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Abstract.  Single- and multi-span orthotropic functionally graded hollow cylinders subjected to 
axisymmetrical bending are investigated on the basis of a unified shear deformable shell theory, in which the 
transverse displacement is expressed by means of a general shape function. To approach the 
through-thickness inhomogeneity of the hollow cylinder, a laminated model is employed. The shape 
function therefore shall be determined for each fictitious layer. To improve the computational efficiency, we 
resort to a transfer matrix method. Based on the principle of minimum potential energy, equilibrium 
equations are established, which are then solved analytically using the transfer matrix method for arbitrary 
boundary conditions. Numerical comparisons among a third-order shear deformable shell theory, an exact 
elastic theory and the present theory are provided for a simply supported hollow cylinder, from which the 
present theory turns out to be superior in stress estimation. Distributions of displacements and stresses in 
single- and three-span hollow cylinders with different boundary conditions are also illustrated in numerical 
examples. 
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1. Introduction 
 

The concept of functionally graded materials (FGMs) was first introduced by Niino et al. in 
1984 (Koizumi 1997), and studies on FGMs were initiated from then on. Generally, FGMs possess 
spatially dependent mechanical properties resulting from their volume fractions changing with 
dimensions. They were firstly prepared for thermal barrier materials in aerospace to withstand 
thermal stresses (Kokini et al. 2002), but now the applications of FGMs are widely extended into 
many fields, including sensors and transducers (Müller et al. 2003), biomedical materials (Pompe 
et al. 2003, Watari et al. 2004), turbine rotors (Qian and Dutta 2003), welding materials 
(Miyamoto et al. 1999), nuclear reactors (Na and Kim 2009), etc. 

Among the applications mentioned above, structural elements made of FGMs are frequently 
encountered, and many researchers had focused on the behaviors of FGM beams, plates, cylinders, 
panels and so on. For example, based on a higher-order shear theory, static analysis of a 
moderately thick FGM beam was implemented by Kadoli et al. (2008). Employing a displacement 
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function developed by themselves, Woodward and Kashtalyan (2011) obtained an exact three 
dimensional elasticity solution for bending of an FGM plate. Vel (2010) incorporated displacement 
method with power series method and presented an analytical elasticity solution for free vibrations 
of simply supported FGM cylindrical shells. Based on a first-order shear deformation theory, 
Aghdam et al. (2011) carried out a study on bending of moderately thick clamped FGM conical 
panels. In fact, some research works on this topic were also achieved by the authors (Bian et al. 
2005, Bian et al. 2010, Bian et al. 2006a, Bian et al. 2006b, Chen et al. 2003, Chen et al. 2004). 

In the present paper, we discuss an orthotropic functionally graded hollow cylinder (FGHC) 
subjected to axisymmetrical bending. Generally, classical shell theories were developed on the 
basis of the Kirchhoff-Love assumptions of straight inextensional normals. To accurately analyze 
the response of moderately thick shells, kinds of higher-order theories were suggested. Although 
these theories were applied to homogeneous shells in the beginning, they were also extended to 
analyze the inhomogeneous FGHC. For example, using Love’s shell theory, Loy et al. (1999) 
studied the vibration characteristics of simply supported FGM cylindrical shells and influence of 
some material parameters on the natural frequencies were discussed. Pradhan et al. (2000) further 
investigated the vibration characteristics of FGM cylindrical shells with different boundary 
conditions. Both eigenvalue governing equations in the two papers were deduced by Rayleigh-Ritz 
method. Wu et al. (2005) analyzed the thermoelastic stability of FGM cylindrical shells by the 
Donnell’s shell theory. For simply supported boundary conditions, closed form solutions for the 
critical buckling temperature differences of shells were achieved. Incorporating Sander’s 
first-order shear deformation shell theory with the element-free kp-Ritz method, Zhao et al. (2009) 
analyzed the thermoelastic behavior and vibration of FGM cylindrical shells. A circular cylindrical 
shell composed of one middle FGM layer and two inner and outer homogeneous layers was 
studied by Li et al. (2010), where Flügge’s shell theory was employed and natural frequency for 
simply supported boundary conditions was obtained. Bahtui and Eslami (2007) applied a 
second-order shear deformation shell theory to analyze the response of an FGM axisymmetric 
cylindrical shell in thermal environment. In space domain and in time domain, a Galerkin finite 
element method and the Laplace transform were used respectively. Matsunaga (2009) presented a 
2D higher-order deformation theory to study the free vibration and stability of FGM circular 
cylindrical shells, where the governing equations were derived by virtue of Hamilton’s principle 
and the power series expansion technique. 

As we know, shear stresses in laminated structures are key parameters of analyzing multiple 
debondings and interfacial fractures (Andrews et al. 2009). In these cases, conventional shell 
theories mentioned above will present unsatisfactory stress estimation. Soldatos and Timarci 
(1993) suggested a unified shear deformable shell theory by introducing a general shape function 
that is a-posteriori specified. In our previous work (Bian et al. 2005), we found such shape 
function could alter with the through-thickness distribution of FGM components and satisfied 
stress results were obtained in numerical examples. In present paper, this shell theory is employed 
once more. For simply supported boundary conditions, numerical comparisons among the present 
shell theory, an exact elasticity theory and a third-order shear deformation shell theory are 
provided, and the superiority of the present theory in stress estimation is demonstrated. The effect 
of boundary conditions on the elastic fields in an FGHC is also illustrated in numerical examples. 
During the process, we apply a laminate model (Chen et al. 2003, 2004) to deal with the 
through-thickness inhomogeneity. That is, the FGHC is divided into N fictitious thin layers and 
each layer approximates to a homogeneous one. According to the shell theory of Soldatos and 
Timarci (1993), we now have to solve 2N simultaneous equations to determine the shape function. 
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Obviously, it will be very time-consuming if N increases. So we resort to a transfer matrix method 
(TMM, Bian et al. 2005), by virtue of which only two simultaneous equations are required when 
determining the shape function, regardless of how many fictitious layers are involved. To deal with 
the boundary conditions conveniently, governing equations are also solved within the framework 
of TMM. 

In engineering practice, such as aeroplane surfaces, slabs and cladding panels in civil 
engineering, decks in bridges and ships, stresses and displacements of structures are often wished 
to be reduced while applied loads remain unchanged. To satisfy this requirement, one can place 
intermediate supports within the structures. Theoretically, multi-span structures can be treated as 
structures with internal line supports. Veletsos and Newmark (1956) first investigated the free 
vibration of a two-span rectangular plate. From then on, many researchers had focused on this 
topic employing various analytical and numerical methods (Abrate and Foster 1995, Cheung and 
Zhou 1999, 2000, 2001, Kong and Cheung 1995, Lee and Ng 1995, Li 2003, Liew et al. 1995, 
Xiang et al. 2002a, 2002b, Zhou 1994). Most of the open literatures, however, are concerned with 
the vibration characteristics of multi-span plates, and studies on static behaviors of these structures 
are relatively few (Bian et al. 2005). As compared with the multi-span plates, multi-span 
cylindrical shells attracted much less attention, although they are frequently encountered in oil 
transportation, chemical industry, pipeline, nuclear and marine engineering. Huang and Hsu (1993) 
utilized a receptance theory to determine the frequencies and mode shapes of a spinning 
cylindrical shell with interior multi-point or multi-line supports. But study on the static response of 
a multi-span FGHC is not found within the author’s knowledge. So in the final part of this paper, 
we discuss the axisymmetrical bending of a multi-span FGHC with arbitrary boundary conditions 
at its two ends. Although the present method can be readily extended to analyze an FGHC with 
arbitrary spans, a three-span FGHC is chosen to demonstrate the through-span distributions of 
displacements and stresses. 
 
 
2. Basic equations for a single-span FGHC 
 

The functionally graded hollow cylinder investigated here is shown in Fig. 1, where cylindrical 
coordinates (r, θ, z) are established. Let L denote the length of the cylinder, and r0, rm and r1 denote 
the inner, mean and outer radius, respectively. For an FGHC, the material properties are 
inhomogeneous along the radius, and the elastic parameters, cij s, can be expressed as 

)(rcc ijij  (1)

 

Fig. 1 Functionally graded hollow cylinder and its cylindrical coordinates 
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Suppose the FGHC is orthotropic, whose constitutive equations in cylindrical coordinates are 
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(2)

where σij and εij (i, j = r, θ, z) are components of the stresses and strains, respectively. 
Consider the FGHC is in a state of axisymmetrical bending, the displacement in θ- dimension is 

then vanished, and all mechanical quantities are independent of θ. According to the shell theory 
suggested by Soldatos and Timarci (1993), the non-zeroes displacements are assumed to be 

rr

zz
r

mzz

uU
dz

du
rruU



 )(
(3)

where Uz and Ur are displacements in z- and r-directions, respectively. uz, ur and γz are 
displacements and transverse shear strain at middle shell (r = rm), respectively. Unlike most 
conventional shell theories, the shape function, φz, in Eq. (3) is a-posteriori specified. 

By virtue of the principle of minimum potential energy, one can establish the following 
equilibrium equations 

0
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dNz , 00112
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a
z Q
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(4)

where q0 and q1 are normal loads applying on the inner and outer surfaces, respectively, and the 
generalized resultant forces are denoted as 
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(5)

Meanwhile, the boundary conditions at z = 0 and z = L are derived 

0zN  or zu  is prescribed; 0zQ  or ru  is prescribed 

0a
zM  or z  is prescribed; 0zM  or   is prescribed 

(6)

where Qz = dMz / dz and α = dur / dz. In present study, the following typical boundary conditions 
are discussed 
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Clamped (C): 0zu , 0ru , 0z , 0  

Free (F): 0zN , 0zQ , 0a
zM , 0zM  

Simply supported (S): 0zN , 0ru , 0a
zM , 0zM  

(7)

The equilibrium equations with different boundary conditions can be solved by the TMM 
conveniently. To do so, we expand the resultant forces in Eq. (5) as 
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where the coefficients are defined as 
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in which c1 = c11 – 2
13c /c33, c2 = c12 – c13c23/c33, c3 = c22 – 2

23c /c33, c5 = c55 and dr/dc z5z   . 
Obviously, all coefficients can be calculated by numerical integrations. 

Once a sate vector composed of the quantities appearing in the boundary conditions is chosen, 
we can formulate a set of state equations from Eqs. (4) and (8) 

SVZ
V
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Eq. (10) can be solved readily as follows 

  
z

dτττzzz
 

0 

111 )(])exp[((0))exp()( SDZDVZDV          (12) 

From Eq. (12), the following relationship between the state vectors at two ends of FGHC is 
derived 

λVχV  )0()(L                             (13) 
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11 )(])exp[(  SDZDλ             (14) 

According to Eq. (7), four elements of V(0) and four elements of V(L) are prescribed, making 
use of which, the other four elements of V(0) can be determined. Finally any V(z) can be solved 
from Eq. (12). 
 
 
3. Basic equations for a multi-span FGHC 
 

An FGHC with n-span is shown in Fig. 2, where 
iV  and 

iV  denote the state vectors at left 

and right ends of the ith-span, respectively. As known from Eq. (13), they satisfy 

iiii λVχV   ,   ni ,,2,1                        (15) 

At each internal support, the shear force, Qz, is discontinuous and the deflection, ur, is vanished, 
which bring out the following equations 


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  121 ii VκVκ                              (16) 

 
 
 

 

Fig. 2 Schematic model of a multi-span functionally graded hollow cylinder 
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where 
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Combining Eqs. (15) and (16) for all spans, we obtain a set of equations 
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where I and 0 are eighth-order identity matrix and eighth-order null vector, respectively. 
To take into account the boundary conditions at two ends of this multi-span FGHC, we insert 

the equations described in Eq. (7) into Eq. (18), the state vectors, 
nVVV ,,, 11  , can be 

therefore solved, and the state vectors at any positions can be determined by virtue of Eq. (12). 
 
 
4. Determination of the shape function 
 

Obviously, the accuracy of the present theory will depend deeply on the form of the shape 
function. The physical meaning of φz leads to the following equations (Soldatos and Watson 1997) 

0z ,  1
dr

d z , at mrr                        (19) 

When normal loads apply on the inner and outer surfaces of a hollow cylinder, shear stresses at 
these two surfaces will be vanished, so φz also satisfies with 

0
dr

d z  at 0rr   and 1rr                        (20) 

To determine the distribution of φz, we employ the following three-dimensional equation of 
equilibrium 
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                         (21) 

It is troublesome to solve Eq. (21) directly, since the FGHC is inhomogeneous through 
thickness. So we resort to a laminate model here, on the basis of which, an FGHC is divided 
equally into 2N fictitious piece layers, and each layer approximates to a homogeneous one. In what 
follows, the elastic constants of each layer take their values at the mid-position of that layer. 

By virtue of the constitutive equations and geometrical equations, Eq. (21) is transformed into 
the following equation within a layer 
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Clearly, the coefficients in Eq. (22) are different for all 2N layers, which makes it very 
time-consuming to determine the shape function. So we adopt TTM again to improve 
computational efficiency. 

A particular solution to Eq. (22) is chosen as 
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Substituting Eq. (23) into Eq. (22) and rearranging the variables, we can get the following 
space equations 

BA
dr

d
ii

z

z
i

z

z QPT 























                      (24) 

with the coefficient matrixes 
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where Lm /  , and the subscript i indicates the coefficient matrix takes its value in the ith layer. 
The solution to Eq. (24) is 
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vector at r = 
ir . Due to the continuity of displacement, Uz, and shear stress, σzr, at each fictitious 

interface, φz and φz are also continuous at that position, their relationship between any two 
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interfaces can be therefore obtained by a recursive method. Taking Eqs. (19) and (20) into account, 
we have 
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where 
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From Eq. (27), 
1)( z , A and B are solved, the shape function at any position can be therefore 

determined from Eq. (26). 
 
 
5. Numerical examples 
 

In what follows, we suppose each FGHC has the same geometric sizes as r0 / H = 20 and L / H 
= 3, where H = r1 – r0. The outermost surface is free and the innermost surface is subjected to a 

sinusoidal load, namely q1 = 0 and q0 = )L/Hsin(c 1
44 , in which ζ = z / H and 1

44c  represents 
the value of c44 on the outermost surface. 

Before the numerical calculation, the distribution model of an FGHC must be defined. Herein 
we assume 

)/( 101 ΨΨΨΨ                             (30) 

where µ = (η1 – η)p, η = r / H and p is a gradient index. Ψ denotes one of the elastic constants, Ψ0 
and Ψ1 are the corresponding ones for two homogeneous materials, which are listed in Table 1. 
Fig. 3 illustrates the effect of gradient index on distributions of the elastic constant, c11, from which 
we can see c11 keeps constant and the FGHC degenerates to a homogeneous one for p = 0, while 
for other values of p, c11 varies with the radius and the FGHC becomes inhomogeneous. 

In Fig. 4, through-thickness distributions of shape functions with different gradient indexes are 
plotted, which demonstrates that the shape function in present theory will alter with not only the 
special coordinate but also the gradient index. As is known to all, the transverse shear  
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      Table 1 Elastic constants of two homogenous materials (Units: 1010N/m2) 

Elastic constant c11 c12 c13 c22 c23 c33 c44 c55 c66 

Ψ0 40.17 0.33 0.34 1.07 0.27 1.07 0.50 0.70 0.50 

Ψ1 15.98 0.47 0.47 1.20 1.20 1.20 0.55 0.42 0.42 

 
 

Fig. 3 Through-thickness distributions of c11 for 
      different gradient indexes 

Fig. 4 Through-thickness distributions of shape 
       functions for different gradient indexes 

 
 

deformations of most conventional shell theories remain invariant once the assumptions of 
displacement fields are chosen, regardless of the variation of gradient index. Such self-adjustable 
characteristic of present theory is very suitable to analyze an inhomogeneous FGHC. 

The present theory can unify most of shear deformable shell theories (Soldatos and Timarci 
1993). For example, we can specify a particular shape function as 

])(
3

4
1)[( 2

01 rr

rr
rr m

mz 


                        (31) 

Obviously, Eq. (31) satisfies Eqs. (19) and (20). Such form of shape function corresponds with 
a third-order shear deformable shell theory. 

Figs. 5 and 6 display the numerical comparisons among an exact elastic theory, the third-order 
shell theory and the present theory, where the single-span FGHC is simply supported at two edges 
and the gradient index p = 2. The exact elastic theory is directly based on three-dimensional 
equations of equilibrium and the governing equations are solved by a state space method, the 
details on this theory can be found in Chen et al. (2004). As compared with the third-order shell 
theory, the present theory possesses higher accuracy in predicting both normal and shear stresses. 
From Fig. 6, we also find even the third-order theory can not point out where the peak shear stress 
is. So the present theory owns more superiority in analyzing the mechanical behaviors of 
inhomogeneous or laminated structures. 
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Fig. 5 Through-thickness distributions of normal 
      stresses predicted by different theories 

Fig. 6 Through-thickness distributions of shear 
        stresses predicted by different theories 

 
 

Now we investigate the axisymmetrical bending of a single-span FGHC. Figs. 7-10 present the 
spatial distributions of stresses with all reasonable combinations of boundary conditions at two 
ends, including both simply supported (SS), both clamped (CC), clamped-simply supported (CS) 
and clamped-free (CF). In these figures, the gradient index, p, is chosen as 0.5. As is expected, the 
boundary conditions have pronounced effect on the spatial distributions of stresses. In terms of 
peak normal stress (PNS) and peak shear stress (PSS), both the maximum of all PNSs and the 
maximum of all PSSs appear in an FGHC with CF boundary conditions, while the minimum of all 
PNSs and the minimum of all PSSs appear in an FGHC with SS and CC boundary conditions, 
respectively. As shown in these figures, bending stresses in the FGHC vary smoothly through 
thickness, which benefits from the continuous components of FGM and will therefore delay the 
failures resulted from stress concentration or interfacial debonding. 
 

Fig. 7 Spatial distributions of stresses with SS boundary conditions (a) distribution of normal stress, 
       (b) distribution of shear stress 
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(a) 

 
(b) 

Fig. 8 Spatial distributions of stresses with CC boundary conditions (a) distribution of normal stress, 
       (b) distribution of shear stress 
 

 
(a) 

 
(b) 

Fig. 9 Spatial distributions of stresses with CS boundary conditions (a) distribution of normal stress,  
       (b) distribution of shear stress 
 

(a) 
 

(b) 

Fig. 10 Spatial distributions of stresses with CF boundary conditions (a) distribution of normal stress,  
       (b) distribution of shear stress 
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At the end, static responses of a three-span FGHC are calculated, where the gradient index p = 
1. For brevity, each span has the same length-to-thickness ratio, namely L / H = 3, and is subjected 

to a same loading, namely q1 = 0 and )/sin(1
440 LHcq  . Results of present FGHC with SS 

and CF boundary conditions are displayed in Figs. 11 and 12, respectively. 
 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 11 Static responses of a three-span FGHC with SS boundary conditions (a) through-span distribution 
 of deflection, (b) through-span distribution of normal stress, (c) through-span distribution of shear stress 
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(a) 

 
(b) 

 
(c) 

Fig. 12 Static responses of a three-span FGHC with CF boundary conditions (a) through-span distribution 
 of deflection, (b) through-span distribution of normal stress, (c) through-span distribution of shear stress 

 
 
6. Conclusions 
 

In present paper, we extend a unified shear deformable shell theory suggested by Soldatos and 
Timarci (1993) to study the axisymmetrical bending of single- and multi-span FGHCs. Based on 
the principle of minimum potential energy, governing equations are obtained and solved by TMM. 
Due to the state vector adopted in TMM consists of all (generalized) resultants and (generalized) 
displacements encountered in boundary conditions, dealing with an FGHC with all reasonable 
combinations of boundary conditions becomes very convenient. For a multi-span FGHC, the state 
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vectors are discontinuous at internal supports, so we introduce two singular matrixes accounting 
for ur = 0 as well as connecting two adjacent state vectors. 

By virtue of a laminated model, the inhomogeneous FGHC is divided into many thin layers 
through thickness, and each layer approximates a homogeneous one. As a result, the shape 
function in present theory must be determined for each layer. To improve the computational 
efficiency, we employ the TMM again, owing to which, only two simultaneous equations are 
required to determine the shape function, regardless of how many fictitious layers are involved. 
Since the shape function is derived from a three-dimensional equation of equilibrium and is 
a-posteriori specified, it can alter with the inhomogeneous distributions of material properties, as is 
shown in the numerical example. 

Numerical comparisons among an exact elastic theory, a third-order shear deformable shell 
theory and the present theory are achieved in this paper, and the superiority of present theory in 
predicting bending stresses is illustrated. For a single-span FGHC, the spatial distributions of 
stresses with four boundary conditions, namely SS, CC, CS and CF, are displayed. From these 
figures, we can see the bending stresses of FGHC vary smoothly through thickness due to the 
continuous components of FGM, which is beneficial to release interfacial stress concentration and 
therefore delay interfacial debonding. As is expected, the boundary conditions also have 
pronounced effect on the spatial distributions of stresses. Static responses of a three-span FGHC 
are calculated finally. For the sake of brevity, only two kinds of boundary conditions, i.e. SS and 
CF, are taken into account, although the present method can deal with other boundary conditions 
including SF, FF, CS and CC without any difficulties. 
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