quadrature method of lowest 
order (DQEL) (Lagrangian interpolation technique) for arches of circular, parabolic, catenary, 
elliptic and sinusoidal geometries with non uniform cross section with hinged-hinged, hinged-
clamped and clamped –clamped boundary conditions. The lowest four frequencies in terms of arch 
rise to span length ratio (f = h/s where h is the height of the arch and ‘s’ span), slenderness ratio S 
= s/ cc A/I  and section ratio n = Is/Ic are arrived at  and the  results are compared with  already 
published results 
 
 
2. Mathematical formulation 
 

Consider a symmetric non-circular arch with non-uniform cross section as shown in Fig. 1(a). 
its span length, rise, semi subtended angle and the shape of the middle surface are ‘s, h, , and y(x) 
respectively.  It is to be noted that the left support of the arch is taken as origin and x and y are the 
coordinates in the positive directions. The radius of curvature ‘r’ of the arch is a function of 
coordinate  (angle between normal of the arch at any section to the horizontal measured in 
clockwise direction). Fig. 1(a) also shows the direction of radial and tangential displacements and 
positive rotation angle of the cross section at point ‘’ of the arch as w, v and  in the positive 
directions. A small element shown in Fig. 1(b) gives the positive directions for the stress resultants 
: viz: - P – the axial forces; V – the shear forces; M- the bending moments. The radial and 
tangential inertia forces are denoted by tr FF ,  respectively and the rotatory inertial couple as T. 
The dynamic equilibrium equations of the element as given by Oh et al. (1998, 2000, 1998) and 
Huang et al. (1998) are 

0 tFrV
d

dP


                                                        (1a) 

0 rFrP
d

dV


                                                       (1b) 

0 TrVr
d

dM


                                                       (1c) 

where 

 222 ;; ITwAFvAF rt                                 (2) 

  denotes the mass density of the material. 
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Fig. 1(a) Arch geometry 
 

 

Fig. 1(b) Equilibrium of an arch element 
 
 
Since in Timoshenko beam theory, plane sections still remain plane but are no longer normal to 

the longitudinal axis. The difference between the normal to the longitudinal axis and the plane 
section rotation is the shear deformation. It is assumed constant shear stresses on the cross section 
which, however, is not true in actual situations. Hence a shear correction factor k of the cross 
section is always introduced. 

Hence the rotation of the tangent to the centroidal axis may be given by 







  v

d

dw

r 
 1

                                                     (3) 

or shearing deformation  is given by 







  


 rv
d

dw

r

1
                                                       (4) 
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Using strength of materials, the bending moment , normal force and shear force are given by 
Borg and Gennaro (1959). 




d

d

r

EI
M                                                             (5) 

r

M
w

d

dv

r

EA

d

d

r

EI
w

d

dv

r

EA
P 






 






 




 2
                             (6) 







 






  





 rv

d

dw

r

EA
rv

d

dw

r

kAG
GAkV                     (7) 

Some authors like Henrych (1989), Friedman and Kosmatka (1998) and Shahba et al. (2012) 
have not considered M/r in the equation of P (Eq. (6)) since they assumed that centroidal axis and 
neutral axis are the same. Actually, neutral axis is displaced from the centroidal axis resulting in 
hyperbolic stress distribution (Boresi et al. 1978) instead of linear stress distribution. This type of 
formulation is more accurate for short deep beams. For the arches considered in this paper it is 
immaterial whether we consider M/r or not.  

In Eq. 7 µ = kG/E and I is the moment of Inertia of the arch section at any section and A is the 
area and k is the shear correction factor and G is the shear modulus. In all the numerical examples 
nod-dimensional ith frequency parameter is computed as 

c

c
i

cc

cc
ii E

sS
EI

A
sC

  2                                           (8a) 

where 

c

c

A

I

s
S                                                                 (8b) 

cccc IAE ,,,  are the mass density, Young’s modulus, area of the cross section and moment of 

inertia of the cross section at the crown and when the subscript is replaced by s they denote the 
corresponding values at the support.  
 

2.1 Geometry of the arch 
 
Even though the geometric functions such as shape of the arch, radius of curvature and the 

opening  angle for practical curves are given in may text books (Lockwood 1961, Lawrence 1972) 
and in many research papers (Oh et al. 1998a, 1998b, 2000), they are  illustrated briefly here  for 
completeness. In the following, we consider symmetric arches and the origin is assumed to be at 
the left support. 

 
2.1.1 Circular arch 
To determine the geometry of the arch, two values viz: - height (h) and span length (s) are 

needed. Then the equation of the arch is given by 
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sxrhry
s

x 













 0)(

2
22

2

                                 (9) 

The arch opening angle 2  is given by 











 

)(2
tan22 1

hr

s                                                   (10) 

 
2.1.2 Parabolic arch 
Similar to circular arch, to arrive at the geometry of a parabolic arch, we need the height (h) 

and span length (s). The equation of the arch is given by 

sxxsx
s

h
y  0)(

4
2

                                            (11) 

The arch opening angle 2 is given by  















0

1tan22
xdx

dy                                                     (12) 







 

s

h4
tan22 1                                                        (13) 

 
2.1.3 Catenary arch 
If the height (h) and span length (s) are given, one has to solve the following nonlinear equation 

to arrive at the radius of curvature cr  at the crown as 

0
2

cosh 







 c

c
c rh

r

s
r                                                 (14) 

The equation of the catenary arch is given by 

sxrh
r

sx
ry c

c
c 







 
 0

2

)2(
cosh                             (15) 

The arch opening angle 2  is given by 

















 

cr

s

2
sinhtan22 1                                                   (16) 

 
2.1.4 Elliptic arch 
For elliptic arch in addition to span (s) height of the arch (h) and another parameter   has to be 

given such that semi major axis of the arch  a is given by 
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a = ss


2
                                                                (17) 

Then semi minor axis b can be calculated as 

2

25.011 









a

s

h
b                                                     (18) 

The equation of the elliptic arch is given by  

sx
b

hby

a

asx






01

)()(
2

2

2

2
                             (19) 

Finding 
0xdx

dy
will give the opening angle of the elliptic arch as 















0

1tan22
xdx

dy                                                    (20) 

 
2.1.5 Sinusoidal arch 
For sinusoidal arch in addition to span (s), height of the arch (h) another parameter   has to be 

given such that 

ssL 2                                                               (21) 

The equation of sinusoidal arch is given as 

























 















 




L

s

L

sx

hy




sin1

sin1

1                                             (22) 

The opening angle of the arch 2  may be calculated as 















0

1tan22
xdx

dy                                                      (23) 

For all the arches except circular arch, radius of curvature ‘r’ is calculated as 

2

2

2/32

1

dx

yd

dx

dy

r


















                                                       (24) 
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2.1.6 Variation of I and A 
The area and moment of inertia of the arch cross section at a section A and I are written in 

terms of their corresponding values at the crown. Out of two classes of arched members, there are 
two forms viz; prime and quadratic. Quadratic forms (Leontovich 1969) are adopted in practice. 
Since the quadratic arch is considered more economical in bridge construction and hence it is 
adopted here. 

The formulation given above can take into account any variation of area and moment of inertia 
of the sections. In order to compare the results of present analysis with that of Oh et al. (1998a, b), 
we consider the variation A and I as given by Oh et al. (1998a, b) as 

 cc IIAA  ;                                                       (25) 

where   and   are functions of a single variable α given by 

)cos1(sin

1
2




                                                   (26) 

where  









 1
cos

1

sin

1
2 


n

                                                (27) 

(a) depth taper: - In this case cII   or cdd 3/1  and hence cc AAA   3/1  or 

3/1  .   
(b) breadth taper: In this case cII   or cbb   and hence cc AAA    or    

(c) square taper: (similar to diameter taper of a circular section) cII   or cdd 4/1  and 

hence cc AAA   2/1  and hence 2/1   

In general   is given by 

p                                                                  (28) 

where p = 0.3333, 1.0 and 0.5 for depth, breadth and square (both) taper respectively (Gupta 
1985). And the section ratio ‘n’ is given by 

c

s

I

I
n                                                                    (29) 

where cs II ,  are the moments of inertia of the arch sections at the support and crown respectively. 

 
 
3. Variation of material properties such as E (Young’s modulus), G (Shear modulus) 
and ρ (mass density) 
 

Consider a solid functionally graded symmetric arch having spatially continuously varying 
material property along certain direction and in our case arch axis direction. In general, spatial 
varying material property Y including Young’s modulus, shear modulus and mass density may be 
expressed as 
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



n

j
jj VYY

1

                                                             (30) 

where jj VY ,  are the material property and volume fraction of jth constitutive phase. For all jV the 

following equation must be satisfied. 





n

j
jj VV

1

101                                                     (31) 

Consider a symmetric arch made of an axially functionally graded material whose constituents are 
Zirconia ZrO2 (Ez = 200 GPa, 3/5700 mkgz  ) and Aluminum Al (Ea = 70GPa;  

3/2702 mkgz   ). The volume fraction of Zirconia is given as  

zaz VV
e

e
V 




 1;
)1(

)1(
( 


                                             (32) 

The distribution of modulus of elasticity and the mass density are assumed to follow an 
exponential relation as (Shahba et al. 2011, Shahba and Rajasekaran 2011) 

0
)1(

)1(
)(( 




 


if

e

e
TTTT aza                                       (33) 

0)(   ifTTTT aza                                            (34) 

where  


                                                                    (35) 

and   is the material non- homogeneity parameter. 
To compare the values with Oh et al. (1998a, b, 2000), Poisson’s ratio and G are calculated 

according to the value of μ.  It is assumed that the arch is aluminum rich at 0 (at crown) and 
Zirconia rich at 1 (at support). The variation of modulus of elasticity along half of the arch is 
plotted for different non-homogeneity parameter  in Fig. 2. It is observed from Fig. 2 that the 
percentage content of aluminum is increased as higher values of non-homogeneity parameter are 
considered. Consequently, the stiffness and weight of beam are reduced.  
  
 
4. Differential quadrature element method of lowest order 
 

In addition to Finite element, Finite difference, Differential transformation methods, 
Differential quadrature method (DQM) is yet another efficient method for solving differential 
equations.  DQM was introduced by Bellman and Casti (1971). The basic concept of the method is 
that derivative of a function at a given point can be approximated as a weighted sum of function 
values at all of the sampling points in the domain of that variable. Hence it is possible to reduce 
differential equations into a set of algebraic equations using the above approximation and 
boundary condition applied. The accuracy of the method depends on the number of sampling  
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Fig. 2 Variation of E along half of the arch according to material parameter 
 
 

points used. Since the introduction of the method, application to various engineering problems has 
been investigated and their success has shown the potential of the method as attractive numerical 
technique (Bert et al. 1993, Bert et al. 1994, Rajasekaran 2007, 2008, Shu 2000). In this paper, 
Differential quadrature element of lowest order (DQEL) or simply Lagrangian interpolation 
technique has been applied to solve free vibration of any tapered arch of axially functionally 
graded material including shear deformation and rotary inertia. 

 
   Lagrangian Interpolation Method (Schilling and Harris 2000) 
 This interpolation technique is applied if the given points in an element may or may not be 

equally spaced.  But in this paper equally spaced sample points are considered. 
 The polynomial is an approximation to the function y = f(x), which coincides with the 

polynomial at (xi, yi). Assuming ‘n’ sampling points. 
 
 
 

(36) 
 
 

The constants p can be evaluated and the function k  is given by, 
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If the subtended angle of the arch element is neL /2  (ne = no of elements) and defining 
L/  , the shape function is given by 














n

kii
ik

n

kii
i

kN

,1

,1

)(

)(





                                                      (38) 

Using the shape functions one can obtain the values of ‘y’ at any point as 

}{.....321 yNNNNy n                                       (39) 

where y  are the function values at the sampling points. 

The first order differential at various sampling points is given as  
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where [c] is a nxn matrix of first order defined as c(n,n,1) or simply c, ‘n’ being the number of 
sampling points taken as equally spaced and 1 denotes the result of first order differentiation.  In 
this paper, we use only first order differential of Lagrangian interpolation functions and hence the 
name of the method. 
  
 
5. Free vibration of axially functionally graded symmetric arches 
 

The equilibrium and constitutive law for the arch element may be written in matrix form as 































































































































w

v

M

V

P

Ir

Ar

Ar

w

v

M

V

P

r
kAG

r
EAEA

r
EI

r
r










000000

000000

000000

00000

00000

00000

100

10
1

0

0000

0000

00001

00001

2

                                           (41) 

579



 
 
 
 
 
 

S. Rajasekaran 

Denoting 
d

d
   (  denotes the inclination of radius of curvature r with x axis) in Eq. 41, 

wandvψ,MV,P,  ,  etc can be written using Lagrangian interpolation polynomial as 

iiiiii
wc;vc;ψc;Mc;Vc;Pc  iiiiii wvψMVP           (42) 

where iii MVP }{,}{,}{ are the stress resultants at the sampling points and 

iii wandv }{}{,}{  are the rotation, tangential and radial displacements at the sampling points 

of the ith element as 
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Hence wvMVP  ,,,,,   at any point are given by Eq. 42 where   is replaced by c, 
1/EI is the diagonal matrices consisting of the values of inverse of flexural rigidities at the 
sampling points. For the axially functionally graded tapered arch, the variation of Young’s 
modulus E(x), mass density, )(x , area, A(x) and Moment of Inertia, I(x) at sampling points will 
be known. Hence for an element the differential system is written as 
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where I is the identity matrix and E(x)I(x) is the flexural rigidity at the sampling point. In Eq. 44, 
G(x) denotes the shear modulus and k, the shear correction factor and for rectangular section it is  
taken as 0.833. The value of shear modulus is taken so as to satisfy µ = kG/E. For the ith element 
this can be written as 
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11
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where iq  is given by 
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At each node one has to find three stress resultants and three deformations and in total there are 
six unknowns. If there are ‘n’ sampling points total number of   unknowns   for each element   will   
be nt = n6 . Usually n is taken as 11 (with 10 equal divisions) and hence the total number of 
unknowns for each element will be nt = 66611  . If the arch is idealized into ne = 12 
elements, the differential system is given by 
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 (47) 

or 

D q = 2 M q                                                           (48) 

where D is an un-symmetric matrix .  Multiplying both sides with DT, we get 

DT D q= 2  DT m q                                                      (49) 

Or 

  G q= 2  E q                                                           (50) 
 

5.1 Equilibrium and continuity conditions at the internal nodes 
 

5.1.1 Equilibrium at internal nodes 
Since the beam is divided into ne = twelve elements, there will be ((ne-1) = 11) eleven internal 

nodes. The axial force P of the 11th sampling point of the first element is equal to the value of the 
first sampling point of the second element. Establishing the equilibrium for P at the first internal 
node, we get 
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0)1,2()11,1(  PP                                                   (51) 

Introducing these as constraints in Eq. 51 the additional constraint equations can be written as 

G1(1,11) = 1;    G1(1,67) = –1                                           (52) 

Similarly equilibrium for P can be established for all the ne-1 (11 internal) nodes. Equilibrium 
equations can be established for V at the first internal node as 

G1(12,22) = 1;  G1(12,78) = –1                                             (53) 

Hence equilibrium for M can be established for all the (ne-1 = 11) eleven internal nodes. 
and similarly these equations are written at other ten internal nodes. 
 

5.1.2 Compatibility at the internal nodes 
The rotation about x axis of the 11th sampling point of the first element is equal to the rotation 

of the first sampling point of the second element which is given as 

                0)1,2()11,1(                                                        (54) 
or 

G1(34,33) = 1;     G1(34,100) = –1                                             (55) 

Now compatibility equations are established at other ten points. 
Similarly compatibility equation can be established for v and w. 
The equilibrium and compatibility at the internal nodes can be written as 

166179279266 
 0qG 1                                               (56) 

 
5.1.3 Boundary conditions at the domain ends 
Since it is the system of six first order differential equations, six boundary conditions are 

necessary to solve the problem.  The boundary conditions }0{}r{]G[ 2  must be added as 
constraints to Eq. 56. 

 
Clamped – Clamped 
Left support Clamped 

12(3,56))(12(2,45)0)(12(1,34)0)(  G,0w;G;v;G; LLL    (57) 

Right support Clamped 

12(6,792)0)(12(5,781)0)(12(4,770)0)(  G,w;G;v;G; RRR  (58) 

where ‘’ is the angular coordinate along the length of the arch girder. 
 

Hinged – Hinged support 
Left support Hinged 

12(3,56)0)(12(2,45)0)(12(1,23)0)(  G,w;G;v;G;M LLL   (59) 

Right support Hinged 

12(6,792)0)(12(5,781)0)(12(4,759)0)(  G,w;G;v;G;M RRR  (60) 

For numbering scheme see Fig. 3. 
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Fig. 3 Sample points numbering for vibration of tapered arches 
 
 

The above boundary conditions are written in matrix form as 

}0{}{][ 2 qG                                                             (61) 

Incorporating the equilibrium and compatibility conditions at the internal nodes as well as 
boundary conditions and using Wilson’s Lagrangian multiplier method (Wilson 2002), we get the 
resulting equation as 
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where 0qG;0qG 21   denote the boundary constraints at internal and boundary nodes 

and 2λ,λ1  are the Lagrangian multipliers. 

The matrix on the right hand side of Eq. 62 will lead to similar to Mass matrix. When this is 
solved as an eigen value problem, we get natural frequencies of lateral vibration of an arch. 

For the axially functionally graded material the variation of E and mass density ρ are given 
throughout the length of the arch and for a non-prismatic arch, variation in both Area (A(x)) and 
Moment of Inertia (I(x)) are also considered.  Hence the lateral vibration of functionally graded 
non prismatic arch may be carried out using DQEL. 

A computer program has been developed to solve any arch with variable cross section with ‘ne’ 
elements and ‘n’ sampling points and with axially functionally graded material properties. 
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5. Numerical examples 
 

DEQL method is used to solve the six first order differential equations, subjected to 
equilibrium and compatibility of internal nodes as well as the end constraints. To show the validity 
of the present analysis, the lowest five dimensionless frequency parameters (Di = 4ωi (rθ)2  

ccc IE/ ) ( c mass per unit length at the crown) for uniform circular arches with various open 
angles (2θ) and different slenderness ratios r/i = r cc I/A  are compared with Tufekci and Arpaci 
(1998) in Tables 1 and 2 for clamped-clamped and pinned-pinned end conditions and good 
agreement is obtained. The numerical results of clamped clamped circular arch of uniform cross 
section are compared with the results obtained by Irie et al. (1983) in Table 3 and very good 
agreement is observed. Tables 4 and 5 give the lowest four frequency parameters for the circular 
arches (depth, width and square taper) with clamped-clamped and hinged-hinged end constraints.  
From these results, it is clear that Ci values increase as the value of n increases with exception for 
hinged-hinged arches with width taper. There is an increase in Ci values when “S” increases. Ci 
values for fixed - fixed end constraints are more than that for hinged – hinged end constraints, In 
Table 6, the values of Ci are presented for parabolic, catenary, elliptic and sinusoidal arches for 
various values of ‘(f’= h/s)’, ‘S’ and ‘n’. These values are compared with Oh et al. (1998b) and 
these values agree within 3% of Oh’s values except for three cases. 

Fig. 4 shows the effect of ‘f = h/s’ on frequency parameter for a circular, parabolic, catenary, 
elliptic and sinusoidal arches for S = 200 and n = 2 for depth tapered. For elliptic and sinusoidal 
arches β = 0.5 is assumed. From the figure, it is clear that the arch geometry has very little effect 
on the frequency parameter and the same conclusion is arrived by Oh et al. (2000). In Fig. 4 the 
cross over point represents two coincidence natural frequencies, one corresponding to symmetric 
mode and the other corresponding to anti-symmetric mode. When the end conditions change from 
pinned – pinned to clamped –clamped, Ci values increase. When ‘f’ becomes very small, the arch 
approaches to straight beam and Ci approaches to values for straight beam. 

 
 

 

Fig. 4 Effect of f on C for hinged hinged arch depth taper (S = 200, n = 2) 
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Table 1 Frequency coefficient Di = 4ωi (rθ)2
ccc IE/ for uniform  fixed-fixed circular arches for 

various open angles and various slenderness ratios r cc I/A  Ref . (Tufekci and Arpaci 1998) 

Open  
angle 

Slenderness
ratio 

source 
Mode 

1 2 3 4 5 

90deg 

100 
DQEL 55.3506 102.4188 188.5771 219.2464 299.3354 
Ref * 55.3434 102.3868 188.4994 219.1514 299.1958 

75 
DQEL 54.9935 98.5633 174.9941 185.2423 285.0016 
Ref * 55.9768 98.5094 174.9116 185.1081 284.7500 

50 
DQEL 54.0083 86.2719 132.8349 176.1028 266.3199 
Ref * 53.9660 86.1908 132.7272 175.8392 265.8141 

120deg 

100 
DQEL 51.7159 101.9612 185.7791 269.3074 393.9432 
Ref * 51.7045 101.9366 185.7236 269.2141 393.7767 

75 
DQEL 51.5145 100.6821 183.8166 253.6826 332.5862 
Ref * 51.5012 100.6416 183.7216 253.5605 332.4988 

50 
DQEL 50.9643 96.9342 178.3952 198.1263 283.2889 
Ref * 50.9332 96.8517 178.1998 198.0489 282.9555 

150deg 

100 
DQEL 47.5082 98.8818 181.2495 271.6077 392.0931 
Ref * 47.5326 98.8691 181.2108 271.5375 391.9823 

75 
DQEL 47.4159 98.2470 179.9788 267.0457 286.5363 
Ref * 47.4091 98.2165 179.9086 266.9185 386.3414 

50 
DQEL 47.0841 96.4355 176.4357 250.2842 339.1054 
Ref * 47.0612 96.3684 171.2864 250.0629 338.9705 

180deg 

100 
DQEL 43.2099 94.7754 175.7434 268.5460 387.8478 
Ref * 43.1709 94.7557 175.7111 268.4875 387.7377 

75 
DQEL 43.1173 94.3942 174.8677 266.0814 384.0414 
Ref * 43.0922 94.3658 174.8113 265.9794 383.9120 

50 
DQEL 42.8881 93.3234 172.4165 258.6965 373.1201 
Ref * 42.8697 93.2681 172.2951 258.4766 372.7893 

 
 
Fig. 5 shows the effect of ‘S’ on Ci values for parabolic hinged – clamped condition (f = 0.2, n 

= 2, breadth taper). As ‘S’ increases, the frequency parameter Ci for all the four modes increase 
other parameters remaining constant. When ‘S’ increases to 200, Ci values approach horizontal 
asymptotes. It can be observed that when the frequency curve is horizontal the vibration mode is 
purely flexural as in straight beams. 

Fig. 6 shows the effect of ‘n’ on C for catenary arch (square taper- S = 200, f = 0.3) for 
clamped-clamped condition. As the section ratio increases by increasing Is the Ci values also 
increase. In the case of pinned-pinned or clamped-clamped conditions, the mode shapes show 
alternating pattern behaviour symmetric to anti-symmetric mode shapes as i increases from 1 to 4.  
The mode shapes for pinned pinned condition is shown in Fig. 7. But for pinned-clamped 
condition, the mode shapes are asymmetric as shown in Fig. 8. 

Table 7 shows the effect of material parameter η on frequency parameter Ci for pined-clamped 
all types of arches for f = 0.3, S = 200, n = 5 for square taper and it is found that ‘η’ does not affect 
Ci values for all modes except the third mode. 
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Table 2 Frequency coefficient Di = 4ω (rθ)2
ccc IE/  for uniform  pinned – pinned circular arches for 

various open angles and various slenderness ratios r cc I/A  Ref. (Tufekci and Arpaci 1998) 

Open angle 
Slenderness

ratio 
source 

Mode 

1 2 3 4 5 
90deg 100 DQEL 33.8352 78.7547 150.0819 214.9579 259.7254

Ref * 33.8341 78.7259 150.0300 214.8133 259.7674
75 DQEL 33.7441 77.7568 148.5119 173.9816 239.4179

Ref * 33.7367 77.7025 148.4183 173.9414 239.3448
50 DQEL 33.4876 74.4646 121.4085 144.2310 226.6233

Ref * 33.4632 74.3412 121.4958 144.0231 226.3381
120deg 100 DQEL 30.3368 76.2604 146.9712 230.0684 339.2957

Ref * 30.3178 76.2373 146.9290 229.9762 339.1900
75 DQEL 30.2707 75.8775 146.0726 225.4805 321.8775

Ref * 30.2665 75.8395 145.9973 225.3067 321.9759
50 DQEL 30.1411 74.7733 143.5631 197.4021 242.3411

Ref * 30.1212 74.6949 143.4124 197.2452 242.4045
150deg 100 DQEL 26.2465 72.5617 142.6226 228.0018 336.5829

Ref * 26.4079 72.5587 142.5925 227.9351 336.4950
75 DQEL 26.4371 72.3835 142.0619 226.1538 333.5652

Ref * 26.3787 72.3473 141.9974 226.0291 333.3854
50 DQEL 26.3109 71.8039 140.4470 220.2446 324.9149

Ref * 26.2958 71.7477 140.3306 219.9901 324.5391
180deg 100 DQEL 22.5794 68.1904 137.4585 223.7963 332.1591

Ref * 22.3497 68.1644 137.4288 223.7427 332.0705
75 DQEL 22.4512 68.0651 137.0732 222.6863 330.0758

Ref * 22.3325 68.0360 137.0236 222.5925 329.9577
50 DQEL 22.3038 67.7221 135.9908 219.4897 324.2214

Ref * 22.2836 67.6722 135.8837 219.2887 323.9065

 
 

Fig. 5 Effect of S on frequency parameter C for breadth taper parabolic arch (hinged –clamped) f = 0.2, n = 2
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Fig. 6 Effect of n on C for catenary arch square taper Clamped – clamped (f = 0.3, S = 200) 
 

 

Fig. 7 Mode shapes for Sinusoidal arch S = 200, n = 1, f = 0.2 (pinned-pinned condition) 

 
 

Fig. 8 Mode shapes for Sinusoidal arch S = 200, n = 1, f = 0.2 (pinned-clamped condition) 

587



 
 
 
 
 
 

S. Rajasekaran 

Table 3 Comparison of frequency parameter Ci between this study and Irie et al. (1983) (uniform section, 

clamped-clamped circular arch, (μ = kG/E = 0.327; S = s/ cc A/I ) 

i 

h/s = 0.134 (open angle = 60 deg) h/s = 0.289 (open angle = 120deg) 
S = 20 S = 100 S=34.64 S = 173.2 

DQEL 
Irie et al 
(1983) 

DQEL 
Irie et al 
(1983)

DQEL 
Irie et al.  

(1983)
DQEL 

Irie et al. 
(1983)

1 23.7215 23.70 52.7906 52.78 31.7874 31.77 35.3847 35.37 
2 38.7111 38.73 75.9370 75.98 45.4941 45.51 69.7619 69.72 
3 62.7664 62.35 117.7839 117.8 73.9706 73.89 127.1112 127.1 
4 69.9650 69.97 170.8174 170.80 91.3690 91.14 184.2340 184.2 
 

Table 4a Frequency parameter Ci for clamped – clamped circular arch μ = 0.3. The values in brackets are 
obtained by Oh et al. (1998a) (n = 1 uniform) 

h/s S n Taper i = 1 i = 2 i = 3 i = 4 

0.1 
open angle 
(45.24deg) 

20 

1 

depth 

21.7762 
(22.12) 

40.2959 
(41.59) 

62.9085 
(63.52) 

70.6604 
(74.34) 

3 
24.8110 
(25.24) 

44.5429 
(45.31) 

67.0398 
(67.67) 

74.9214 
(78.57) 

7 
26.5615 
(27.02) 

47.0072 
(48.41) 

69.2411 
(69.9) 

77.1815 
(81.12) 

3 
width 

25.5555 
(26.06) 

45.6119 
(47.18) 

74.8959 
(75.45) 

107.4913 
(79.44) 

7 
27.7202 
(28.31) 

49.2189 
(50.99) 

80.0239 
(81.39) 

80.8236 
(79.44) 

3 
square 

25.0259 
(25.58) 

44.9962 
(46.33) 

68.9962 
(69.6) 

75.2430 
(78.8) 

7 
26.9189 
(27.42) 

47.7816 
(49.28) 

72.1894 
(72.82) 

78.3781 
(82.04) 

100 

1 

depth 

55.9219 
(56.13) 

63.9988 
(64.16) 

115.3330 
(116.2) 

(178.3227 
(180.7) 

3 
66.1409 
(66.45) 

67.5222 
(67.70) 

130.1497 
(131.4) 

200.3558 
(203.5) 

7 
69.1921 
(69.39) 

72.8309 
(73.21) 

140.1217 
(141.6) 

214.2075 
(217.8) 

3 
width 

63.0303 
(63.3) 

71.2110 
(71.4) 

122.0385 
(123.1) 

187.8377 
(190.5) 

7 
68.6244 
(68.95) 

(74.0416 
(74.25) 

129.0960 
(130.3) 

197.1211 
(200.1) 

3 
square 

65.3866 
(65.69) 

68.5082 
(68.69) 

128.1852 
(129.4) 

197.3538 
(200.4) 

7 
70.5522 
(70.75) 

71.8382 
(72.21) 

137.5384 
(138.9) 

210.2860 
(213.8) 

 
Fig. 9 shows the effect of material parameters ‘’ on the frequency parameter Ci for clamped-

clamped elliptic arch f = 0.3, S = 200, n = 5 for all the tapers. From the figure, it is clear that ‘η’ 
does not affect Ci values for all modes except third mode. Table 8 shows the comparison of results 
by DQEL with the computer and experimental results of Oh et al. (2000) for parabolic arches with 
breadth taper f = 0.25, S = 200, n = 1.5 and the results agree with the computed results of Oh et al. 
(2000). 

588



 
 
 
 
 
 

Free vibration of tapered arches made of axially functionally graded materials 

Table 5 Frequency parameter Ci for pinned – pinned  circular arch  μ = 0.3. The values in brackets 
      are obtained by Oh  et al. (1998a) 

h/s S n Taper i = 1 i = 2 i = 3 i = 4 

0.1 20 

1

depth 

16.1093 
(16.44) 

30.4204 
(31.91) 

61.6317 
(63.23) 

62.7207 
(66.09) 

3
16.4919 
(17.05) 

32.0794 
(34.29) 

64.5482 
(67.31) 

66.7691 
(70.12) 

7
16.6038 
(17.37) 

32.4347 
(35.43) 

65.2389 
(69.5) 

68.9073 
(72.4) 

0.1 100 
3

width 

35.5621 
(35.71) 

70.9962 
(71.21) 

85.9134 
(86.58) 

144.2158 
(146.3) 

7
35.1971 
(35.37) 

73.9874 
(74.21) 

83.7505 
(84.54) 

143.9784 
(146.2) 

0.1 100 
3

square 

37.7643 
(37.94) 

68.4839 
(68.67) 

92.1131 
(92.98) 

153.7656 
(156.3) 

7
38.3653 
(38.59) 

70.5352 
(70.73) 

93.0346 
(94.1451) 

157.7529 
(160.7) 

0.25 20 

1

depth 

20.6117 
(21.21) 

27.8863 
(28.31) 

49.3909 
(52.31) 

59.6201 
(61.06) 

3
22.2604 
(23.29) 

29.0444 
(29.73) 

51.7835 
(55.71) 

63.6595 
(65.13) 

7
22.8835 
(24.46) 

29.5734 
(30.58) 

52.6758 
(57.92) 

66.7777 
(67.82) 

0.4 
20 

 

3
width 

12.4125 
(12.74) 

30.2157 
(31.01) 

40.2268 
(42.11) 

54.2474 
(57.0) 

7
12.5305 
(13.03) 

32.9200 
(34.71) 

38.2656 
(39.62) 

56.2573 
(60.26) 

0.4 100 
3

square 

13.9122 
(13.91) 

39.2739 
(39.36) 

76.6482 
(77.14) 

121.7756 
(123) 

7
15.2774 
(15.29) 

43.9892 
(44.16) 

84.2610 
(84.97) 

133.4769 
(135.2) 

 
 

Fig. 9 Effect of npr on C (clmped-clamped) elliptic arch f = 0.3,S = 200,n = 5 for all taper 
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Table 6 Comparison of Frequency parameter C between current study with Oh et al. (1998a, 2000) 

Geometry of the arch 
Ci 

This study 
Oh et al 

(1998a, 2000) 
%error 

Parabolic hinged – hinged breadth taper
s = 8m, f = 0.1, S = 50, n = 2, h = 0.8, 

Ic = 0.0256, Ac = 1 

34.9944 36.21 3.46 
37.1970 37.16 0.08 
78.3940 82.61 5.49 
133.2718 144.6 8.27 

Catenary hinged- clamped depth taper 
s = 8m, f = 0.2, S = 100, n = 3, h =1.6, 

Ic = 0.0064, Ac = 1 

42,6006 43.0 0.93 
88.3354 88.8 0.529 
129.5601 129.9 0.3 
158.4535 162.3 2.369 

Elliptic arch β = 0.5, s = 8m, clamped-
clamped square taper  f = 0.3, S = 50,  

n = 4, h = 2.4, Ic = 0.0256, Ac = 1 

42.8659 43.63 1.74 
76.5742 77.16 0.76 
89.8305 95.06 5.62 
130.7671 145.6 10.18 

Sinusoidal arch β = 0.5, s = 8m clamped-
clamped, uniform, f = 0.1, S = 100, n = 1,

Ic = 0.0064, Ac = 1 

56.0862 56.25 0.29 
66.0381 66.25 0.319 
113.4105 114.9 1.3 
179.2729 181.7 1.34 

 
Table 7 Effect of material parameter on frequency parameter Ci for  pinned-clamped arch f = 0.3, S = 200 
 n = 5 square taper 

η Arch type C1 C2 C3 C4 

-10 

circular 38.1602 84.6434 149.4412 221.8170 
parabolic 41.1833 94.2106 164.3659 246.0834 
catenary 40.3757 92.3759 160.8593 240.9295 
elliptic 40.5458 92.7907 161.6003 241.7517 

sinusoidal 41.6820 95.0831 166.3877 249.2921 

-3 

circular 38.0858 85.3186 148.0292 220.3857 
parabolic 40.8932 93.7539 162.8205 243.6533 
catenary 40.1389 92.2993 159.3430 238.6865 
elliptic 40.2966 92.6168 160.0655 239.4613 

sinusoidal 41.3634 94.4125 164./8454 246.7753 

0 

circular 37.6917 84.1211 145.4519 218.2577 
parabolic 40.3862 92.9605 160.5721 241.2290 
catenary 38.6894 91.4914 157.0154 236.2234 
elliptic 39.8323 91.8138 157.7486 237.0499 

sinusoidal 40.8214 93.6124 162.6504 244.3452 

3 

circular 36.7483 81.0916 141.1559 213.3479 
parabolic 39.6326 91.4951 156.9953 236.8526 
catenary 38.9506 89.6458 153.1950 231.5332 
elliptic 39.0825 90.0516 153.9752 232.4673 

sinusoidal 40.0537 92.3402 159.2354 240.1634 

10 

circular 34.9134 76.4228 135.6479 205.1064 
parabolic 38.4447 88.7150 151.7375 229.3490 
catenary 37.6194 86.1732 147.8294 223.9162 
elliptic 37.7614 86.6913 148.6107 224.8305 

sinusoidal 38.9649 90.0240 154.0840 232.8108 
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Table 8 Comparison of computed and experimental results of Oh et al. (2000) (parabolic, breadth taper,  
f = 0.25, S = 200, n = 1.5) 

End constraint Mode 
Theory Frequency 

Expt (Oh et 
al.(2000) 

C-  This 
analysis 

Frequency 
This analysis 

Frequency 
Oh et al.(2000) 

Hinged-Hinged 

1 25.4096 298.029 311.4 297 
2 63.4555 744.269 757.2 684 
3 115.7202 1357.28 1371.0 1100 
4 181.2166 2125.489 2142.0 2049 

Hinged-clamped 

1 33.1993 389.395 393.1 364 
2 75.2611 882.737 884.2 777 
3 131.3467 1540.565 1545.0 1215 
4 199.3177 2337.79 2350.0 2121 

Clamped-Clamped 

1 43.1802 506.46 494.5 460 
2 87.8069 1029.88 1020.0 916 
3 148.0646 1736.65 1733.0 1555 
4 217.5466 2551.60 2557.0 2290 

(Experiment arch s = 34.64cm, h = 8.66cm, depth = 0.6cm throughout b = 2cm at crown and 3cm at the 
support E = 6389 × 1010, γ = 2680kg/m3) 

 
 

6. Conclusions 
 

For a uniform circular arch with clamped-clamped or pinned-pinned ends, frequency values 
increase as opening angle decreases for constant slenderness ratio. For the same opening angle, as 
slenderness ratio decreases in general, five frequency parameters also decrease.  This observation 
is in line with Tufekci and Arpaci (1998). It is also seen that as the taper ratio increases the 
frequency parameter values also increase as observed by Oh et al. (1998a). The frequency 
parameters for various geometry arches with different boundary conditions agree with the values 
obtained by Oh et al. (1998a, 2000). The material parameter  – does not have significant effect 
on the frequency parameter for (pinned – clamped boundary condition) all types of arches (f = 0.3, 
S = 200, n = 5) for square taper except the third mode. It is also seen that the material parameter  
does not affect frequency parameter for clamped – clamped elliptic arch (f = 0.3, S = 200, n = 5) 
for all types of tapers. 

Regarding the numerical technique DQEL, the following conclusions are arrived at. 
DQEL can capture the effect of variable cross section and the material non-homogeneous 

parameter due to axially graded material.  It is easy to incorporate boundary condition in this 
method. This does not need the construction of an admissible function that satisfies boundary 
condition a priori. Since the governing equation is written in terms of four first order differential 
equations, it is much easier to consider the weight coefficients based on Lagrangian interpolation 
technique for the first order derivative of the variable. In DQEL it is an easy task to incorporate 
different geometries of arches, material properties, cross sectional properties of the arch. It is also 
explained how Lagrangian multiplier method is used to convert rectangular matrix to square 
matrix by incorporating boundary condition using Wilson’s method. 
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