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Abstract. In this paper, identification of isotropic and orthotropic linear elastic material constitutive
parameters has been demonstrated by a FEA-free energy-based inverse analysis method. An important
feature of the proposed method is that it requires no finite element (FE) simulation of the tested material.
Full-field displacements calculated using digital image correlation (DIC) are used to compute DIC stress
fields enforcing the equilibrium condition and DIC strain fields using interpolation functions. Boundary
tractions and displacements are implicitly recast into an objective function that measures the energy residual
of external work and internal elastic strain energy. The energy conservation principle states that the
residual should be zero, and so minimizing this objective function inversely identifies the constitutive
parameters.  Synthetic data from simulated testing of isotropic materials and orthotropic composite
materials under 2D plane stress conditions are used for verification of the proposed method. When
identifying the constitutive parameters, it is beneficial to apply loadings in multiple directions, and in ways
that create non-uniform stress distributions. The sensitivity of the parameter identification method to noise
in both the measured full-field DIC displacements and loadings has been investigated.

Keywords: digital image correlation; constitutive law; inverse analysis; parameter identification;
finite element; optimization; orthotropic material; anisotropic material

1. Introduction

In the past decade, significant progress has been made in the identification of material
constitutive parameters, owing to advances in full-field displacement measurement techniques.
Enriched information from the digital image correlation (DIC) technique in particular has
significantly facilitated our understanding of material behavior (Regez et al. 2008). A recent
special issue (Vol. 48 Issue 4 2008 of Experimental Mechanics) compiles state-of-the-art DIC
techniques in various applications in experimental mechanics.

In the literature, there are five distinct categories of inverse identification methods: 1) finite
element model updating (FEMU) methods (Mahnken 2000, Pagnacco et al. 2005, Hild and Roux
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2006); 2) constitutive equation gap methods (CEGM) (Constantinescu and Tardieu 2001,
Geymonat and Pagano 2003, Latourte et al. 2008); 3) virtual field methods (VFM) (Avril et al.
2004, Grediac et al. 2006, Pierron et al. 2007, Avril et al. 2008); 4) equilibrium gap methods
(EGM) (Claire et al. 2004, Crouzeix et al. 2009); and 5) the reciprocity gap method (RGM)
(Calderon 1980). The existing identification methods all have in common that they enforce
equilibrium conditions, that is, either in weak or strong form, the constitutive relationships that
relate full-field displacements to the stresses, and either in an analytical or numerical way, the
boundary conditions that are essential to all boundary value problems. However, they differ in the
objective functions they use, and in whether they require measured full-field displacement or not.

As updating-based methods, the FEMU methods iteratively update constitutive parameters so
as to minimize an objective function that represents the error, or gap, between a measured quantity
and the same quantity computed using finite element analysis. In 2007, Avril and Pierron
compared the VFM with FEMU methods based on minimization of a variety of gaps, such as
displacement gap, constitutive equation gap and equilibrium gap. They concluded that FEMU
based on “displacement gap” minimization yields equations that are similar to those used by the
VFEM (Avril and Pierron 2007). In 2008, Avril et al. summarized the existing parameter
identification methods and compared them for the identification of linear elastic material
parameters (i.e., Young’s modulus E and Poisson ratio v) from tensile, Brazilian, shear-flexural,
and biaxial tests (Avril et al. 2008). The FEMU approach has been applied to a variety of
problems, including parameter identification for materials with linear elastic (Lecompte et al.
2007), viscoelastic (Moreau et al. 2006), elasto-plastic (Kajberg and Lindkvist 2004) and
viscoplastic (Kajberg and Wikman 2007) behavior. Like the CEGM and RGM, FEMU methods do
not require full-field measurements; partial measurements can be sufficient to determine the
constitutive parameters. However, the FEMU methods require iterative finite element analyses,
which take a great deal of computational time.

In VFM, a chosen set of kinematically admissible virtual displacement fields is assumed and
substituted into the virtual work equation along with full-field displacements. This leads to a
system of linear equations that is solved for constitutive parameters (Grediac and Vautrin 1990).
Both VFM and EGM have the advantage of faster computation times than the previously
mentioned approaches, but require full-field measurements in order to reasonably determine the
constitutive parameters. Further, the VFM does not need to explicitly compute statically
admissible stress fields. The equilibrium condition is implicitly enforced through using the virtual
work equation.

For the past two decades, extensive studies have been conducted using the VFM approach for
identification of orthotropic elastic (Chalal et al. 2006) and elasto-plastic (Grediac and Pierron
2006, Avril et al. 2008) material parameters. One of the limitations in the VFM approach is that
the choice of virtual displacement fields that are kinematically admissible depends heavily on
complexities of the sample geometry and stress fields within the solids, leading to the need for
optimized choice of the fields (Avril et al. 2008). Furukawa et al. used incremental energy
equivalence between external work and internal strain energy to identify elastic moduli of laminate
composite materials under multi-axial loadings (Furukawa et al. 2008). From the view of
optimized experimental design, they also suggested a method to find loading paths to better
identify anisotropic material parameters (Furukawa and Michopoulos 2008b, a).

The proposed method is a novel inverse identification method for extracting constitutive
parameters of isotropic and orthotropic materials. In the proposed method, strains are calculated
from experimentally measured full-field displacements obtained by the DIC technique. Unlike the
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VFM, the proposed method ensures that the stress fields computed are statically admissible. In
order to identify constitutive parameters, an optimization technique is used to minimize an
objective function that represents differences between the internal energy and external work.
Additionally, the stress is calculated by an element-by-element FEA-free method that
approximates the stress fields satisfying local equilibrium conditions. The element-by-element
approach uses much less memory than finite element analysis approaches that assemble large
system matrices. Using the element-by-element approach, it is possible to choose the polynomial
order used for stress field approximations depending on the element size and stress gradients. The
approach explicitly enforces equilibrium conditions based on the true DIC displacements.
Minimization of the objective function based on the energy principle also implicitly enforces
traction and displacement boundary conditions. Furthermore, the proposed method is free from
additional considerations on the choice of the kinetimatically admissible virtual displacement field.

2. Full field displacement obtained by two-dimensional digital image correlation
technique

A digital image correlation (DIC) technique is used to provide the two-dimensional full-field
surface displacement needed for the proposed method. A full-field optic sensor captures images of
the surface of the target. A pair of images (reference or undeformed, and deformed) are compared.
Given a point on the target surface, specified by its pixel coordinates on the undeformed image,
the DIC technique finds the pixel coordinates of the corresponding point in the deformed image.
The displacement of the surface point is then calculated in terms of pixels, and converted to
physical displacement. Full-field DIC displacement is obtained by repeating the procedure for all
surface points of interest. It is worth noting that for the proposed method, DIC displacement is
computed for surface points corresponding directly to the nodes in the mesh used for strain and
stress calculation in Section 3.

The deformed image pixel coordinates (x', y') that match a particular point (x, y) in the
undeformed image are found by comparing a region or facet surrounding the point with regions or
windows of the same number of pixels in the deformed image. It is not expected that the deformed
image will have a window that exactly matches a given facet, because the specimen may be
stretched, compressed, or twisted. Thus, the method looks only for the window in the deformed
image that best matches the facet. Displacement is measured from the middle of the facet (as
indexed in the undeformed image) to the middle of the best matching window (as indexed in the
deformed image). The best match is defined as the one that maximizes the correlation between the
facet and the window. The correlation metric used is

M N

ZZ(fIJ ~ Hiscet )X (Wi,j _:uwindow)
C — i=1 j=1
M N M N 1)
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where both the facet and the window are of size M pixels x N pixels, reindexed as they are cut out
of their original images so thati=1,2, ..., Mand j=1, 2, ... N. In the formula, f;; and w;; denote
the luminance values of pixel (i, j) from the facet and the window, respectively, and [t and



474 Shen Shang, Gun Jin Yun, Shilpa Kunchum and Joan Carletta

Uwindow denote the mean of the luminances of all the pixels in the facet and the window,
respectively.

An important consideration in implementation of the DIC method is how large a zone of
interest (ZOI) should be considered in computing the correlation metric. Having found an
appropriate facet size, the displacement of a particular point in the undeformed image can be found
by first cutting a facet out around that point in the undeformed image, and then sliding the facet
over the deformed image, calculating correlation at each point, to find the point of maximum
correlation. The computational complexity of the search for the point of maximum correlation is
reduced by doing a local search around a probable location, rather than sliding the facet over the
entire deformed image.

3. FEA-free energy-based inverse characterization method

The proposed method is applied to identification of linear elastic constitutive parameters of
materials showing either isotropic or orthotropic characteristics. In addition to full-field
displacement, force and displacement boundary data should be known a priori. The boundary
displacements can be readily measured by LVDTs or extensometers, depending on the test setup
and specimen geometry. Alternatively, the full-field image sensor can provide boundary
displacements in addition to the full-field displacement. Load cells or force transducers can
measure the resultant, which can then be distributed onto the boundary nodes. The load cell
sensors should be triggered to capture data synchronously with the full-field optic sensor used for
the DIC. In the course of laboratory (uniaxial, biaxial, or shear) testing of target materials,
boundary forces and displacements can be obtained at multiple equilibrium points along the force-
displacement curve directly from load cell sensors.

Fig. 1 gives a flowchart of the proposed FEA-free energy-based inverse characterization
method for constitutive parameter identification. The DIC displacement is used to calculate DIC
strains. Based on the DIC displacement and strain, along with boundary displacement and force
data, the proposed method iteratively tunes the material parameters so as to minimize the
accumulated difference between the internal and external energy. Material parameters are encoded
and optimized using a steady state genetic algorithm (SSGA). The full-field displacement Up,c is
used in computation of stress fields using updated constitutive parameters. Keys to the proposed
method are the computational procedures used to obtain DIC strains and stresses. In the following,
the DIC strain and stress computation procedures are introduced in detail; these procedures follow
the basic governing equations of the underlying boundary value problems.

Constitutive parameters

; 1
! :
. N ] I
Webcam DIC ] : Constitutive
“ DIC =) Displacement :» DIC Stress Objective Steady State || Parameters
Sensor 1 . =) GA '3 | [Da D D
* l . Function B 1 D, D, D,
PR . EE— 1 Energy ptimizatiol : Dy Dy Di
Y ke
Experimental DIC Strain || e il :
Testing : 1
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Boundary Displacement and Traction

Fig. 1 Flowchart of the proposed method for constitutive parameter identification
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3.1 Governing equations of boundary value problems

The governing equations of a three-dimensional solid body B with arbitrary shape under
prescribed boundary tractions (t,) on traction boundary €; and displacements (uy,) on displacement
boundary Q, are described as

dive+b=0 inB
6 =Atr(e)l +2ue inB

9,:%(FTF—I) in B @)
on =T, on €,
u=u, on Q,

In Eq. (2), o indicates the Cauchy stress tensor and b indicates the body force vector acting in
the volume. The second equation indicates the linear elastic stress (6) and strain (g) constitutive
relationship in terms of Lame constants (4 and W). F indicates the deformation gradient, and n is
the outward unit normal vector on the surface where the traction vector is prescribed. Considering
the free surface as boundaries where the traction is zero, B = Q;|J Q.. Note that Q,NQ,=0. Eq. (2)
has 15 unknowns: three displacement components (u), six stress components (o), and six strain
components (g). Expressing the stresses in terms of three-dimensional displacements using the
constitutive relation and substituting into the equilibrium equations, a set of partial differential
equations (known as Navier’s equations) are expressed in Cartesian tensors using Einstein
summation notation as

o°u o°u. )
A+ k4 ' +b =0 inB 3a
“A+u) OX, OX; ﬂaxkaxk ' (32)
ou, ou; ou;
—n +uy —+——n. =7, onQ 3b
8Xk i /J(axj 5Xi } i = Toi t (3b)
Uj =Uy; ong, (3c)

In constitutive parameter identification, the measured full-field displacements are considered to
be true. Thus, the constitutive parameters found automatically correspond to kinematically
admissible fields. However, it is more challenging to obtain constitutive parameters that
correspond to statically admissible stress fields, since the stress response is determined by the
displacements and constitutive parameters, but must also simultaneously satisfy local equilibrium
and traction boundary conditions, as given in Eqg. (3b). In the proposed DIC stress computation
method, parameterization of the stress fields is accomplished in a way that ensures that the stress
fields satisfy both the measured displacements and the local equilibrium conditions at every
iteration used to update the constitutive parameters.

3.2 DIC strain computations

In what follows, positions are expressed in a two-dimensional Cartesian coordinate system
using basis { €;,€, }. Consider a material point z={x, y} on the surface of the undeformed
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specimen, i.e., at time t,. After the specimen is deformed, the material point moves to a new
position x, expressed as

X=z+u(zt), t>t, 3

where u = {u, v} is the displacement vector of the material point z. The deformation gradient F,
defined as the rate of change of deformation with respect to material point z, is expressed as

Z az,.

F:Vx:?:HVuD,C:[5ij+a{u—”'°}‘J[ei®ej] (@)

where ¢ is the Kronecker delta and 1 is the identity tensor. The deformation gradient carries
information on both stretch and rotation, and can be decomposed into stretch (U) and rotation (R)
tensors by the polar decomposition (F = RU).

The DIC technique provides displacement at all nodal points of the finite element (FE) mesh;
the displacement fields between FE nodal points are interpolated from the DIC displacements
using the eight-node isoparametric shape functions. The gradient of the in-plane full-field DIC
displacement is

a ] [N N

Hupic} _|ox oy |_ ox oy ©)
aZj @ @ %V Z%V
ox oy oy oy

where N; is the standard shape function of the eight-node finite element in isoparametric
coordinates, given by

1 1.1 2y, 1 2
N1:2(1—5)(1—77)—5(5(1—5)(1—77 )+E(l_§ )1-n))
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No =2 @+ §)-n")

N, =%(l—§2)(1+77)
Ny =2 @-8)-n")



Identification of isotropic and orthotropic constitutive parameters by FEA-free energy-based 477

where & and # indicate the isoparametric coordinates. Hence, using the determined {up,c}i, the
Green strain tensor {epc}ij is computed as

o= [F' @OF ) - 1] o

Strains at the Gauss points are directly calculated from the deformation gradients [F] as shown
in Eq. (7).

Any artificial rigid body motion (translational, rotational or a combination of the two)
introduced when the web camera or test equipment is disturbed during a test is eliminated by the
method, so that only pure deformations are considered. This is true because the eigenvalues of the
Green deformation tensor C = F'F = U'U correspond to the squares of stretch. To verify the
immunity to rigid body motions, rigid body motions were added to a full-field displacement
computed from a simulated uniaxial tension test of the specimen that is same as the one used in
Section 5.1. The applied displacement boundary condition is 0.05 mm on the right boundary of the
specimen in the 1-1 direction. The proposed DIC strain computation procedures were followed to
compute the Green strains. Fig. 2 compares the contour plots of the longitudinal strain as given by
the DIC strain computations with a reference strain calculated from a pure deformation using
ABAQUS. The DIC strain matches the reference strain.

3.3 DIC stress computations

Use of an element-by-element method for computing stress given the DIC displacements is
suggested. Although Latourte et al. (2008) also used a set of statically admissible functions to
project the stress field (enforcing equilibrium) (Latourte et al. 2008), their stress computation
procedure is very different from that of the proposed method. In Latourte et al. (2008), a naturally
equilibrated Airy function was chosen for enforcing equilibrium. In contrast, the proposed method
enforces the equilibrium by selecting polynomial terms that satisfy both the strong form of the
equilibrium equations and the nodal force equilibrium conditions. The DIC stress computation
technique was originally developed as an alternative method for stress extrapolations in post-
processing of finite element simulation results (Wilson and lbrahimbegovic 1990). As previously
mentioned, the DIC stress calculation is a surrogate for finite element model updating techniques;
in other words, with the proposed method there is no need to perform FE simulation repeatedly
using the iteratively updated constitutive parameters. Thus, the method is an FEA-free method. To
ensure that the stress fields satisfy the strong form equilibrium conditions (e.g., oj; = 0 with no
body forces), the polynomials for the stress field are determined from the Navier’s equation.
Interpolation functions and numerical integration methods commonly used in finite element
methods are utilized.

On the condition that the FE mesh is sufficiently fine, linear polynomials are used to
approximate the stress field, so that the stress field is assumed to take the form

{obc }=[PI{B} (8)

where {B}={B. B> Bs P« Bs Ps P} is the polynomial coefficient vector to be solved for each
element. [P] is the polynomial approximation of the stress field and derived based on the general
displacement field as
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U=a, +a,X +a,X, +a,%X, o
9

V=2, +aX +a,X, + 35X X,

This 2D displacement field contains a quadratic term Xx;X,, but x,2 and x> are absent. [P]is a
function of the coordinates whose form satisfies the partial differential equilibrium equations. The
2D in-plane equilibrium equation in the absence of body force is

ooy, N ooy,
OX,  OX,

=0

(10)
00y, N 004,

oX,  OX,
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Fig. 2 Comparison of contour plots of longitudinal strain in a simulated test: (a) DIC strain, computed
in MATLAB with rigid body motions added to the full-field displacement; (b) reference strain, from
ABAQUS
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For an infinitesimal deformation, the displacement-strain relationship of the plane stress case is

ou , ov ]
En=——=a,+3,X,; &, =——=2a, +3X;
1 aXZ
1 (11)
Eg3=— (a, +a, +agX, +3,X,); &, == (a3 + a5 +a,X, +aXx,)
A+2u 2

Stress can be expressed in terms of strain by applying Hooke’s law

o = Atr(e)l +2u¢ (12)
After substituting Egs. (11) and (12) into Eqg. (10), and rearranging the coefficients, one can

obtain

o1 = B+ BoX+ By

O = P+ PsX+ S5y (13)

01, = 7 + BeX+ Boy
Substituting Eq. (13) back to Eq. (10), one can easily obtain

Lo == Bs =—Ps (14)

Therefore, we can find the following final form of Eq. (8)

o,| |1 x y 00 0 O

o,|=l0 0 0 1 x y OB B, B B Bs B Bl (15)
o,| |0 -y 000 —x 1

[P] is evaluated at each Gauss point within the element. To determine {B}, the nodal equilibrium
condition {r}+{r.} = 0 should be used, where {r} = [K]c{upic}. Using standard finite element
techniques, the nodal force vector {r} is computed for each finite element using the updated
constitutive parameters in the [D] matrix. The [K]e is calculated using the full Gauss numerical
integration scheme in the isoparametric coordinates

{r}=[K]{upc}= [[BI'[DI[BIdV{upc} (16)
Ve

where [B] is the strain-displacement matrix and [D] is the material stiffness matrix, which is
assumed initially and updated in an optimization process to be explained in Section 4. From the
statically admissible stress fields derived in Eq. (15), the approximated nodal resisting force vector
is computed as follows.

{r.3=-[ BT {onc)aV. = [[B] [PIV.{A}= [QHB} an

V,

e

where [Q] = [[BI"[PIdV, (18)

V,

e

Substituting Egs. (16) and (17) into the local equilibrium equation, the local nodal force
equilibrium condition is expressed as



480 Shen Shang, Gun Jin Yun, Shilpa Kunchum and Joan Carletta

[QKB}=[k . Hu, } (19)

Premultiplying Eq. (19) by [Q]', the coefficient vector {p}can be solved for each element. The
polynomial coefficient vector {B} is computed in Eq. (20) and can be substituted back into Eq.
(15) to obtain the final DIC stress fields {opc}-

{B}=([QI'[QD) QT [k Hupc } (20)

Based on the formulation, {opc} becomes a function of the material parameters in the [D]
matrix. The advantage of this formulation is that the calculated stress possesses more accuracy
because the equilibrium equation is applied to each element. It is also worth noting that this FEA-
free method is relatively computationally efficient because it does not require calculating and
taking the inverse of a large global stiffness matrix. Fig. 3 depicts the computational procedure for
obtaining the DIC stress field from the DIC full-field displacements.

From Optimization

b, 1, .
inite Element Material . Yi
L - <=<| Computation |<¢=x Stiffness <:{{Au‘}
- & of {r} Matrix [D At | e -

+
_ﬁ: Computation of Nodal Resisting
From Equilibrium < e 4—= | Force {r} from Statically Admissible
Condition ‘{1 Stress Field
‘_J/

Determine {3}

Fig. 3 Computational procedure for DIC stress computation
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Fig. 4 Comparison of contour plots of 1-1 component of stress 6,; (GPa) in a simulated test:
(a) DIC stress, computed in MATLAB; (b) reference stress, from ABAQUS
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To verify the DIC stress computation, a simulated uniaxial tension test of the specimen that is
the same as the one used in Section 5.1 is used, and results from the DIC stress computation are
compared to a reference stress calculated using ABAQUS. The applied displacement boundary
condition is 0.05 mm at the right boundary of the specimen in the 1-1 direction. As shown in Fig.
4, the stress field calculated using the proposed DIC stress computation method is reasonably
consistent with the reference stress field; there is a slight difference in the region where the stress
is concentrated.

4. Optimization method

As described in Section 3.3, the DIC stress computation procedure ensures that the equilibrium
equation and constitutive law in the boundary value problems described in Eq. (2) are satisfied.
However, the other two natural and essential boundary conditions in Eq. (2) remain as conditions
that must be satisfied. In this paper, these boundary conditions are recast using the principle of
energy conservation. The energy conservation principle allows formulation of an optimization
problem that minimizes the accumulated difference between internal and external energy. Within
the optimization routine, the traction and displacement boundary conditions can be implicitly
enforced by including them in the objective function as follows

nelem 2

s ZIGEIC :Sleche D,, D, D
i1
f([D]) = kZZI: 1- Vj-_l_k U dS ; [Dl=|Dy, D, Dy (21)
&, D;; Dy Dy

where opic and gpc are the computed DIC stresses and strains, respectively; T and U* are the
traction and boundary displacement vectors on the boundary surface Qs at the k™ load step, and LS
indicates the total number of load steps.

A steady state genetic algorithm (SSGA) is employed to search for the best set of constitutive
parameters. There is a unique advantage of the SSGA: it shows searching capability comparable
in terms of accuracy to other genetic algorithms, but at much faster computing speeds. The faster
speed is due to the fact that the objective function needs to be evaluated for only two best solution
candidates in each generation, whereas other genetic algorithms need to evaluate the objective
function for all solution candidates (Yun et al. 2009). Depending on the directional property of the
material, the number of material stiffness values to be identified varies. For example, if the
material is assumed to be fully 2D anisotropic, a total of six constitutive parameters (Dj: i, j =1, 2,
6 and Dj;; = Dj;) are encoded as binary strings in the SSGA optimization. However, if the material is
assumed to be orthotropic, a total of four engineering material properties (Ei, E», Gi, and vy,) are
encoded.

5. Numerical verification using synthetic full-field displacements

Two simulation-based experiments were done to verify the proposed method. As previously
described, application of the proposed method requires that three different types of experimental
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data be acquired: 1) global force on the boundary of the specimen, 2) global displacement on the
boundary of the specimen, and 3) full-field displacement. The loading data can be acquired
directly from the load cells, and both the boundary and full-field displacements can be derived
from the images captured by the full-field optics sensor. This paper shows verification tests based
on simulation, rather than experiment; thus, synthetic data from finite element simulations that use
reference (true) constitutive parameters take the place of experimental data.

It is notable that the proposed method is suitable for use with anisotropic materials due to its
robustness in the identification of constitutive parameters. The method developed herein is capable
of determining general constitutive parameters from multiple loading stages. In the first simulation
experiment, isotropic material under non-uniform stress is tested under uniaxial tension loading.
Although the material is isotropic, no a priori knowledge about the material is assumed in the
experiment; that is, for the purposes of identification the material is assumed to be anisotropic. In
the second example, orthotropic composite material specimens with different geometries are
subjected to different loadings to investigate effects of non-uniform stresses and loading direction
on the performance of the identification method. Experimental noise and error in DIC
displacements and boundary tractions are also considered, to investigate their effects on the
performance of the proposed method.

5.1 Isotropic material under uniaxial loading and non-uniform stress states

The first experiment to verify the proposed method uses a non-conventional test specimen with
two asymmetric semi-circular notches, as shown in Fig. 5; the experiment is designed specifically
to generate local non-uniform strain and stress fields. Force-driven FE simulation was used to
produce synthetic full-field displacement data. The FE model was fixed at the left boundary, and a
uniaxial quasi-static tension test under a uniformly distributed loading of 70 kips/in® applied at the
right boundary of the specimen was simulated. For this loading, the specimen is in the linear
elastic region. The full-field displacement was obtained numerically by using a priori parameter
set [Dy] that consists of true values. The FE model is constructed as a two-dimensional plane stress
problem. Thus, the terms in the [D,] matrix that are related to the z direction were set to zero for
the FE simulation.

For application of the proposed method, no assumption was made about symmetry of the
constitutive material matrix [D]; thus, the method is fully general in that it treats the material as a
2D anisotropic linear elastic material, and five constitutive stiffness values (D11, D1y, D21, D2, and
Dgs) are parameterized in the inverse identification, assuming the decoupling between normal and
shear components that is attributable to existence of one plane of symmetry as in monoclinic
material. In this example, only one load step is used to test the proposed method, since in linear
elasticity all deformation stages are proportional. However, in actual experimental testing, in order
to reduce the noise effect we anticipate using multiple loading steps along the equilibrium path to
gather data for use in parameter identification.

The SSGA optimization algorithm starts with an initial population of 50 solution candidates,
generated by randomly choosing values in binary form for the elements of the [D] matrix in such a
way that the values fall between the preset upper and lower bounds shown in Table 1. In each
generation of the algorithm, a 90% crossover rate and a 30% mutation rate are used to breed a new
generation of solution candidates; in each generation, the best two new solutions are chosen for
crossover, and the offspring replaces the two worst solutions of the previous generation. The
algorithm is terminated when the 3000th generation is reached. The absolute error of the final
solution is summarized in Table 1.
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Fig. 5(a) Test specimen with semi-circular notch (thickness t=4.76 mm) and
(b) finite element mesh for an identification model

In this verification experiment, the proposed method successfully identifies all constitutive
parameters. The differences between the reconstructed values and the true values are observed to
decrease as the number of generations increases, and the values of the reconstructed parameters all
converge to within an acceptable error with respect to the true values. In particular, the two terms
D, and Dgs were identified with error less than 2% (1.32% and 0.8%, respectively). It is natural
that these two parameters are particularly well-identified, since the specimen is under dominant
stress and strain distributions in the longitudinal direction, and the semi-circular notch generates
high shear stress distributions around the circular notch. In comparison, the terms D15, D,; and Dy,
showed relatively large errors, of 7.64%, 10.36% and 14.54%, respectively. Fig. 6 compares
stresses simulated using the identified and true parameters; there is good agreement in all three
stress component fields (S11, S22 and Sy,). The results of the verification experiment are promising,
in that they show that the proposed method can reproduce the material behavior even from a
uniaxial tension test with a single incremental load step.

Table 1 Identified parameter set and error assessment

Parameters D,.(GPa) D,,(GPa) D,.(GPa) D2, (GPa) Dee(GPa)
True value 159.110 47.733 47.733 159.110 55.688
Initial upper bound 206.843 62.053 62.053 206.843 82.737
Initial lower bound 68.948 20.684 20.684 68.948 27.579
Optimized value 157.000 44.084 52.681 182.244 56.136
Error (%) 1.32 7.64 10.36 14.54 0.80

5.2 Orthotropic composite material under different loading scenarios

5.2.1 Open-hole test with single load step
A second set of verification simulations is carried out using a composite material with assumed
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parameters E; = 30 (GPa), E, = 5.4 (GPa), p» = 0.07, pp; = 0.39, and G, ,= 2.62 (GPa). Two
specimens with different geometries, both with a thickness of 4.76 mm, are used to verify the
proposed method. The specimen geometry and loading direction influences the non-uniformity of
the stress and strain fields. Determining optimal loading paths and geometries is an open problem
that all inverse identification methods face (Furukawa and Michopoulos 2008a, Furukawa and
Michopoulos 2008b); this problem lies out of the scope of this paper, and is not fully addressed
here. Our motivation in investigating specimens with different geometries, boundary conditions
and loadings, is two-fold: 1) to find a way to reduce the number of loading scenarios needed to
identify a material’s properties, and 2) to test the stability of the proposed method.

For this verification experiment, synthetic data was produced using displacement-controlled FE
analysis; synthetic full-field displacements and boundary force data was derived. For the
displacements used, the specimens were within the linear elastic region. In each test, the SSGA
optimization started with solutions that were randomly generated with constitutive parameter
values within preset upper and lower bounds; the bounds for a parameter were placed 50% above
and below the true value. In each generation of the SSGA, a 90% crossover rate and a 30%
mutation rate are used. The optimization was terminated when the 6,000th generation is reached.
The objective function used is the one shown in Eq. (21), with the symmetry condition (D1, = D5;)
and with assumed orthotropic behavior (D = Dg; = 0.0, Dys = Dg; = 0.0). As a result, four
parameters (D11, D2, D1, and Dgg) are to be identified.

In case one, a 76.2 mm by 50.8 mm open-hole coupon test specimen with a 15.24 mm diameter
hole is loaded under two loading scenarios: a) shear loading on the right edge and b) transverse
tension loading on the top edge. For each loading scenario, a single load step is used to provide the
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Fig. 6 Comparison of stress (GPa) components for identified material properties and
reference material properties
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Table 2 Identification results of case one: open-hole coupon case

Boundary Material Matrix (GPa) Error (%)
9.9 30.845 2.166 0
D; =| 2166 5.552 0 N/A
1-1 0 0 2620
(@ U,=0.1225 mm ¢
L]
y 0 31.350] 1.680 O 2241 0
\ . D, =| 1.680 7.130 0 e=[2241 2841 O
- 0 0 |2570 0 0
[N I 1
/

(b) U,=0.098 mm

A Jr
T 39.480 2.880 0 27.99 3298 0
D, =| 2.880 [5.600] 0 |e=|32.98 0
0 0 1450 0 0 4465
I T
VA 77
31.350 1680 0 164 2241 0
Composed Results D, =| 1680 5600 O e=[2241 086 O
0 0 2570 0 0 191

Table 3 Engineering material properties as calculated using identified parameters

E; (GPa) E, (GPa) Gy, (GPa) H1p Ha1
True Value 30.001 5.400 2.620 0.070 0.390
Identified 30.847 5.510 2.570 0.054 0.300
Error (%) 2.82 2.034 1.92 22.86 23.08

reference data. The boundary conditions, loading directions, geometry of the specimen, true
material matrix Dq, identified material matrix D, and absolute final error e in the identified
material matrix are summarized in Table 2. Parameters marked by the green box are identified
successfully. The first loading scenario allows for successful identification of parameters D,; and
Dgs; the second loading scenario allows for successful identification of parameter D,,. Therefore,
by composing results from the two loading scenarios, taking D1;, D1, and Dgg as identified using the
first loading scenario, and D,, as identified using the second, it is possible to identify all
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parameters except Dy, with acceptable error. The engineering material properties E;, E,, pp; and
G, are also back-calculated based on the identified material matrix. The property pi, is calculated
using the symmetric condition, p/E; = pyo/E,. The absolute error between the identified value
and the true value for each engineering material property is listed in Table 3. E;, E; and G, were
identified with high accuracy.

Since the proposed method is formulated in such as way that the error between the external and
internal energies is minimized, insight into the effectiveness of a particular loading scenario can be
gained by considering the energy distribution associated with directional deformations. These are
given as

kK ok
W, = [T*-U*dS 22)
QS
nelem nelem
Wi = ZJ.GK :sdee = ZI[(Dllgfl) + (Dzzgzzz) + (D66‘9323) +2(Dy,8,,65,)1dV,
i=ly, i=1y, (23)
:Wn +W22 +W33 +W12

Eqg. (23) shows that the internal energy has four components corresponding to the four
constitutive parameters Di;, D,y Dgs, and Di,. It is clear that the relative size of an energy
component plays a role in how well the corresponding constitutive parameter can be identified.
The percentages of each energy component are plotted in Fig. 7 for the two loading scenarios. In
the case of pure shear loading, stress components, o;; and o33 are dominant due to bending and
shearing actions as seen in Fig. 7(a). It is expected, then, as seen in Table 2, that D;; and Dgg could
be identified. In the case of uniaxial tension loading in 2-2 direction, only D,, could be identified
successfully; this is expected, since, as shown in Fig. 7(b), the energy component in the 2-2
direction is dominant.

From this analysis of the performance of the identification, it can be seen that each loading
scenario can identify some of the parameters in the material constitutive matrix. The complete set
of parameter values can be successfully identified by changing the loading direction and
combining all the results from the different loading scenarios. Both Djand p,; have large error
because neither of the two in loading scenarios used has a significant Wy, energy component. In
order to increase Wy, both g; and &, have to be increased. Further experiments show that
balanced distribution of the energy components can significantly increase the performance of the
proposed method. To demonstrate this, we next investigate a quarter of the open-hole specimen
under multi-axial and non-proportional loadings.

5.2.2 Open-hole test specimen under non-proportional biaxial tension-compression
loading condition

In this next verification case, a non-proportional biaxial loading is applied to a 50.8 mm by
50.8 mm specimen with an arch notch at the corner. Fig. 8(a) shows the geometry of the specimen,
the symmetric boundary conditions, and the loading directions. The non-proportional loading path
is depicted in Fig. 8(b). The reference engineering material properties are E; = 30.000 (GPa), E,=
24.000 (GPa), pp=0.16, py; = 0.2, G;,= 5.000 (GPa). A displacement-controlled FE analysis was
conducted to produce synthetic data in the same way as used in the previous case, except that a
total of nine loading steps are included in this case. In the SSGA optimization process, the initial
upper and lower bound errors, the total number of generations, the crossover rate, and the mutation
rate are set to be the same as in the previous case. Fig. 9 shows the converged objective function
value after 6000 iterations.
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Table 4 Identification results of case two: biaxial loading case
Boundary Tractions Material Matrix (GPa) Error (%)
30.991 4.895 0
True Material Matrix D, =| 4895 23414 O N/A
0 0  5.000]
[31.080 5.229 0 029 545 O
Identified Material Matrix ~ D, =| 5.229 24.859 0 e=|545 027 O
i 0 0 4.611_ 0 0 7.78
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Fig. 9 Objective function values vs. No. of iterations

Table 5 Identification results of engineering material properties

E. (GPa) E. (GPa) G2 (GPa) Hi2 Ho1
True Value 30.000 24.000 5.000 0.160 0.200
Identified 29.981 23.980 4.611 0.168 0.210
Error (%) 0.07 0.08 7.78 4.98 5.17
100.00
80.00
= —
@ 60.00
&
€
g 40.00
a
20.00
w11 W22 W33 w12
Energy Component

Fig. 10 Energy component percentage of the biaxial load case

As before, the internal energy computed by using DIC stresses and DIC strains during the nine
loading steps are used in the objective function to identify the material parameters. For this case,
all parameters are identified successfully; each parameter has an acceptable error with respect to
the corresponding true value (See Table 4). The non-proportional biaxial tension-compression test
used generates multi-stress states at every material point within the specimen. Moreover, due to
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the geometry of the specimen, considerable shear stresses are developed even though only tension-
compression loading is applied. As shown in Fig. 10, the internal energy components are relatively
better balanced than in the previous case; in particular, the relative size of energy component W,
is significantly larger, resulting in improved identification of D;,. When the identified material
parameters are used to backcalculate the engineering material properties, elastic moduli E; and E,
are identified with errors less than 0.1%. The Poisson ratio pp; and shear modulus G;, were also
identified with acceptable errors, 5.17% and 7.78%, respectively (See Table 5). According to the
results from this example, the non-proportional loading with measurements at multiple loading
steps and non-uniform stress states are clearly beneficial in identifying material stiffness values.

Fig. 11 compares S11, S22, and S12 stress (GPa) contours at the second load step for three sets
of material parameters: initial parameters at the lower bound of the parameter sets used at the start
of the SSGA optimization, the identified material parameters, and the true parameters. The
reconstructed stress field using the identified material stiffness parameters is clearly consistent
with the reference stress field.

Comparing with traditional material characterization methods using strain gages, the proposed
method has advantages in the fact that it can utilize full-field displacements from the noncontact
DIC sensing technique. It is notable that strain gages can provide only localized strain values at a
limited number of locations. Moreover, accuracy of the measured strains could vary depending on
the quality of installation. In contrast, the proposed method allows for better estimation of the
tested material’s constitutive parameters, owing to the additional information provided by the full-
field displacement, stress, and strain data obtained via digital image correlation (DIC).

Results with Results with Results with
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Fig. 11 Comparison of the stress contours at second loading step for simulations using initial,
identified and true material parameters
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5.3 Investigation of effects of noise on identification performance

The performance of the proposed method depends on the quality of the measured boundary
force data, and full-field and boundary displacements obtained from digital image correlation.
Since measurement error and noise will naturally be present in any experimental data, a simulation
experiment was conducted to assess the effects of noise in both the loading data and the DIC
displacement data. The simulation injects noise of practical levels in the synthetic data previously
produced by FE simulation, and re-runs the proposed method with the noisy synthetic data. For
this test, the verification case that used the open-hole test specimen under biaxial non-proportional
loading is selected.

Image noise is usually in the form of undesirable random fluctuations of the brightness or color
information in the color image produced by the CCD (Charge-Coupled Device) camera when it
captures the images in a harsh environment. In the case of grayscale images, the noise presents in a
form of variation of the gray level of a pixel from its true value; the gray level is a single number
and carries the light intensity information at that pixel. Such image noises will degrade the quality
of the image and could potentially impose difficulties to any DIC-based inverse identification
algorithm. To assess the robustness of the proposed method in the presence of image noise, it is
assumed that the images used to provide displacement information are corrupted by Gaussian
noise, with different gray levels of noise at every pixel. The function used to introduce the noise
(Besnard 2006) is

124/20,P
Oy =\ 24
7(vif) 24

where g, is the standard deviation of the full-field displacements, due to the introduction of
Gaussian noise in the pixel gray levels, g4 is the standard deviation of the gray level, P is the
physical pixel size, <|V f > is a spatially averaged gradient of the gray level within the zone of
interest (ZOl), and | is the smallest dimension of the ZOI, measured in pixels. From Eq. (24), it
follows that the larger the size of a single pixel size, and the smaller the size of the ZOl, the larger
the noise that will be introduced. The averaged gradient <| V f |>> represents the averaged level of
contrast of the image and in general, a small contrast level leads to a high noise level in an image.
In this case, the minimum dimension of the ZOl is assumed to be 144 pixels and the physical pixel
size is set to be 0.013889in/pixel. o, is shown in Fig. 12 as a function of the standard deviation of
the gray level for different <|V f > values. In practice, for most CCD cameras the noise level is
characterized with a maximum range less than 3 gray levels. Therefore, 4= 3 is assumed for the
image noise. The displacement fluctuations caused by the image noise has zero mean and standard
deviation g, calculated by Eq. (24). These fluctuations are superimposed onto the synthetic full-
field displacements to produce noisy displacement data.

In order to simulate the noise in the measured boundary force data, the synthetic loading data
were also perturbed. It is notable that the measurement errors of most transducers depend on the
full-rated output (FRO). Even though many manufacturers specify the linearity of their load cells
as a percentage of the FRO, effects of the noise floor could be amplified if only a small fraction of
the full loading capacity is utilized; for example, a load cell rated at 0.05% FRO produces a
reading error of 5% at 1:100™ of full scale. Thus, a load cell with proper capacity has to be chosen
when setting up an experimental tested to reduce the propagation of uncertainty in the identification
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Fig. 13 Identified results represented by: (a) material constitutive parameters; (b) engineering material
properties under image noises (c,=0, 0.1%, and 0.25%) and the force measurement error (c,=

0.25%) in all three cases

method. In normal practice, the uncertainty (defined as 2.4 times the standard deviation) of the
measurement error by the Class A load cell is less than 0.25% (ASTM 2006). Thus, for our
experiment the synthetic load data at each load step were randomly perturbed with Gaussian noise
with zero mean and standard deviation of o, = 0.25% as a severe noisy case.

The errors in the parameters identified by the proposed method using noisy data are shown in
Fig. 13. Three different image noise levels (o, = 0, 0.1% and 0.25%) and load cell noise level (o, =
0.25%) are considered. The load cell noise is applied in all three tested cases. It is observed that
the errors in the identified D;; and Dy, are small. This implies that the proposed method can
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identify material parameters in a way that is insensitive to the perturbation of the reference data,
provided that the corresponding energy components are of reasonable size. The reason that the
identification of Dgg and Dy, is relatively more sensitive to noise is that the fractions of the
corresponding energy components Wgs and Wy, are marginal compared to the other energy
components. Not surprisingly, relatively large error in Dgs and Dy, results from relatively large
error in the Poisson ratio p,; and shear modulus G;, which are backcalculated from the identified
material stiffness values.

6. Conclusions

In this paper, we present a novel inverse identification method for material characterization
based on two-dimensional digital image correlation. In contrast with conventional material
characterization methods using strain gages, which can characterize material properties only at
specific points, the proposed method can obtain the averaged material properties for an entire
region of the specimen. A primary difference from existing identification methods is that the
proposed method does not need to solve boundary value problems of the target specimens using
recursively updated parameters; in this sense, the method is free of finite element analysis (FEA).
Unlike the VFM, the proposed method ensures that the computed stress fields are statically
admissible by basing them on the true DIC displacement fields. For this purpose, the equilibrium
is enforced by selecting polynomial terms that satisfy the strong form of the equilibrium equations
and nodal force equilibrium conditions. The element-by-element approach has the advantage that it
is less memory-intensive than approaches that need to assemble large system matrices for the
entire finite element model. The method also allows flexibility in the choice of the polynomial
order of the stress field approximations, depending on the element size and stress gradients. The
approach explicitly enforces the equilibrium conditions based on the true DIC displacements, and
minimization of the objective function in terms of the energy principle also implicitly enforces
traction and displacement boundary conditions.

The presented method has been validated in simulation using a set of synthetic data based on
finite element simulation of specimens made of materials having isotropic and orthotropic
properties. The effect of loading conditions (i.e., proportional and non-proportional loadings) on
the performance of the identification method has been investigated, as has the role that the
specimen geometry plays in generating the different non-uniform stress fields needed for
identification. The method is shown to successfully find the parameters of the material constitutive
matrix. Energy component analysis is used to give insight into why some parameters are identified
with less error than others, and further, to provide guidance for the design of the experiments.
Experimental noise inherent in capturing images and measuring loadings are considered in order to
verify the robustness of the proposed method in the presence of noise. Three material properties
(E1, E, and py,) could be accurately identified in the presence of reasonable and practical levels of
noise. Although G;, shows relatively higher sensitivity to the noise than the other parameters, its
sensitivity could be potentially improved by design of optimal experiments. The loading direction
and the specimen geometry are seen to have significant influence on the performance of the
method for identification of composite material; the design of optimal experiments, i.e., the
consideration of optimal specimen geometry and loading paths, will be addressed in the further
research.
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