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Abstract.  This paper investigates properties of integral operators in complex variable boundary integral 
equation in plane elasticity, which is derived from the Somigliana identity in the complex variable form. The 
generalized Sokhotski-Plemelj’s formulae are used to obtain the BIE in complex variable. The properties of 
some integral operators in the interior problem are studied in detail. The Neumann and Dirichlet problems 
are analyzed. The prior condition for solution is studied. The solvability of the formulated problems is 
addressed. Similar analysis is carried out for the exterior problem. It is found that the properties of some 
integral operators in the exterior boundary value problem (BVP) are quite different from their counterparts in 
the interior BVP. 
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1. Introduction 
 

The boundary integral equation (BIE) was initiated by some pioneer researchers (Rizzo 1967, 
Cruse 1969, Jaswon and Symm 1977, Brebbia et al. 1984). If one compares BIE with the finite 
element method (FEM), the number of unknowns in BIE can be reduced significantly. It has now 
recognized that the numerical procedures based on BIE become the third important technique in 
the numerical analysis of elasticity problem (Cheng and Cheng 2005). 

In the BIE, there are two kinds of formulation. One is the direct BIE method, and other is the 
indirect BIE method (Chen and Hong, Cheng and Cheng 2005). In the direct BIE method, the 
unknown functions are the displacements and tractions. However, in the indirect BIE method the 
unknown function is an intermediate function. Since both methods reflect the nature of the 
governing equation, for example, the Laplace equation, both methods can be used to solve the 
boundary value problem (BVP). For the boundary value problem of Laplace equation, the direct 
and indirect BIE methods were summarized (Cheng and Cheng 2005). 

The Somigliana identity is generally used in the direct method of BIE (Brebbia et al. 1984, 
Cheng and Cheng 2005). The Somigliana identity is actually a result of using the Betti’s reciprocal 
theorem between the fundamental field and the physical field. Previously, the Somigliana 
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identity in plane elasticity was formulated on the real variable (Brebbia et al. 1984, Cheng and 
Cheng 2005). The real variable BIE in plane elasticity has some unsuitable points. When the 
source point in the region approaches the boundary point, one needs to make some explanation for 
the process in the resulting BIE. In fact, this process is a result of limit value for the Cauchy type 
integral, or the Sokhotski-Plemelj formula in the complex variable. Secondly, the character of the 
involved integral operator is not easy to see. For example, it is not easy to extract the singular 
portion in the integral kernel.  

Cruse and Suwito presented an analytical investigation of the properties of the integral terms in 
the Somigliana stress identity in elasticity (Cruse and Suwito 1993). A weakly-singular form of the 
Somigliana stress identity was found. A kind of the Somigliana identity using the complex 
variable was suggested (Mogilevskaya and Linkov 1998, Mogilevskaya 2000). In the formulation, 
the force component in the physical field was expressed by the resultant force function rather than 
the traction itself. Thus, this formulation is not easy to compare with its counterpart in the real 
variable.  A kind of complex variable BIE was suggested (Linkov 2002). In the formulation, the 
generalized Sokhotski-Plemelj’s formulae have not been used. A unified discussion of real and 
complex boundary integral equations (BIEs) for two-dimensional potential problems was 
presented (Kolte et al. 1996). 

On the other hand, formulations of BIE may rely on the real or complex variables. In many 
cases, it is straightforward to formulate the BIE using the complex variable. The dual boundary 
element method in the real domain was extended to the complex variable dual boundary element 
domain (Chen and Chen 2000). A review was given to the complex variable based numerical 
solutions for Dirichlet potential problem in two and higher dimensions (Whitley and Hromadka 
2006). 

Recently, the regularity condition at infinity in the exterior boundary value problem of plane 
elasticity was examined (Chen and Lin 2008, Chen et al. 2009, 2010). It is proved that the usual 
kernel which is acted upon the tractions can not be used to the exterior boundary value problem 
when the applied tractions on contour are not in equilibrium. 

Recently, a null-field approach for the multi-inclusion problem under antiplane shears was 
suggested (Chen and Wu 2007). In addition, the torsional rigidity of a circular bar with multiple 
circular inclusions was investigated, which is based on the null-field integral approach (Chen and 
Lee 2009). Free terms in hypersingular boundary integral equations were studied and evaluated 
(Davey and Farooq 2011). An exact solution was proposed for the hypersingular boundary integral 
equation of two-dimensional elastostaticcs (Zhang and Zhang 2008). 

A dual integral formulation for the interior problem of the Laplace equation with a smooth 
boundary is extended to the exterior problem (Chen et al. 1995). Two regularized versions were 
proposed. The spectral properties for the influence matrices in the dual boundary integral equation 
(dual BEM) are investigated for the Laplace and Helmholtz equations of a circular domain (Chen 
and Chiu 2002a). Many results were obtained. For example, Eqs. (60) to (63) in the paper 
represent some relations between four influence matrices in the dual BEM formulation.. 

This paper investigates properties of integral operators in complex variable boundary integral 
equation in plane elasticity, which is derived on the Somigliana identity in the complex variable 
form. In the derivation, the displacement component at a point of an interior finite region is 
evaluated by using the Somigliana identity, or the Betti’s reciprocal theorem in elasticity. Letting a 
moving point approach the boundary and using the generalized Sokhotski-Plemelj’s formulae, the 
complex variable boundary integral equation in plane elasticity is obtained. It is found that the 
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complex variable BIE is equivalent to its counterpart in real variable case. However, in the 
complex variable BIE, the singular portion and the regular portion in the integral kernel are easy to 
distinguish. The properties of some integral operators are studied in detail. The Neumann and 
Dirichlet problems are analyzed.  The solvability of the formulated problems is addressed. Similar 
analysis is carried out for BIE in the exterior region. However, the properties of some integral 
operators in the exterior boundary value problem (BVP) are quite different from their counterparts 
in the interior BVP. Numerical examination for some properties are also carried out. 
 
 
2. Formulation of complex variable BIE for the interior boundary value problem 

 
2.1 Some preliminary knowledge in complex variable method of plane elasticity 

 
The complex variable function method plays an important role in plane elasticity. Fundamental 

of this method is introduced. In the method, the stresses (σx, σy, σxy), the resultant forces (X, Y) and 
the displacements (u, v) are expressed in terms of complex potentials )(z and )(z  such that 
(Muskhelishvili 1953)  

)Φ(4 zReyx   

(z)](z)Φ2[2   zi xyxy                                             (1) 

)()()( zzzziXYf                                               (2) 

)()()()(2 zzzzivuG                                               (3) 

where )()Φ( zz  , )()( zz   , a bar over a function denotes the conjugated value for the 
function, G is the shear modulus of elasticity, ))/(1(3    in the plane stress problem, 

 43  in the plane strain problem, and   is the Poisson’s ratio. Sometimes, the displacements 
u and v are denoted by 1u  and 2u , the stresses σx, σy and σxy by σ1, σ2 and σ12, the coordinates x and 
y by x1 and x2. 

Except for the physical quantities mentioned above, from Eqs. (2) and (3) two derivatives in 
specified direction (abbreviated as DISD) are introduced as follows (Savruk 1981, Chen et al. 
2003) 

NTN1 izzz
dz

zd
zziXY

dz

d
zJ   ))()(Φ()Φ()Φ(}{)(              (4) 

}{2)( ivu
dz

d
GzJ2  1Jz1zzz

dz

zd
zz  )(  )ΦΦ())()(Φ()Φ()Φ(            (5) 

It is easy to verify that NTN1 iJ    denotes the normal and shear tractions along the 
segment dzz,z  . Secondly, the J1 and J2 values depend not only on the position of a point “z”, 
but also on the direction of the segment “ dz/zd ”.  

In plane elasticity, the following integrals are useful (Muskhelishvili 1953, Savruk 1981) 

 


L zt

dttf

i

1
zF

)(

2
)(


                                                        (6) 
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 


L zt

tdtg

i

1
zG

)(

2
)(


                                                       (7) 

dtth
zt

zt

i

1
z,zH

L
)(

)(2
)(

2 





                                                (8) 

where L is a smooth curve or a closed contour   in Fig. 1. Also, we assume that the function f(t), 
g(t) and h(t) satisfy the lderoH  condition (Muskhelishvili 1953). Sometimes, the functions f(t), 
g(t) and h(t) are called the density functions hereafter. Clearly, the two integrals defined by Eqs. 
(6) and (7) are analytic functions, and one defined by Eq. (8) is not. The integral (6) is precisely 
the well-known Cauchy type integral. 

Generally speaking, these integrals take different values when  0tz  and  0tz , ( Lt 0 ) 
respectively. The limit values of these functions from the upper and lower sides of the curve L are 
found to be (Muskhelishvili 1953, Savruk 1981) 

 


L tt

dttf

i
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o
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)(
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1
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)(
)(


                                              (9) 

 
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
                                          (10) 

dtth
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1

dt

tdth
t,tH

L
)(

)(22

)(
)(

2
o

o

o

oo
oo  


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
                                 (11) 

In Eqs. (9) to (11), all the integrals should be understood in the sense of principal value of  the 
integral.  Note that the notations of f(t), g(t), h(t), F(z), G(z) and )( z,zH  used in Eqs. (6) to (11) 
have no relation with those mentioned in other places. 

 
2.2 Formulation of BIE for the interior region 
 
In the following analysis, the α-field shown by Fig. 1(a) is relating to the fundamental field 

caused by concentrated force at the point z = τ. The relevant complex potentials are as follows 
(Muskhelishvili 1953)  

)()(   zlnFz ,   






z

F
zz )Φ()( ,  

2)(
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





z

F
z                      (12) 






z

F
zlnFz )()(  ,    

2)(
)Ψ()(













z

F

z

F
zz                          (13) 

where 

1)(2 





yx iPP

F                                                            (14) 

In Eq. (14), yx iPP   is the concentrated force applied at the point z  in Fig. 1(a). Note that 
the complex potentials shown by Eq. (12), (13) are expressed in a pure deformable form (see 
Appendix A or Chen et al. 2009).  
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The complex potentials shown by Eqs. (12) and (13) are defined in full infinite plane. From 
Eqs. (3), (12) and (13), we can evaluate the relevant displacement at the point “t” as follows (Fig. 1) 








t

t
FtlnFivuG * 2)(2                                             (15) 

Similarly, from Eqs. (4), (12) and (13) we can evaluate the relevant boundary traction at the 
point “t” as follows (Fig. 1) 























2)(

)(
)(










t

tF

t

F

dt

td

t

F

t

F
i *NTN                              (16) 

In Eqs. (15) and (16), the subscript “*” denotes that the arguments are derived from the 
fundamental solution. 

 
 

(a) The α-field (b) The β-field 

Fig. 1 (a) The α-field with the concentrated forces applied at z = τ,  (b) The β-field, or the physical 
                      field defined on a finite region 

 
 
After using the Betti’s reciprocal theorem, or the Somigliana identity, between the fundamental 

field (or the α-field  in Fig. 1(a)) and the physical field (or the β-field in Fig. 1(b)), we have 

    


 )()()()()()( idYdXivuReivuidYdXRevPuP **yx  

 ( S )                                                                 (17) 

where the left hand term represents the work done by traction in the fundamental field (the α-field) 
to the displacement of the physical field (the β-field). In addition, the right hand term represents 
the work done by traction in the physical field to the displacement of the fundamental field. 

In Eq. (17), idYdX  denotes the force applied on the segment “dt” (Fig. 1). From Eqs. (2), (4) 
and Fig. 1, we find  

dseiidYdX i
NTN

 )(  , dsiedt i ,  dtiiidYdX NTN )(              (18) 

Thus, Eq. (17) can be rewritten as 
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    


 dtiivuiRedtivuiiRevPuP NTN**NTNyx )()()()()()(  

 ( S )                                                                  (19) 

In the following analysis, one can let 

)()()( tivtutU  , )()()( tittQ NTN    , ( t )                            (20) 

Substituting the explicit form for *NTN i )(    and *ivu )(  and  Eq. (20) into Eq. (19) yields 
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
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 
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G
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,   ( S )                            (21) 

In Eq. (21), if we let 1xP , 0yP  and 1)(1/2  F , we can find an equation for )(u . 
Similarly, if we let 0xP , 1yP  and 1)(2  /iF , we can find an equation for )(v . Thus, 
we will find the displacement at a domain point   

 


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
 


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In Eq. (22), letting ot  ( S , Γo t  ) and using the generalized Sokhotski-Plemelj’s 
formulae shown by Eqs. (9), (10) and (11) and Appendix B, yields 
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where 
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Eq. (26) represents the complex variable boundary integral equation (CVBIE) for the interior 
problem in plane elasticity based on the Somigliana identity. An alternative expression of Eq. (26) 
was obtained previously (Linkov 2002), and the author did not use the generalized Sokhotski-
Plemelj’s formulae in the derivation. 

In the following analysis, we prefer to write Eq. (26) in the following form 

)()(Λ o2o tiJBti  ,  ( )}(Λ)(){(Λ oo ttUt ii   abbreviating as )(Λ oti )   ( Γo t )       (29) 

where 

)(
2

)(
)( o1

o
o tiIB

tU
ti  ,   ( ot )                                             (30) 

 
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
,   ( Γo t )                   (31) 

 











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o
oo )()(2)( tdtQ
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dttQttlntJ  ,   ( Γo t )                          (32) 

In Eqs. (29) and (30), the subscript “i” is used to indicate the studied interior BVP. 
Accordingly, the relevant homogenous equation takes the following form 

0)(Λ o ti ,   ( Γo t )                                                         (33) 

In the meantime, from Eq. (26) and some manipulations, the real variable BIE for the plane 
strain case is as follows 

)()()()()()()(
2

1 1

Γ
xdsxpx,Uxdsxux,Pu j

*
ijj

*
iji 

  ,   (i = 1, 2, Γ )          (34) 

In Eq. (34), the point )( 21 x,xx  (or t in Fig. 1) is the field point, and )( 21  , (or ot in Fig. 1) is 
the source point. 

In Eq. (34), the kernel )( x,P*
ij  is defined by Brebbia et al. (1984) 

 ))(2(1)2)2)((1(
1

)(14

1
)( 2211 i,jj,ij,i,ij,,

*
ij rnrnvrrnrnr
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x,P 


 


       (35) 

where Kronecker deltas ij  is defined as, 1ij   for i = j, 0ij  for ji  , and  


cos11

1 



r

x
r, ,   

sin22
2 




r

x
r,                                       (36) 

and n(n1, n2) is a unit normal to the boundary at the filed point x(x1, x2). 

       In Eq. (34),  the kernel )(1 x,U*
ij  is defined by (Chen et al. 2009) 
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 ijj,i,ij
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ij rrrln

Gv
x,U 
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 0.5)()4(3

)(18

1
)(1 


                          (37) 

In the meantime, for the plane strain case, a real variable BIE was suggested as follows 
(Brebbia et al. 1984) 

)()()()()()()(
2

1 2

ΓΓ
xdsxpx,Uxdsxux,Pu j

*
ijj

*
iji    ,   (i = 1,2, Γ )           (34a) 

       In Eq. (34a),  the kernel )(2 x,U*
ij  is defined by (Brebbia et al. 1984, Chen et al. 2009) 

 j,i,ij
*
ij rrrln

Gv
x,U 


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
 )()4(3

)(18

1
)(2                             (37a) 

The difference between the kernels )( x,U 1*
ij   and )( x,U 2*

ij  was investigated (Chen et al. 2009).  

 
2.3 Properties of integral operator )t(i 0  
 
We see from Eq. (30) that the integral operator )( 0ti  is composed of the function )t(U o  and 

the operator I(t0). In fact, the operator I(t0) has a detailed expression )}()(){( oo tItUtI  shown by  

Eq. (31). Properties of the integral operators I(t0) and )( 0ti are introduced below.  

For finding the first property of )( oti , a property of the integral operator I(t0) is introduced 
below 

itI
tU

1)()(
1)(o   ,   ( Γo t )                                            (38) 

In fact, from Eq. (31), the integral 
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tI  can be decomposed as  

)()()()( o3o2o11)(o tItItItI
tU

 ,   ( Γo t )                             (39) 

In Eq. (39), three integrals can be integrated as follows 
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dt
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d
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tdtt
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dtt,tLtI , ( Γo t )            (42) 

Therefore, the equality (38) is proved. 
Letting U(t) = 1 in the integral operator )( oi t and using  Eq. (38), we will find 

01)(
2

1
)( 11)(o  Bt

tUi  ,   ( Γo t )                             (43) 
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Eq. (43) reveals that the homogenous equation (33) has a non-trivial solution U(t) = 1. 
Similarly, we can prove the second property of the integral operator I(t0), which is as follows  

1)()(
)(o  

itU
tI ,   ( Γo t )                                           (44) 

 Letting U(t) = i in the integral operator )( oti and using Eq. (44), we will find 

01)(
2

)( 1)(o  iB
i

t
itUi  ,   ( Γot )                                (45) 

Eq. (45) reveals that the homogenous equation (33) has a non-trivial solution U(t) = i. 
Similarly, the third property of the integral operator I(t0)  is introduced as follows 

 o)(o 1)()( ttI
ittU

 ,   ( Γo t )                                      (46) 

In fact, the integral 
ittU

tI )(o )(  can be rewritten as  

)()()( o2o1)(o tItItI
ittU

 ,   ( Γo t )                                   (47) 

 In Eq. (47), two integrals I1(t0)  and I2(t0) can be integrated as follows 
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In the derivation, the equality 0
Γ

 dt is used. Therefore, the equality (46) is proved. 

Letting U(t) = it in the integral operator )( oti and using Eq. (46), we will find 

01)(
2

)( o1
o

)(o  itB
it

t
ittUi  ,   ( Γo t )                                 (50) 

Eq. (50) reveals that the homogenous equation (33) has a non-trivial solution U(t) = it. 
It is seen that any boundary values for U(t) and Q(t) from an elastic solution satisfy BIE shown 

by Eq. (33) accordingly. Particularly, the following three pairs of solution: (1) U(t) = 1, Q(t) = 0, 
(2) U(t) = i, Q(t) = 0 and (2) U(t) = it, Q(t) = 0 satisfy the BIE shown by Eq. (29). 

 
2.4 Numerical examination for properties of the integral operator )t(i 0  
 
For examining the equalities shown by Eqs. (43), (45) and (50), an elliptic contour with two 
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half-axes a = 20 and b = 10 is adopted in the numerical examination. 
For the first two cases, we assume U(t) = 1 or U(t) = i. Therefore, the maximum element takes 

the value of “1”. It is seen that the function )( oti  is composed of the u- and v-component, which 
are defined on the contour ( Γo t ). After discretization, we can compute the value of )( 0ti  at 
many discrete points along the contour. For a point x = a cosθ y = b sinθ (  iyxto ) along 
the contour, the relative error is defined by 

exactnumer uumaxf )(1  , 

numerexactnumer vmaxvvmaxg )(1  ,          (for U(t) = 1 case)                        (51) 

numerexactnumer umaxuumaxf )(2  , 

exactnumer vvmaxg )(2  ,            (for U(t) = i case)                                 (52) 

Note that, the results vexact = 0 and uexact = 0 (see Eqs. (43) and (45)) have been used in Eqs. (51) 
and (52). 

For the third case, we assume U(t) = it. Therefore, the maximum element takes the value of 
“a”. In this case, the relative error is defined by 

a/uumaxf exactnumer )(3  , 

a/vvmaxg exactnumer )(3  , (for U(t) = it case)                                  (53) 

For three cases, the relative errors are tabulated in Table  1. From tabulated results we see that 
the errors for the first two cases (or U(t) = 1 and U(t) = i) are extremely small. In addition, the 
errors for the third cases (or U(t) = it) is also small. Thus, three equalities shown by Eqs. (43), (45) 
and (50) are examined numerically in the mentioned example. 

 
 
Table 1 Relative errors for some integration operations: 

1)t(Uoi1 )t(Re)(f


 , 
1)t(Uoi1 )t(Im)(g


 , 

i)t(Uoi2 )t(Re)(f


 , 
i)t(Uoi2 )t(Im)(g


 ,  

it)t(Uoi3 )t(Re)(f


 , 
it)t(Uoi3 )t(Im)(g


  (see 

Eqs. (30), (31), (51), (52) and (53)) 

f1(θ) 
 (degree) 0 20 40 60 80 100

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
  120 140 160 180 200 220
 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
  240 260 280 300 320 340
 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

g1(θ) 
 (degree) 0 20 40 60 80 100

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
  120 140 160 180 200 220
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Table 1 Continued 

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
  240 260 280 300 320 340
 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

f2(θ) 
 (degree) 0 20 40 60 80 100

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
  120 140 160 180 200 220
 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
  240 260 280 300 320 340
 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

g2(θ) 
 (degree) 0 20 40 60 80 100

 -0.000002 0.000000 0.000000 0.000000 0.000000 0.000000
  120 140 160 180 200 220
 0.000000 0.000000 0.000000 -0.000002 0.000000 0.000000
  240 260 280 300 320 340
 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

f3(θ) 
 (degree) 0 20 40 60 80 100

 0.000000 -0.000825 -0.001546 -0.002082 -0.002367 -0.002367
  120 140 160 180 200 220
 -0.002082 -0.001546 -0.000825 0.000000 0.000825 0.001546
  240 260 280 300 320 340
 0.002082 0.002367 0.002367 0.002082 0.001546 0.000825

g3(θ) 
 (degree) 0 20 40 60 80 100 

 0.001518 0.001422 0.001156 0.000754 0.000262 -0.000262 
  120 140 160 180 200 220 
 -0.000754 -0.001156 -0.001422 -0.001518 -0.001422 -0.001156 
  240 260 280 300 320 340 
 -0.000754 -0.000262 0.000262 0.000754 0.001156 0.001422 

 
 
2.5 The Neumann problem for the interior region 
 
It is assumed that the boundary traction )()()( t~it~tQ

~
NTN    is known beforehand. 

Substituting the known traction )()()( t~it~tQ
~

NTN   in the right hand side of Eq. (29) yields the 
following BIE    

)()( o2o tJ
~

iBti   ,   (where )}()(){( oo ttUt ii   ),   ( Γo t )                   (54) 

where the integral operator )( oi t  is defined by  

)(
2

)(
)( o1

o
o tiIB

tU
ti   ,   ( Γo t )                                         (55) 

In Eq. (54), the right hand term is defined by  

505



 
 
 
 
 
 

Y.Z. Chen and Z.X. Wang 

 

 











Γ o

o
oo )()(2)( tdtQ

~

tt

tt
dttQ

~
ttlntJ

~  ,   ( Γo t )                         (56) 

Obviously, from Eq. (54), we can propose relevant homogenous BIE 

0)( o ti  ,   ( Γo t )                                                        (57) 

From Eq. (55) we see that the integral operator )( oti  is composed of the function )( otU  and 
the operator I(t0). In fact, the operator I(t0) has a detailed form I(t0){U(t) → I(t0)} shown by Eq. (31). 

In the Neumann problem of the interior region, the first studied problem is about the right hand 
term in Eq. (54). It is known that for a finite region, the boundary traction )(tQ

~
must be in 

equilibrium. Clearly, this assertion is easy to see. However, it has not been proved theoretically by 
BIE (54) itself. 

The mentioned condition for the boundary traction )(tQ
~

 in equilibrium takes the following 
form (Muskhelishvili 1953) 

  0)()()(
ΓΓ

  dttQ
~

dtt~it~
NTN                                         (58) 

  0)()()(
ΓΓ

  dtttQ
~

Redttt~it~Re NTN                                   (59) 

Eq. (58) represents the equilibrium condition for forces, and Eq. (59) represents the equilibrium 
condition for moment.  

If the conditions (58) and (59) are satisfied, from property of the integral operator )( oi t , the 
non-homogenous equation (54) has the following solution for displacement U(t) 

itcicctUtU p 321)()(  ,   ( Γt )                                     (60) 

or in the form 
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321 1
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1

)(
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)(

)(
,  (letting tt iyxt  , Γt )         (61) 

where )()( tivtu pp   is a particular solution for the non-homogenous equation and c1, c2 and c3 are 

constant. Eq. (60) or (61) reveals that Eq. (54) has many solutions, and they may differ from each 
other by a rigid motion. 

Particularly, for the relevant homogenous equation (57), we have the following solution 

itcicctU 321)(  ,   ( Γt )                                             (62) 

On contrary, it is assumed that the boundary tractions )()()( t~it~tQ
~

NTN    do not satisfy the 
equilibrium conditions and the right hand term )( otJ

~
 is derived from boundary traction 

)()()( t~it~tQ
~

NTN    not in equilibrium. In this case, the non-homogenous equation (54) has no 
solution for U(t). Physically, this assertion is easy to see. However, it has not been proved 
theoretically from the BIE shown by Eq. (54) itself.  

 
2.6 The Dirichlet problem for the interior region 
 
It is assumed that the boundary displacement )()()( tv~itu~tU

~  is known beforehand.  

506



 
 
 
 
 
 

Properties of integral operators in complex variable boundary integral equation 

 

Substituting the known displacement )()()( tv~itu~tU
~  in the left hand side of Eq. (29) yields the 

following BIE 

)()( oo2 t
~

tiJB i ,   ( Γo t )                                              (63) 

or in an explicit form 

)()()(2)( oΓ o

o
o2o2 t

~
tdtQ

tt

tt
dttQttlniBtiJB i 











  ,   ( Γo t )         (64) 

where 

)(
2

)(
)( o1

o
o tI

~
iB

tU
~

t
~

i  ,     ( Γo t )                                   (65) 
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1)(

)( dttU
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t,tLdttU
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t,tLdttU
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tt
tI

~ 
 ,   ( Γo t )       (66) 

Obviously, from Eq. (63), we can get the following homogenous BIE  

0)()(2)(
Γ o

o
oo 




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





  tdtQ
tt

tt
dttQttlntJ  ,   ( Γo t )                  (67) 

It is assumed that the scale has not reached the degenerate scale. In this case, the integral 
operator J(t0) possesses the invertibility (Vodicka and Mantic 2008). The input function )(tU

~
 can 

be an arbitrary function. In this case, the non-homogenous equation (63) has a unique solution for 
Q(t). Physically, the obtained boundary tractions Q(t) from the non-homogenous equation (63) 
must be in equilibrium. Otherwise, the equilibrium condition for finite body is violated. However, 
this assertion has not been proved theoretically from BIE (63) itself.  

Particularly, if the input function )(tU
~

 takes the following form 

itcicctU
~

321)(  ,   ( Γt )                                            (68) 

we will obtain a unique solution Q(t) =0. That is to say 1)( ctU
~  , ictU

~
2)(   and itctU

~
3)(   

correspond to the same solution Q(t) =0. 
Similarly, If the real scale has not reached the degenerate scale, the homogenous equation (67) 

only has a solution Q(t) = 0. However, from the homogenous equation (67), we can propose the 
following degenerate scale problem, which can be defined as follows. One wants to find a 
particular scale such that the homogenous integral equation (67) has a non-trivial solution for the 
function Q(t). Here, Q(t) = 0 is a trivial solution. The degenerate scale problem has been studied 
by many researchers using a variety of methods (Chen et al. 2002b, Chen et al. 2005, Chen et al. 
2007, Vodicka and Mantic 2004, 2008). Since many researchers studied the degenerate scale 
problem, we do not study it here anymore. 
 
 
3. Formulation of complex variable BIE for the exterior boundary value problem 

 
3.1 Formulation of BIE for the exterior region 
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In the exterior BVP, we may use the Somigliana identity on the region bounded by contours ∑1 
and ∑2 (Fig. 2). The contour ∑2 is placed at a remote place, which may be assumed to be a 
sufficient large circle. The complex variable BIE for the exterior boundary value problem for 

1o Σt  is similar to the one in the interior boundary value problem, which can be expressed as 
follows 

 
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   ,   ( 1o t )                  (69) 

where  
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 
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
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






2Σ o

o
o2 )()(2 tdtQ

tt

tt
dttQttlniB  ,   ( 1o t )                         (70) 

The term D(t0) denotes the contribution to the identity from the contour 2 . In Eqs. (69) and 
(70), the functions U(t), Q(t) and the elastic constants B1, B2 have been defined  by Eqs. (20) and 
(23) previously. 
    
 
 

Fig. 2 Formulation of the Somigliana identity for exterior region 
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Clearly, the term D(t0) is not always equal to zero. It was proved that if and only if the function 
U(t) (U(t)- the displacement along the boundary) is expressed in  a pure deformable form (see 
Appendix A), we have D(t0)  = 0 (Chen et al. 2009). This is the regularity condition in the exterior 
BVP (Brebbia et al. 1984). In our formulation, the regularity condition means that one does not 
need to formulate any equation at remote place, for example, along a large circle. It is assumed that 
this condition D(t0)  = 0 is satisfied, Eq. (69) can be reduced to 
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1Σ o

o
o2 )()(2 tdtQ

tt

tt
dttQttlniB  ,   ( 1o Σt )                           (71) 

One difference between Eq. (26) and (71) is that the increment “dt” in Eq. (71) is in the 
clockwise direction along the boundary 1 . One may change the integration path from the 
clockwise direction to the anti-clockwise direction. Therefore, Eq. (71) can be rewritten as (Fig. 2) 
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o
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dttQttlniB  ,   ( Γo t )                          (72) 

Eq. (72) represents the complex variable boundary integral equation (CVBIE) for the exterior 
boundary value problem, which is based on the Somigliana identity. Note that the increment “dt” 
in Eq. (72) is in the anti-clockwise direction along the boundary  (Fig. 2).  

In the following analysis, we prefer to write Eq. (72) in the following form 

)()( o2o tiJBte  ,   ( Γo t )                                              (73) 

where 

)(
2

)(
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o
o tiIB

tU
te  ,   ( Γo t )                                        (74) 

 













Γ o2o1

o
o )()()()()(

1)(
)( dttUt,tLdttUt,tLdttU

tt
tI


,   ( Γo t )            (75) 

 
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Γ o

o
oo )()(2)( tdtQ
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dttQttlntJ  ,   ( Γo t )                      (76) 

In Eq. (75), the subscript “e” is used for the exterior BVP. 
Accordingly, the relevant homogenous equation for Eq. (73) takes the following form 

0)t( oe  ,   ( Γo t )                                                       (77) 

 
3.2 Properties of integral operator )t(e o  
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Previously, the integral operator )( ote is defined by 

)(
2

)(
)( o1

o
o tiIB

tU
te  ,   ( Γo t )                                        (78) 

where the integral operator I(t0) has been defined by Eq. (31) previously. 
Note that the integral operator )( oti takes the form )( oti = U(t0)/2 + B1iI(t0) in the interior 

problem, and the integral operator )( ote takes the form )( ote = U(t0)/2 – B1iI(t0) in the exterior 
problem. Therefore, the properties of the two integral operators )( oti  and )( ote  must be 
different. 

From properties for I(t0) shown by Eqs. (38), (44)and (46) and definition for )( ote shown by 
Eq. (74), we will find  

1)}()(){(
1)(oo  tUee ttUt  ,   ( Γo t )                                (79) 

ittUt
itUee  )(oo )}()(){(  ,   ( Γo t )                                (80) 

o)(oo )}()(){( itttUt
ittUee   ,   ( Γo t )                              (81) 

In fact, from Eqs. (38), we have 

11)(
2

1
)(

2

1
)( 11)(o11)(o    BtiIBt

tUtUe                      (82) 

Therefore, the equality shown by Eq. (79) is proved. Clearly, Eqs. (80) and (81) can be proved 
in a similar manner. The result shown by Eqs. (79), (80) and (81) is called the identity property of 
the integral operator )( ote .  

It is seen that only the boundary values for U(t) derived from the pure deformable form (See 
appendix A) and Q(t) from an elastic solution satisfy BIE shown by Eq. (73). In the meantime, the 
boundary values for U(t) derived from the impure deformable form (See appendix A) and Q(t) 
from an elastic solution do not satisfy BIE shown by Eq. (73). Since we have assumed that both 
the fundamental field and the physical field are expressed in the pure deformable form and the 
term D(t0) has been dropped in the derivation, it is natural to obtain this result. Particularly, we 
substitute U(t) = 1 in the left hand side of Eq. (73) and get 1)(

1)(o tUe t . However, we 

substitute Q(t) = 0 in the right  hand side of Eq. (73) and get 0)(
0)(o2  tQ

tiJB . Alternative 

speaking, the following boundary values U(t) = 1 and Q(t) = 0 do not satisfy Eq. (73). Therefore, 
the three particular functions (U(t) = 1, U(t) = i and U(t) = it ) are not the solution of the 
homogenous equation 0)( o te . Thus, It is expected that the homogenous equation 

0)( o te only has a unique solution U(t) = 0.  

 
3.3 The Neumann problem for the exterior region 
 
It is assumed that the boundary traction )()()( t~it~tQ

~
NTN    is known beforehand. 

Substituting the known traction )()()( t~it~tQ
~

NTN   in the right hand side of Eq. (73) yields the 
following BIE 
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)()( o2o tJ
~

iBte  ,   where )}()(){( oo ttUt ee   ) ,   ( Γo t )                  (83) 

where the integral operator )( ote is defined by  

)(
2

)(
)( o1

o
o tiIB

tU
te  ,   ( Γo t )                                         (84) 

In Eq. (83), the right hand term is defined by  

 













 tdtQ
~

tt

tt
dttQ

~
ttlntJ

~
)()(2)(

o

o
oo ,   ( Γo t )                        (85) 

If right hand term in Eq. (83) vanishes, we obtain the following homogenous equation 

0)( o te ,   ( Γo t )                                                      (86) 

Contrary to the Neumann problem of the interior region (in & 2.4), the boundary tractions 
)()()( t~it~tQ

~
NTN    in the exterior problem do not need to satisfy the equilibrium conditions. 

Particularly, for any assumed boundary traction )()()( t~it~tQ
~

NTN   , from Eq. (83) one has a 
unique solution for U(t). In addition, the relevant homogenous equation has a unique solution U(t) = 0. 

This situation is quite different from that in the interior problem. In fact, we know that the 
boundary tractions in the interior BVP must be in equilibrium, and solution for U(t) takes the form 
of Eq. (60), which contains three constants c1 (i = 1, 2, 3). 

 
3.4 The Dirichlet problem for the exterior region 
 
It is assumed that the boundary displacement )()()( tv~itu~tU

~  is known beforehand.  
Substituting the known displacement )()()( tv~itu~tU

~  in the left hand side of Eq. (73) yields the 
following BIE 

)()( oo2 t
~

tiJB e ,   ( Γo t )                                               (87) 

or in an explicit form 

)()()(2)( oΓ o

o
o2o2 t

~
tdtQ

tt

tt
dttQttlniBtiJB e 











  ,   ( Γo t )            (88) 

where 

)(
2

)(
)( o1

o
o tI

~
iB

tU
~

t
~

e  , ( Γo t )                                          (89) 

 













Γ

o2o1
o

o )()()()()(
1)(

)( dttU
~

t,tLdttU
~

t,tLdttU
~

tt
tI

~ 
,   ( Γo t )               (90) 

It is assumed that the scale has not reached the degenerate scale. In this case, the integral 

operator J(t0) possesses the invertibility (Vodicka and Mantic 2008). The input function )(tU
~

 can be 
an arbitrary function. In this case, the non-homogenous equation (87) has a unique solution for Q(t). 

If right hand term in Eq. (87) vanishes, we obtain the following homogenous equation 
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0)( o tJ ,   ( Γo t )                                                        (91) 

or in an explicit form 

0)()(2
Γ o

o
o 











 tdtQ
tt

tt
dttQttln ,   ( Γo t )                            (92) 

Similarly, If the real scale has not reached the degenerate scale, Eq. (92) only has a solution 
Q(t) = 0. However, from the homogenous equation (92), we can propose the degenerate scale 
problem, which is same as in the interior problem. 
 
 
4. Differences between formulations in the interior and the exterior problems 
 

We may summarize the formulation of BIE in the interior and the exterior problems in Table 2.  
From Table 2 we see that only the U(t) ( Γt ) expressed in pure deformable form and the relevant 
Q(t) ( Γt ) from an elastic solution satisfy the BIE for the exterior region. However, in the 
interior problem any U(t) and the relevant Q(t) from an elastic solution satisfy governing equation. 

 
 
 

  Table 2 Comparison for BIE in the interior problem and the exterior problem 

Form of governing equation Result for  substitution of an elastic solution 

(1a) In interior problem 

2

)(
)( o

o
tU

ti  )()( o2o1 tiJBtiIB   
(1b) Any U(t) and the relevant Q(t) from an elastic 
solution satisfy governing equation 

(2a) In exterior problem 

2

)(
)( o

o
tU

te  )()( o2o1 tiJBtiIB   

(2b) Only the U(t) expressed in pure deformable form 
and  the relevant Q(t) from an elastic solution satisfy 
governing equation 

  where )}()(){( oo ttUt ii   , )}()()( oo ttU{t ee   , )}()(){( oo tJtQtJ   

 
 
 

  Table 3 Comparison for the Neumann problem in the interior region and the exterior region 

Form of governing equation 
Right hand term for 

boundary traction )(tQ
~

 
Property of solution for U(t)

(1a) In interior problem 

2

)(
)( o

o
tU

ti  )()( o2o1 tJ
~

iBtiIB   
(1b) )(tQ

~
 must be in 

equilibrium 

(1c) Many U(t) solutions 
differing each other by a 
rigid motion 

(2a) In exterior problem 

2

)(
)( o

o
tU

te  )t(J
~

iB)t(iIB o2o1   (2b) )(tQ
~

 may be arbitrary 
(2c) Unique solution for 
U(t) expressed in pure 
deformable form 

  where )}()(){( oo ttUt ii   , )}()(){( oo ttUt ee   , )}()(){( oo tJ
~

tQ
~

tJ
~

  
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 Table 4 Comparison for the Dirichlet problem in the interior region and the exterior region 

Forms of governing equations 
Right hand term for 

boundary displacement )(tU
~

 
Property of solution for Q(t) 

(1a) In the interior problem with
normal scale 

)()( oo2 t
~

tiJB i   
(1b) )(tU

~
 may be arbitrary 

(1c) Unique solution for Q(t)
satisfying the equilibrium condition 

(2a) In the exterior problem with
normal scale 

)()( oo2 t
~

tiJB e   
(2b) )(tU

~
 may be arbitrary (2c) Unique solution for Q(t) 

(3a) Degenerate scale  problem  
0)( o tJ  (3b) Vanishing right hand term 

(3c) Find two non-trivial solutions 
for Q(t) under two critical sizes 

 where )}t(J)t(Q){t(J oo  , )}t(
~

)t(U
~

){t(
~

ii oo   , )}t(
~

)t(U
~

){t(
~

ee oo   ,  

 
 

In addition, a comparison for the Neumann problem in the interior region and the exterior 
region is presented in Table 3. From Table 3 we see that in the interior problem the input traction 

)(tQ
~

 must be in equilibrium. However, in the exterior problem the input traction )(tQ
~

 may be 
arbitrary. 

Moreover, a comparison for the Dirichlet problem in the interior region and the exterior region 
is presented in Table 4. From Table 4 we see that in the normal scale case, in the interior problem 

the input displacement )(tU
~

may be arbitrary and obtained unique solution Q(t) satisfies the 
equilibrium condition. From the interior BVP or the exterior BVP, the same degenerate scale 
problem can be defined. 

 
 

5. Conclusions 
 

For the interior problem, this paper provides a compact derivation for the displacement 
expression (22) at the domain point, which is directly from the Betti’s reciprocal theorem.  When 

ot  ( S , Γo t  ), the usage of the generalized Sokhotski-Plemelj’s formulae shown by 
Eqs. (9), (10) and (11) and some results in Appendix B will yield the complex variable BIE (26). 
Therefore, the derivation is rigorous. Properties of the integral operators )( oti  and I(t0) are 
analyzed in detail. This will give a better understanding for BIE. 

However, in the exterior problem, the identity (71) for the exterior region is obtained after 
dropping the term D(t0) in Eq. (69). Therefore, only the boundary displacements expressed in a 
pure deformable form and relevant tractions will satisfy the identity (71). Properties of the integral 
operators )( ote are also analyzed in detail. 

The differences between the BIEs for the interior problem and the exterior problem are clearly 
indicated. For example, the left hand term in the BIE for the interior problem is 

,tiIB/tUti )(2)()( 0100  and for the exterior problem is .tiIB/tUte )(2)()( 0100   

This situation will cause a significant difference in the solutions for the interior problem and 
the exterior problem. 
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Appendix A 
 

Concept of the pure deformable form of displacements  
The concept of the pure deformable form of displacements plays an important role in the 

present study. The definition for the pure deformable form of displacements is introduced as 
follows 

For a finite or an infinite region, the complex potentials are expressed in the form  

)()(
1

zz k

N

k

 


 ,   )()(
1

zz k

N

k

 


                                         (a1) 

It is assumed that all pairs of complex potentials ( )(zk , )(zk ) (k = 1, 2,…N) satisfy the 
single- valued condition of displacements. Now we can propose the following definitions. 

If and only if all pairs of complex potentials ( )(zk , )(zk ) (k = 1, 2,…N) cause non-vanishing 
stresses σij (σij ≠ 0) anywhere in the defined region with exception of several singular points , the 
relevant displacements are said to be expressed in the pure deformable form.  

If among all pairs of complex potentials ( )(zk , )(zk ) (k = 1, 2,…N), there is at least one pair 
of the complex potentials (for example,  )(3 z , )(3 z ) causes vanishing stresses σij (σij = 0)  
anywhere, and other pairs  ( )(zk , )(zk ) (k = 1, 2, 4,… N, no term for k = 3) cause non-
vanishing stresses  σij (σij ≠ 0) anywhere in the defined region, the relevant displacements are said 
to be expressed in the impure deformable form. 

Below, we introduce two cases to define the pure deformable form of displacements. In the first 
case, a finite plate is subjected to some loading along the contour. In this case, the complex 
potentials in finite region can be expressed in the form 

k
ikrk

k

ziaaz )()( )()(
0

 




  

k
ikrk

k

zibbz )()( )()(
0






                                                  (a2) 

where all the coefficients ak(r), akir), bk(r), bk(i) (k = 0, 1, 2…) take real value. 
In Eq. (a2), the following five pairs of complex potentials are relating to vanishing stresses (or 

σij = 0) 

ziaz i)1()(  , 0)( z ,   (corresponding to a rigid rotation )                        (a3) 

)0()( raz  , 0)( z ,   (corresponding to a rigid translation)                       (a4) 

)0()( iiaz  , 0)( z ,   (corresponding to a rigid translation)                       (a5) 

0)( z , )0()( rbz  ,   (corresponding to a rigid translation)                        (a6) 

0)( z , )0()( iibz  ,   (corresponding to a rigid translation)                        (a7) 

Therefore, the relevant displacements from complex potentials (a2) belong to the impure 
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deformable form. 
Alternatively, after deleting terms with the coefficients A1(i), a0(r), a0(i), b0(r), b0(i) in Eq. (a2), we 

have  

k
ikrk

2k
r1 ziaazaz )()( )()()(  
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k
ikrk
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



                                  (a8) 

Clearly, the relevant displacements from complex potentials (a8) belong to the pure deformable 
form. 

In the second case, an infinite plate contains many voids and inclusions with the complicated 
loads. In this case, the complex potentials in remote place can be expressed in the form 
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        (a9) 

where all the coefficients from A1(r), … to bk(i) take real value. We assume that, the following 
single-valued condition of displacement, or B2(r) + iB2(i)  (A2(r) – iA2(i)) is satisfied. 

In Eq. (a9), the following five pairs of complex potentials are relating to vanishing stresses (or 
σij = 0) 

ziA)z i)1((  , 0)( z ,   (corresponding to a rigid rotation)                       (a10) 

)o()( raz  , 0)( z ,   (corresponding to a rigid translation)                      (a11) 

)o()( iiaz  , 0)( z ,   (corresponding to a rigid translation)                      (a12) 

0)( z , )o()( rbz  ,   (corresponding to a rigid translation)                       (a13) 

0)( z , )o()( iibz  ,   (corresponding to a rigid translation)                       (a14) 

Therefore, the relevant displacements from complex potentials (a9) belong to the impure 
deformable form. 

Alternatively, after deleting terms with the coefficients A1(i), a0(r), a0(i), b0(r), b0(i) in Eq. (a9), we 
have  
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                  (a15) 

Clearly, the relevant displacements from complex potentials (a15) belong to the pure 
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deformable form. 

In fact, the kernel )(1 x,U*
ij  shown by Eq. (37) is the displacement in an elasticity solution 

caused by concentrated forces at certain point, and it has been expressed in the pure deformable 
form.  
 
 
Appendix B 
 

Properties for some integrals with kernel functions L1(t,z),L2(t,z) defined by Eqs. (24) 
and (25) 

Two integrals with the kernel functions L1(t,z),L2(t,z), shown by Eqs. (24) and (25) are defined 
as follows 


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In Eqs. (b1) and (b2), Γ denotes a closed contour and f(t) is an arbitrary function. It is assumed 
that “dt” goes forward in an anti-clockwise direction, S+ and S– are the inside finite region and the 
outside infinite region, respectively.  

In Eqs. (b1) and (b2), letting z → t0 (
Sz , Γo t  ) and  letting z → t0 (

Sz , ot  ) , and 
using the generalized Sokhotski-Plemelj’s formulae shown by Eqs. (9), (10) and (11), we will find 


Γ o1oo1 ()(
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1
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i
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
 , ( ot )                                      (b6) 

We can prove the assertion shown by Eq. (b5) as follows. In fact, we can rewrite W1(z) as  

211 )( IIzW   ,   ( Sz  or Sz  )                                          (b7) 

where  

 










Γ
1 )(

1

2

1
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For convenience in derivation, we can define 
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In Eqs. (b8) and (b10), letting z → t0 (
Sz , Γo t  ) and  letting z → t0 (

Sz , Γo t  ) , 
and using the generalized Sokhotski-Plemelj’s formulae shown by Eqs. (9), (10) and (11), we will 
find 
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From Eqs. (b7), (b11) and (b13), the validity of Eq. (b5) is proved. Similarly, we can prove the 
validity of Eq. (b6). 
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