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Abstract.  Beam-to-column connections behaviour plays an important role in the analysis and design of 
steel and precast concrete structures. The paper presents a computer-based method for geometrically 
nonlinear frames with semi-rigid beam-to-column connections. The analytical procedure employs modified 
stability functions to model the effect of axial force on the stiffness of members. The member modified 
stiffness matrix, and the modified fixed end forces for various loads were found. The linear and nonlinear 
analyses were applied for two planar steel structures. The method is readily implemented on a computer 
using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of 
frameworks. 
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1. Introduction 
 

It is customary in conventional analysis and design of steel and precast concrete frameworks to 
represent the actual joint behaviour by two extreme kinds of idealized models, i.e., the fully rigid 
joint model and the pinned joint model. The notions of either pinned or rigid joints are, however, 
simply extreme cases of true joint behaviour, and experimental investigations, many of which are 
referred to in (Jones et al. 1983), show clearly that actual joints exhibit characteristics over a wide 
spectrum between these extremes. The models with ideal connections simplify analysis procedure, 
but often cannot represent real structural behaviour. This discrepancy is reported in numerous 
experimental investigations of steel frames with different types of connections (Jones et al. 1983). 
The rigid connection idealization indicates that relative rotation of the connection does not exist 
and the end moment of the beam is entirely transferred to the columns. In contrast to the rigid 
connection assumption, the pinned connection idealization indicates that any restraint does exist 
for rotation of the connection and the connection moment is zero. Although these idealizations 
simplify the analysis and design process, the predicted response of the frame may be different 
from its real behaviour. Therefore, this idealization is not adequate as all types of connections are 
more or less, flexible or semi-rigid. It is proved by numerous experimental investigations that have 
been carried out in the past (Nethercot 1985, Davisson et al. 1987, Moree et al. 1993). The term 
semi-rigid is used to express the real connection behaviour. Therefore, beam-to-column 
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connections in the analysis/design of steel and precast concrete frames should be described as 
semi-rigid connections. 

Generally, nodal connections of plane frames are subjected to influence of bending moments, 
axial forces and shear forces. The effects of axial and shear forces can usually be ignored, and only 
the influence of bending moments is of practical interest. The constitutive moment-relative 
rotation relation, M-, depends on the particular type of connection. Most experiments have shown 
that the M- curve is nonlinear all the whole domain and for all types of connections. Therefore, 
modelling of the nodal connection is very important for the analysis and design of frame structure. 

Based on experimental work due to static monotonic loading tests carried out for various types 
of beam-to column connections, many models have been suggested to approximate the connection 
behaviour. The simplest and the most common one is the linear model that has been broadly used 
for its simplicity (Monforton and Wu 1963, Aksogan and Akkaya 1991, Gorgun 1992, Gorgun et 
al. 2012, Gorgun and Yilmaz 2012). This approach is based on modelling the connection as a 
lengthless rotational spring. This method is widely used in semi-rigid analysis of frames, and the 
implementation of this approach requires small modifications in the existing analysis programs. 
This modification doe not considerably increase the computational time. Therefore, each element 
of the frame consists of a finite length element with a lengthless rotational spring. However, this 
model is good only for the low level loads, when the connection moment is quite small. In each 
other case, when the connection rigidity decrease compared with its initial value, a nonlinear 
model is necessary. Several mathematical models to describe the nonlinear behaviour of 
connections have been formulated and widely used in research practice (Wu and Chen 1990). 
Often, many authors use the so called corrective matrices to modify the conventional stiffness 
matrices of the beams with fully fixity at both ends (Romstad and Subramanian 1970, Frye and 
Morris 1975). Elements of the corrective matrices are functions of the particular nondimensional 
parameters-fixity factors, or rigidity index. 

In addition to the linear behaviour, many studies have been developed to the nonlinear analysis 
of the static and dynamic behaviour of frames with semi-rigid connections using different models 
of geometric nonlinearity of elements and nodal connections (Xu et al. 2005, Aristizabal-Ochoa 
2007, Liu 2009). In most studies, the effect of shear deformation and axial force on elastic 
behaviour has been ignored as being of little consequence. However, there are steel frameworks 
for which shear effects may be significant (e.g., those that have deep transfer girders (Aksogan and 
Dincer 1991, Aristizabal-Ochoa 2012, Gorgun et al. 2012). Also, in the analysis of structural 
systems the members forming the planar frames are general1y assumed to be rigidly connected 
among each other. However, more often than not the assumption of pin connections is also 
employed in such cases where the rigidity of the connection cannot be provided to a dependable 
degree. In fact, both of the foregoing assumptions are unrealistic when one is treating steel frames 
and especially, nowadays, widely used precast reinforced concrete structures. In such structures 
beams and columns behave as if they are semi-rigidly, or flexibly, connected among themselves, 
as far as the rotations of the ends are concerned. Hence, experimentally determined effective 
rotational spring constants for those connections should be used in the analyses of such structures. 
This paper presents a computer-based method for geometrically nonlinear analysis of planar 
frameworks with semi-rigid connections to explicitly account for the influence of axial force on 
elastic behaviour. Stability functions are employed to model the effect of axial force on the elastic 
bending stiffness of members (Livesley and Chandler 1956, Majid 1972, Chen and Lui 1991), and 
the influence of semi-rigid connections is taken into account. The shear-stiff stability functions 
presented in (Livesley and Chandler 1956, Majid 1972, Chen and Lui 1991) are modified to take 
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shear deformability into account for comparison. The history of the stability functions for shear-
flexible members is given in (Al-Sarraf 1986, Mottram 2008). 

The geometrically nonlinear elastic analysis procedure is a direct extension of the conventional 
matrix displacement method of linear-elastic analysis. The nonlinear analysis method is verified 
for three example benchmark steel structures from the literature (Aksogan and Dincer 1991, 
Aksogan and Akkaya 1991, Gorgun 1992, Aristizabal-Ochoa 2012, Gorgun et al. 2012). 

The present study is an attempt to prepare a computer program that treats the aforementioned 
type of structures elegantly, taking into consideration the behaviour of the flexible connections on 
elastic behaviour along with the effect of geometric nonlinearity due to the axial forces in the 
members. As is well known, the upper limit of the load in any structure is the critical value of the 
load, the buckling load, which is found by taking geometric nonlinearity into consideration. 
Hence, the results of the present study will constitute the basis of the stability analysis of the same 
type of structures. 

The method used in the present study is the well-known stiffness method of structural analysis. 
First, the stiffness matrix of a member elastically supported against rotation at both ends is 
obtained using the second order analysis. Then, the fixed end forces are found for a member 
elastically supported at the two ends by rotational springs for a uniformly distributed load, a 
concentrated load, a linearly distributed load, a symmetrical trapezoidal distributed load and an 
unsymmetrical triangular distributed load. For the latter analysis, the second order theory was 
employed once again, along with the use of differential equations which yielded trigonometric 
functions for the case of axial compressive force and hyperbolic functions for the case of axial 
tensile force. 

The computer program that was prepared can be used to solve static problems of plane frames 
composed of members that are semi-rigidly connected at the joints. 
 
 
2. Analysis model 
 

This study concerns planar steel and precast concrete frameworks discretized as an assembly of 
beam-column members that beams flexibly connected to columns taking into account the effect of 
axial deformations. It is assumed that there are no out-of-plane actions, and bending, shearing or 
axial deformation (,  or ) under the action of moment, shear or axial force (M, V or P) is 
concentrated at member sections. 

The present study is mainly composed of two parts. The first part is comprised of the analytical 
study that employs the matrix method which is commonly used in structural analysis. In this part, 
the stiffness matrix of the structure of concern is obtained, the contributions of different types of 
loads to the loading vector are found and the formulation of the equilibrium equations for the 
determination of the unknown displacements is explained. Actually, besides the more complicated 
type of functions compared to linear analysis, there is also a need for separate analyses for 
compressive and tensile axial forces which doubles the analytical work. In the second part of the 
study the pertinent computer program was prepared. 

In the present study, the method used being the matrix stiffness method the main concern is to 
set up the relation between the loading and the displacement vectors of a given structure. 

To accomplish this, the first thing to be done is to find the relation between the end forces and 
the end deflections for a prismatic planar beam-column member. The terms “force” and 
“deflection” are taken to be general expressions signifying direct forces and moments, and linear 

279



 
 
 
 
 
 

H. Gorgun 

deflections and rotations respectively. Towards this end we must first define the sign convention 
and notation which is done in Fig. 1 where positive senses of the entities at the two ends in the 
axial, transverse and rotational directions are shown with the arrows numbered from one to six. 
The left and the right ends of the member are also shown along with the corresponding spring 
constants, which express the ratio of flexural stiffness of connection to flexural stiffness of beam to 
which it is attached. The lengths of the springs are supposed to be zero. The physical properties of 
the member are designated in the conventional manner-E, G, L, I, A and As denote Young’s 
modulus, shear modulus, length, cross-sectional moment of inertia, cross-sectional area and 
equivalent shear area respectively; while pi, di and fi (i = 1, 2, …, 6) are local axis member-end 
forces, deformations and fixed end forces, respectively. k1 and k2 are the constants of the rotational 
springs at the left and the right ends, respectively, The member is perfectly straight, and uniform in 
cross-section throughout its length. The material of the member is linearly elastic. 

 
 

 
Fig. 1 Beam-column member model 

 
 
2.1 Modified stiffness matrix of a flexibly connected member 
 
In order to obtain a force-displacement relationship of a beam-column member with semi-rigid 

connections, the superposition method cannot be applied. The force-deformation relationship for 
the beam-column member in Fig. 1 is 

p kd f                                  (1) 

where the vectors of end-section forces p = [p1, p2, …p6]
T, deformations d = [d1, d2, …d6]

T and 
fixed end forces due to intermediate loads between joints f = [f1, f2, …f6]

T are referenced to the 
local-axis system for the member, and the local-axis stiffness matrix k for the member is a six by 
six matrix. 

The shear contribution in the entire deflection of a beam element as treated in the ordinary 
small deflection elastic theory is very simple; and, it is very small compared with the flexural 
deflection. 

Letting y = ym + ys show the entire downwards deflection of a beam-column member in Fig. 2, 
the deflection due to bending only is shown by ym and that due to shear is shown by ys, and x show 
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the distance from the left end of the member, one can find the different elements of the stiffness 
matrix by taking each and every end displacement to be unity at a time, when the others are zero 
and solving the differential equation. 

 1
     

m s
s

M
y y y

EI P GA
                       (2) 

where a prime shows a derivative with respect to x  and EI  is the flexural rigidity of the 
member. 
 

Fig. 2 Notation for beam-column member with axial force 
 
 

When there is an axial force P, the bending moment M at some representative point R in Fig. 2, 
distant x from the left-hand end 

1M Py Vx m                                 (3) 

where P is the absolute value of the axial force in the member and the sign in front of it in Eq. (3) 
is positive for compression and negative for tension, V is the end shear force, m1 is the modified 
fixed end moment at x = 0, Defining 

 

 

  0
1

  0
1

s

s

P EI
P

P GA

P EI
P

P GA




  

  

                        (4a) 

It is readily possible to conduct the same analysis using Euler-Bernoulli beam theory, which 
ignores the effect of shear deformation on elastic behaviour, by setting the beam-column member 
shear stiffness Gas = ∞ in Eqs. (2) and (4a). Now 

  P EI                                (4b) 

the general solution of Eq. (2) is 

    1sin cos   
mV

y A x B x x
P P

                      (5) 
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for axial compressive force. 
 When the axial force is tensile and the first term in the bending moment expression in Eq. (3) 

changes sign, then the general solution of Eq. (2) is again given by Eq. (5) only changing the signs 
of the last two terms and the trigonometric functions to their corresponding hyperbolic ones. 
Assigning the unit end displacements to the outer ends of the springs, each at a time and using the 
equilibrium equations for the free body diagrams of the members along with Eq. (5) and the 
suitable boundary conditions for the displacements and slopes at the inner ends of the springs, the 
local–axis stiffness matrix for the member is 

11 14

22 23 25 26

33 35 36

44

55 56

66

0 0 0 0

0

0

0 0

 
 
 
 

  
 
 
 
  

k k

k k k k

k k k
k

k

Sym k k

k

                     (6) 

The effects of the flexible connections are included in the stiffness matrix by modifying the 
stiffness terms of frame member with rigid connections. The stiffness influence coefficients kij (i = 
1, 2, …6 : j = 1, 2, …6) in Eq. (6) take into account the influence that axial force, and semi-rigid 
connections have on elastic bending stiffness and are defined as follows 

11 11 44 14 41     ak k k k k                          (7a) 

22 22 55 25 52     rk k k k k                          (7b) 

23 23 32 35 53     rk k k k k                          (7c) 

26 26 62 56 65     rk k k k k                          (7d) 

33 33 rk k                                  (7e) 

36 36 63 rk k k                               (7f) 

66 66 rk k                                 (7g) 

In Eq. (7a), 11 /ak EA L  is elastic axial stiffness. In Eqs. 7(b)-(g), the stiffness influence 

coefficients; if the axial force in the member is zero (linear solution), P = 0 

 
 

1 2
22 3

1 2 1 2

112

1 4 3

 
   
 


  

r EI
k

L
                       (8) 

 
 

2
23 2

1 2 1 2

1 26

1 4 3


   




  
r EI

k
L

                       (9) 
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r EI
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                      (10) 
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1 4 3


   




  
r EI
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L

                      (11) 

 36
1 2 1 2

2 1

1 4 3   


  
r EI

k
L

                      (12) 

 
 

1
66

1 2 1 2

1 34

1 4 3


   




  
r EI

k
L

                      (13) 

where, for compressive axial force, P < 0 

    3 2 2
22 1 2 1 23

1 sin cosr EI
k

L
            


             (14) 

 2
23 22

sin cos 1r EI
k

L
  


                         (15) 

 2
26 12

sin cos 1r EI
k

L
  


                         (16) 

  2
33 21 sin cosr EI

k
L

  

                        (17) 

 36 sinr EI
k

L
 


                            (18) 

  2
66 11 sin cosr EI

k
L

  

                       (19) 

and for the tensile axial force; P > 0 

    3 2 2
22 1 2 1 23

1 sinh coshr EI
k

L
   


                     (20) 

 2
23 22

sinh cosh 1r EI
k

L
  


                        (21) 

 2
26 12

sinh cosh 1r EI
k

L
  


                        (22) 

  2
33 21 sinh coshr EI

k
L

   

                      (23) 
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 36 sinhr EI
k

L
    


                        (24) 

  2
66 11 sinh coshr EI

k
L

   

                      (25) 

account for elastic bending stiffness. 
In Eqs. (2), 4(a), (8)-(25), the parameters 

2
 

s

EI

L GA
,  sGA  0   (Neglecting effect of shear deformation)       (26) 

1
1

1

4
 

k
                                (27) 

2
2

1

4
 

k
                                (28) 

     
     

2 2
1 2 1 2 1 2

2 2
1 2 1 2 1 2

1 sin 2 cos 2        0

1 sinh 2 cosh 2    0

            

            

          
       

P

P
  (29) 

in which 
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,  sGA   L P EI          (30a) 

1    0

1    0
s

s

P GA P

P GA P


 
   

,  sGA  1.0               (30b) 

are well-known stability functions that account for the influence of axial force on elastic bending 
stiffness. The effect of axial forces on the deformed shape of the member are included in the 
stiffness matrix by using modified stability functions. 
Finally, in Eqs. (27)-(28), the dimensionless parameters for the ends, 1 and 2, of the member 

1
1 4


J
k

EI L
                               (31) 

2
2 4


J
k

EI L
                               (32) 

where J1 and J2 are the stiffness of the flexible connections at the ends of the member and 4EI/L is 
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the stiffness of the member (defined only as the moment required to cause unit rotation of one of 
its ends). 

1
1 
 conM

J                                (33) 

2
2 
 conM

J                                (34) 

where Mcon1 and Mcon2 are the hogging bending moments of the flexible connections at the ends of 
the member. This assumes a linear moment-rotation relationship and the connection stiffness, J, is 
the slope of this relationship. The values of k1 and k2 depend on the known semi-rigid connection 
stiffness and the geometrical and elastic properties of the connected member. They vary from zero 
for a frictionless pin connection to infinity for a perfectly rigid connection. Eq.s (31) and (32) are 
for the general case of unequal connection stiffness. Usual steel building frames will have identical 
connections at both girder ends, although exterior and interior connections may act differently, and 
the analysis will then deal with equal stiffnesses, J = J1 = J2. 
The stiffness influence coefficients kij (i = 1, 2, …6 : j = 1, 2, …6) in Eq. (6) take into account the 
influence that axial force, and semi-rigid connections have on elastic bending stiffness including 
shear effects are given in Gorgun et al. (2012). 

 
2.2 Modified fixed end moments 
 
So far only structures loaded at joints have been considered, but in rigid jointed structures this 

is generally not the case. In order to deal with this problem, the whole solution process must be 
reviewed. In the analysis of skeletal structures by the stiffness method it was observed that the 
loading vector might contain fixed-end forces due to loads applied between joints. It is found that 
the presence of an axial load, shear force, and the influence of semi-rigid connections in a member 
affects the values of the fixed-end forces, and this is summarised in this section. 

Concerning fixed end forces for numerous types of span loadings, although the computations 
involved are rather tedious, the method of approach is straightforward and simple. What needs to 
be done in each case is to employ the method used for finding the stiffness matrix, namely apply 
Eq. (2) where bending moment M given by Eq. (3), is expressed with an additional term or terms 
due to the span loading and the force V at the left end is found by using the moment equilibrium 
equation relative to the right end. Moreover, for the case of symmetrical trapezoidal distributed 
load, by making use of symmetry, the mid-span slope was taken to be zero. The corresponding 
transverse forces can be found by making use of the two equations of equilibrium for the member. 
The moments at the elastically restrained ends of a loaded member for some frequently 
encountered loads found for linear and nonlinear cases are presented as follows with the notation 
given in the relative figures. 
 

Uniformly distributed load. Fig. 3 shows an elastically restrained member of length L and 
uniform flexural EI, loaded with a uniformly distributed load of intensity w per unit length over 
the whole span. The modified fixed end moments on the member ends due to a uniform downward 
load, w, are 
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Fig. 3 Uniformly distributed load 
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Concentrated load at any point. Modified fixed end moments in the same uniform member of 

length L by an unsymmetrical point load of W as shown in Fig. 4. 
 

 
Fig. 4 Single-point load 
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When a = b = 0.5, Eqs. 36(a)-(b), give the values for the concentrated load at midspan. 
 
linear variation of load. In Fig. 5, for example, the same uniform member is shown loaded by 

a total load W, which is distributed with an intensity varying linearly from w1 at the left-hand end 
to w2 at the right. 

 

 
Fig. 5 Linear variation of load 
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Symmetrical trapezoidal load (See Fig. 6): 
 

Fig. 6 Symmetrical trapezoidal load 
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Triangular load. Determined the fixed-end moments in the uniform member shown in the Fig. 

7, when subjected to an unsymmetrical load, with a linear variation of intensity but of total wL/2. 
 

 
Fig. 7 Triangular load 
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The remaining other two nonzero modified fixed end forces, the shear forces and the axial 
forces, of relevance at the ends are found using static equilibrium equations. The modified fixed 
end moments at the right ends for above frequently encountered loads for linear and nonlinear 
cases are found either from symmetry or by an interchange of a and b, β1 and β2 or w values at the 
two ends, and the sign in front of it negative. 
 
 
3. Analysis procedure 
 

The geometrically nonlinear analysis is an iterative procedure that, for each iteration, involves 
formulating and solving the equilibrium equations 

KD F                                 (41) 

where K, global stiffness matrix; D, vector of nodal displacements; F, vector of specified 
(equivalent) nodal loads. 

IT = 1 is an initially specified value selected to ensure that first-order linear-elastic behaviour of 
the structure for the first iteration. 

If the structure stiffness matrix K is non-singular at the end of an iteration, Eq. (41) are solved 
for nodal displacements D. Member end forces pi and deformations di are found. The axial forces 
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for each member are checked to detect the elastic behaviour and applied to modify member 
stiffness matrices k and fixed end moments mi and hence the structure stiffness matrix, K, before 
commencing the next iteration (see Section 2). 

The iterative-load analysis procedure continues until either the specified iteration level is 
reached, or the difference between the axial forces found in two successive iterations is less than 
0.1% for each member (Pi+1  PiI). 

The analytical expressions having been prepared for all the quantities of relevance for the 
problem, it remained only to write down a computer program for numerical applications. That was 
done and the resulting program contains special differences compared to a linear analysis. The 
main difference is that there is an iteration which can be stopped when a desired accuracy is 
reached. The geometric stiffness matrix, as it is called, due to axial force is a relevant feature of 
this analysis, which actually is the cause of the necessity for the iterative procedure. The computer 
program analysis starts with zero axial forces in all members, giving the linear solution at the first 
step. It assumes the axial forces in members to be zero initially. It setups the overall stiffness 
matrix, analyzes the frame under the external loads, obtains joint displacements and member end 
forces. Then, at each new load step the axial forces and frame deflections found in the previous 
step are used in the computations, of both the modified stiffness matrix (calculates the 
corresponding stability functions) and the modified fixed end forces. The nonlinear analysis 
terminated when the difference between the axial forces found in two successive iterations is less 
than 0.1% for each member. When the predetermined precision is attained, the iteration stops and 
the final displacements and rotations, member end forces, and variations of bending moment along 
relevant members are determined. The maximum value of the bending moment in each member is 
given, along with the maximum value and its position on the member. 

During these iterations the determinant of the overall structure stiffness matrix is calculated and 
loss of stability is checked. If the convergence in the axial force is obtained without loss of 
stability, the joint displacements and member forces obtained in this nonlinear response are used in 
the computation of fitness values for this individual. It should be noted that in this algorithm the 
design load is not applied incrementally in the nonlinear analysis. Instead it is applied immediately 
and iterations are carried out at this load. It should also be pointed out that during the nonlinear 
analysis the fixed end moments change from one iteration to another due to axial forces in the 
members and rotational springs attached at the ends of members. The modified fixed end moments 
are calculated by taking into account the effect of shear deformations and the effect of flexible end 
connection for a frame member. 

The nonlinear analysis procedure is illustrated by the flow chart in Fig. 8. Further 
computational details are provided through the analysis examples presented in the following 
section. 
 
 
4. Analysis examples 
 

The geometrically nonlinear iterative analysis procedure is illustrated in the following for three 
example structures comprised of steel beam-column members with rigid and semi-rigid 
connections. The first example is a six-story two-bay steel building framework for which 
analytical results found using the computer programme are compared with other analytical results 
(Aksogan and Dincer 1991, Gorgun 1992). The second example is a four-story two-bay steel 
building framework, the linear and nonlinear analysis of which have also been extensively studied 
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       : member properties 

Form/update member stiffness matrices k

Assemble structure stiffness matrix K=k

Find member fixed end forces f

Assemble structure load vector F=f

Solve for nodal displacements D=K-1F

Calculate axial forces P in members

Has the required accuracy been reached 
Pi  Pi+1?

Calculate member end forces pi and di 
deformations 

Member span moments required?

Calculate member span moments

Outputs results 
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No

Yes

Yes

Yes

No

No 

Fig. 8 Flow chart for geometrically nonlinear analysis 
 
 
in the literature from a variety of different computational viewpoints (Aksogan and Akkaya 1991, 
Gorgun 1992). The third example is a two-story one-bay frame for which analytical results found 
using the computer programme are compared with other analytical results (Aristizabal-Ochoa 
2012). This frame is made of the pultruded FRP beam-column with bending taking place about the 
major axis. 

The geometrically nonlinear analysis results include the values of the bending, shearing, axial 
elastic stiffness and semi-rigid connections for member end sections at which elastic deformation 
occurs. 

292



 
 
 
 
 
 

Geometrically nonlinear analysis of plane frames composed 

4.1 Example 1: A six-story two-bay steel building framework 
 
Consider the 6-story by 2-bay steel framework subjected to different kinds of distributed 

service-level design gravity span loads and the pattern of concentrated point loading shown in Fig. 
9. The structure is a building frame that supports loads shown in Fig. 9. All beams have IPN 300, 
1st and 2nd floor columns have IPN 360, 3rd and 4th floor columns have IPN 300 and 5th and 6th 
floor columns have IPN 180-shape sections that are oriented with their webs in the plane of the 
framework and are assumed to be fully restrained against out-of-plane behaviour. Shape factor f = 
5 / 6, Poisson’s ratio v = 0.3. The framework has 30 members, 21 nodes and 54 degrees-of-
freedom (dof) for nodal displacement (i.e., lateral and vertical translation and rotation dof at each 
of the eighteen free nodes 4-21). The members and nodes are designated by a square and a circle 
symbol ( , ) with a number inscribed in it that indicates the member or node number 
respectively, shown in Fig. 10. Briefly discussed in the following are the results of the study that 
demonstrate analytically the influence that shear and the geometrically nonlinear have on the 
behaviour of the member end moments. 

The analytical results presented in Tables 1 and 2 account for the combined influence that 
bending and shearing have on elastic behaviour, and were found using the computer programme to 
include the effect that shear deformations have on elastic behaviour. It is readily possible to 
conduct the same analysis using Euler-Bernoulli beam theory, which ignores the effect of shear 
deformation on elastic behaviour, by setting the beam-column member shear stiffness Gas = ∞ in 
Eqs. (2) and (4a). 

The analysis results found by this study are given in Tables 1 and 2 and compared with the 
results of other studies (Aksogan and Dincer 1991, Gorgun 1992, Gorgun et al. 2012). 

This example frame originally appeared in (Aksogan and Dincer 1991) and, since then, its 
nonlinear analysis has been studied by a number of researchers from a variety of computational 
viewpoints. The results for the method proposed herein are in close agreement with those for all 
other methods. Tables 1 and 2 compare the member end moments of Aksogan and Dincer (1991) 
who neglected the effect of semi-rigid connections with those obtained from the formulations by 
Gorgun (1992) who neglected the effect of shear deformation and present study, which 
incorporates the axial shortening effect, shear deformations, geometrically nonlinear effect and 
semi rigid connections. It can be seen the results are almost in agreement for v = 0, indicating the 
negligible influence of shear deformations and v = 0.3, indicating the influence of shear 
deformations on the member end moments. The extreme moment values obtained for member 6 (a 
column member). Shear effect has changed the top end moment m2 for this member by 450% 
(increases from 0.12 kNm to 0.66 kNm) and 66% (increases from 0.86 kNm to 1.43 kNm), 
respectively, for linear and nonlinear solutions. The nonlinear effect has changed the same end 
moment for this member by as much as approximately 617% (increases from 0.12 kNm to 0.86 
kNm), while both the nonlinear and the shear effects have changed the end moment by as much as 
approximately 1092% (increases from 0.12 kNm to 1.43 kNm) for this frame example. It should 
be noticed that the superposition is not valid here. 

 
4.2 Example 2: a four-story two-bay steel building framework 
 
Consider the 4-story by 2-bay steel framework subjected to different kinds of service-level 

design gravity span loads and direct loads shown in Fig. 11. The structure is a building frame that 
supports loads shown in Fig. 11. All member have HE 1000 M-shape sections (Aksogan and  
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Fig. 9 Geometry and loading of the example 1 
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 Table 1 Example 1: Comparison of member end moments with rigid connections for linear frame analysis 

Member

Member end moments (kNm) 
Neglecting the effect of 

shear deformation (v = 0) 
Considering the effect of 

shear deformation (v = 0.3) 
Aksogan and Dincer

(1991) 
Gorgun 
(1992) 

Present 
study 

Aksogan and Dincer
(1991) 

Gorgun et al. (2012)

m1 m2 m1 m2 m1 m2 m1 m2 m1 m2 
1 86.50 -11.12 86.50 -11.12 86.50 -11.12 88.13 -11.80 88.13 -11.79
2 114.37 43.51 114.37 43.51 114.37 43.51 114.39 43.04 114.38 43.04
3 108.96 32.78 108.96 32.78 108.96 32.78 109.19 32.05 109.19 32.05
4 -5.02 -118.33 -5.02 -118.33 -5.02 -118.33 -5.37 -118.23 -5.37 -118.23
5 -24.69 -109.62 -24.69 -109.62 -24.69 -109.62 -23.88 -108.94 -23.87 -108.94
6 16.13 0.12 16.13 0.12 16.13 0.12 17.17 0.66 17.16 0.66
7 99.50 90.51 99.50 90.51 99.50 90.51 99.07 89.77 99.06 89.77
8 76.83 61.91 76.83 61.91 76.83 61.91 76.89 61.45 76.89 61.45
9 -20.68 -119.12 -20.68 -119.12 -20.68 -119.12 -21.22 -119.16 -21.22 -119.15
10 -41.76 -115.71 -41.76 -115.71 -41.76 -115.71 -41.05 -115.21 -41.04 -115.20
11 20.57 25.46 20.57 25.46 20.57 25.46 20.56 25.45 20.56 25.47
12 70.37 73.18 70.37 73.18 70.37 73.18 70.43 73.24 70.42 73.26
13 53.80 56.63 53.80 56.63 53.80 56.63 53.76 56.55 53.75 56.55
14 -26.56 -92.49 -26.56 -92.49 -26.56 -92.49 -27.20 -92.63 -27.23 -92.66
15 -45.82 -100.85 -45.82 -100.85 -45.82 -100.85 -45.23 -100.49 -45.22 -100.48
16 1.11 -5.39 1.11 -5.39 1.11 -5.39 1.75 -4.74 1.76 -4.75
17 65.14 79.88 65.14 79.88 65.14 79.88 64.62 79.51 64.63 79.50
18 44.23 55.03 44.23 55.03 44.23 55.03 43.94 54.93 43.94 54.92
19 -11.21 -100.06 -11.21 -100.06 -11.21 -100.06 -11.86 -100.15 -11.86 -100.14
20 -14.82 -91.13 -14.82 -91.13 -14.82 -91.13 -14.40 -90.91 -14.39 -90.90
21 16.59 14.86 16.59 14.86 16.59 14.86 16.61 14.92 16.61 14.92
22 34.99 35.50 34.99 35.50 34.99 35.50 35.03 35.54 35.03 35.54
23 36.10 41.96 36.10 41.96 36.10 41.96 35.98 41.92 35.98 41.92
24 -12.98 -107.38 -12.98 -107.38 -12.98 -107.38 -13.22 -107.22 -13.22 -107.22
25 45.81 -69.53 45.81 -69.53 45.81 -69.53 45.78 -69.45 45.78 -69.45
26 -1.87 -1.56 -1.87 -1.56 -1.87 -1.56 -1.71 -1.34 -1.71 -1.34
27 26.08 31.80 26.08 31.80 26.08 31.80 25.91 31.66 25.91 31.66
28 27.57 22.99 27.57 22.99 27.57 22.99 27.53 22.95 27.53 22.95
29 1.56 -34.55 1.56 -34.55 1.56 -34.55 1.34 -34.47 1.34 -34.47
30 2.76 -22.99 2.76 -22.99 2.76 -22.99 2.81 -22.95 2.81 -22.95

 
 
Akkaya 1991) that are oriented with their webs in the plane of the framework and are assumed to 
be fully restrained against out-of-plane behaviour with the following properties: section depth h = 
1008 mm, flange width bf = 302 mm, web thickness tw = 21.0 mm, flange thickness tf = 40.0 mm, 
section area A = 44400 mm2, moment of inertia I = 7220 × 106 mm4, and shape factor f = 5 / 6, 
Poisson’s ratio v = 0.3. The framework has 20 members, 15 nodes and 36 degrees-of-freedom 
(dof) for nodal displacement (i.e., lateral and vertical translation and rotation dof at each of the 
twelve free nodes 4-15). The members and nodes are designated by a square and a circle symbol 
( , ) with a number inscribed in it that indicates the member or node number respectively, shown 
in Fig. 12. The spring constants are given for the respective beams being 0.5 for the outer ends and 
0.6 for the inner ends. 
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The analysis results found by this study are illustrated in Figs. 13 and 14 and compared with the 
results of other studies in Table 3 and the results of linear analysis compared with nonlinear 
analysis with (v = 0.3)/without (v = 0) the effect of shear deformation in Tables 4-5. 

The nonlinear analysis terminated when the difference between the axial forces found in two 
successive iterations is less than 0.1% for each member. 

To give an idea about the effect of spring constants, on the displacements, the variations of the 
horizontal sway deflections of four nodes (joint nodes 4, 7, 10 and 13) of the frame with varying 
spring constants for all the springs in the structure are plotted in Fig. 12. Values are given at the 
joints each floor level for all the nonlinear analyses with shear effects for k1 = k2 = 0 (pin), 0.5, 1.0 
and 109 (rigid). The difference between the linear and nonlinear deflections for both the semi-rigid 
and rigid connections is less than 1mm over the full height of the structure. 
 

Table 2 Example 1: Comparison of member end moments with rigid connections for nonlinear frame 
      analysis 

Member 

Member end moments (kNm) 
Neglecting the effect of 

shear deformation (v = 0) 
Considering the effect of 

shear deformation (v = 0.3) 
Aksogan and 
Dincer (1991) 

Gorgun (1992) Present study 
Aksogan and 
Dincer (1991) 

Gorgun et al. 
(2012) 

m1 m2 m1 m2 m1 m2 m1 m2 m1 m2 
1 88.40 -10.99 88.40 -10.99 88.40 -10.99 90.12 -11.67 90.11 -11.67
2 116.28 44.24 116.28 44.24 116.28 44.24 116.38 43.78 116.38 43.78
3 110.75 33.01 110.75 33.01 110.75 33.01 111.07 32.27 111.07 32.27
4 -6.54 -119.74 -6.54 -119.74 -6.54 -119.74 -6.94 -119.68 -6.94 -119.68
5 -26.35 -111.35 -26.35 -111.35 -26.35 -111.35 -25.58 -110.72 -25.58 -110.72
6 17.52 0.86 17.52 0.86 17.52 0.86 18.61 1.43 18.61 1.43
7 101.85 92.53 101.85 92.53 101.85 92.53 101.48 91.84 101.47 91.84
8 78.35 62.90 78.35 62.90 78.35 62.90 78.46 62.46 78.45 62.47
9 -22.49 -120.89 -22.49 -120.89 -22.49 -120.89 -23.09 -120.99 -23.08 -120.98

10 -43.79 -117.89 -43.79 -117.89 -43.79 -117.89 -43.12 -117.44 -43.11 -117.43
11 21.63 26.62 21.63 26.62 21.63 26.62 21.66 26.65 21.65 26.69
12 72.14 75.01 72.14 75.01 72.14 75.01 72.26 75.14 72.25 75.15
13 54.98 57.88 54.98 57.88 54.98 57.88 54.97 57.83 54.96 57.83
14 -28.30 -94.10 -28.30 -94.10 -28.30 -94.10 -29.00 -94.29 -29.03 -94.32
15 -47.69 -102.85 -47.69 -102.85 -47.69 -102.85 -47.13 -102.54 -47.12 -102.53
16 1.68 -4.94 1.68 -4.94 1.68 -4.94 2.35 -4.25 2.36 -4.25
17 66.78 81.65 66.78 81.65 66.78 81.65 66.28 81.29 66.29 81.28
18 44.97 55.69 44.97 55.69 44.97 55.69 44.70 55.63 44.70 55.62
19 -12.80 -101.52 -12.80 -101.52 -12.80 -101.52 -13.50 -101.66 -13.50 -101.65
20 -16.38 -93.00 -16.38 -93.00 -16.38 -93.00 -15.99 -92.82 -15.99 -92.81
21 17.74 16.07 17.74 16.07 17.74 16.07 17.75 16.11 17.75 16.11
22 36.25 36.81 36.25 36.81 36.25 36.81 36.36 36.96 36.36 36.96
23 37.31 43.11 37.31 43.11 37.31 43.11 37.20 43.06 37.20 43.06
24 -14.18 -108.22 -14.18 -108.22 -14.18 -108.22 -14.42 -107.83 -14.42 -107.83
25 45.06 -70.73 45.06 -70.73 45.06 -70.73 44.68 -70.55 44.68 -70.55
26 -1.89 -1.46 -1.89 -1.46 -1.89 -1.46 -1.70 -1.05 -1.70 -1.05
27 26.36 32.09 26.36 32.09 26.36 32.09 26.19 31.89 26.19 31.89
28 27.62 23.15 27.62 23.15 27.62 23.15 27.49 23.06 27.49 23.06
29 1.46 -34.80 1.46 -34.80 1.46 -34.80 1.05 -34.57 1.05 -34.57
30 2.71 -23.15 2.71 -23.15 2.71 -23.15 2.68 -23.06 2.68 -23.06
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A drift factor of sway deflection = height/500 of the frame is defined by the continuous line in 
Fig.13. It can be seen that only where the semi-rigid joints are considered are the deflections less 
than height/500. 

Horizontal sway deflections of four nodes (joint nodes 4, 7, 10 and 13) of the frame with rigid 
connections only are plotted in Fig. 14 for all the linear and nonlinear analyses with (v = 0.3) and 
without (v = 0) shear effects. The difference between the linear and nonlinear deflections for rigid 
connections is less than 1 mm while the difference between the linear or nonlinear deflections with 
and without shear effects for rigid connections is less than 2mm over the full height of the 
structure. It can be seem that the effect of the shear deformations is greater than the effect of the 
geometric nonlinearity on the deflections for this frame example. 

The extreme moment values obtained for members 7 (a column member) and 17 (a beam 
member). Shear effect has increased the top end moment of member 7 by 146% (increases from -
0.84 kNm to 0.39 kNm), the nonlinear effect has reduced the left end moment for member 17 by as 
much as approximately 22% (decreases from 1.41 kNm to 1.11 kNm), while both the nonlinear 
and the shear effects have changed the above mentioned moments by as much as approximately 
155% (from 1.41 kNm to -0.77 kNm) for this frame example. 

This example frame originally appeared in (Aksogan and Akkaya 1991) and, since then, its 
nonlinear analysis has been studied by a number of researchers from a variety of computational 
viewpoints. Gorgun (1992) conducted nonlinear analysis of the frame with semi-rigid connections 
neglecting shear deformations (v = 0).The lateral and vertical deflections and rotation behaviour 
found for these various analyses are given in Table 5. The results for the method proposed herein 
are in close agreement with those for all other methods. The slight discrepancies between the 
methods are likely mainly due to different ways in which the member fixed end forces are 
considered. It is worth noting that the structural model for the proposed method involved 
significantly the nonlinear geometric effects, shear effects, and flexible beam-to-column 
connections than the other methods. 

 
4.3 Example 3: Second order analysis of a plane frame made of beams and columns 

with semi-rigid connections 
 
Determine the second-order member forces of each member of the frame shown in Fig. 15 

(Aristizabal-Ochoa 2012). This frame is made of the pultruded FRP beam-column with bending 
taking place about the major axis. Assume that: A = 5800mm2, EI = 7.85 × 108kN–mm2; GAS = 
5340 kN; elastic moduli E = 18.863 kN/mm2, and G = 2.671 kN/mm2. Include the effects of shear 
deformations and also the effects of the flexural moments on the axial stiffness in the analysis. The 
framework has 6 members, 6 nodes and 12 degrees-of-freedom (dof) for nodal displacement (i.e., 
lateral and vertical translation and rotation dof at each of the four free nodes C-F). The spring 
constants are given for the respective members being 1.75 for the beam ends and 6.75 for the 
column down ends. 

To facilitate comparison with other published results for this example (Aristizabal-Ochoa 
2012), the analysis results found by this study are given in Tables 6-8 and compared with the 
published results of other study (Aristizabal-Ochoa 2012) for the first-and second-order elastic 
analysis for the first and second iterations. 

The member end moments of each member of the frame showing the final end actions obtained 
from the first-order elastic analysis are given in Table 6. In the second-order elastic analysis, both 
the applied axial loads and the axial loads resulting from frame action given in Table 6 are 
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Fig. 11 Geometry and loading of the example 2 
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Fig. 12 Coding and numbering of the example 2 
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Fig. 13 Sway displacements at each floor level in the example problem with varying spring constants k 
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Fig. 14 Sway displacements at each floor level in the example problem with rigid connections 

 
 
considered. The member final moments of the 12 degrees-of-freedom (dof) system of each 
iteration are summarised (kiloNewton and meters are utilized throughout) and given in Table 7. 
Since the maximum difference in the displacements between the first- and second-order elastic 
analysis is small (2.69%, the lateral translation of the top right corner (joint node F) of the frame) 
further iteration were consider unnecessary. Notice that the rotations, vertical and lateral 
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deflections, and end bending moments increased significantly (over 17%, 3% and 21%, and 14% 
of their primary values, respectively) caused by the geometric nonlinear effects mentioned in the 
introduction. 

This example frame originally appeared in Aristizabal-Ochoa (2012). The lateral and vertical 
deflections, and rotation behaviour found for these various analyses are given in Table 8. The 
results for the method proposed herein are in close agreement with those for all other methods. The 
slight discrepancies between the methods are likely mainly due to different ways in which the 
modified stiffness coefficients and member fixed end forces are considered. It is worth noting that 
the structural model for the proposed method involved significantly fewer beam -column elements 
and nodes than the other methods. 
 
 
 Table 3 Example 2: Comparison of member end moments with semi-rigid connections for linear frame  
       analysis 

Member 

Member end moments (kNm) 

Neglecting the effect of shear deformation (v = 0) 

Aksogan and Akkaya (1991) Gorgun (1992) Present study 

m1 m2 m1 m2 m1 m2 

1 -13.57 103.70 -13.67 103.88 -13.67 103.88

2 18.16 119.80 18.02 119.98 18.02 119.98

3 7.48 114.40 7.31 114.48 7.31 114.48

4 15.78 35.78 15.45 36.06 15.45 36.06

5 63.29 80.12 63.29 80.54 63.29 80.54

6 53.55 66.48 52.94 66.73 52.94 66.73

7 21.18 -1.66 20.00 -0.84 20.00 -0.84

8 71.71 49.50 69.97 50.26 69.97 50.26

9 62.67 41.59 63.02 42.59 63.02 42.59

10 6.40 -20.36 7.05 -21.41 7.05 -21.41

11 58.82 27.47 59.74 26.00 59.74 26.00

12 50.26 17.40 50.80 17.83 50.80 17.83

13 -22.21 -68.35 -22.38 -68.55 -22.38 -68.55

14 -29.93 -73.96 -30.02 -74.04 -30.02 -74.04

15 -14.12 -91.25 -14.60 -91.72 -14.60 -91.72

16 -21.55 -95.14 -21.83 -95.52 -21.83 -95.52

17 -0.83 -78.06 1.41 -73.55 1.41 -73.55

18 -21.12 -80.07 -22.41 -80.85 -22.41 -80.85

19 -6.40 -40.65 -7.05 -41.25 -7.05 -41.25

20 -18.17 -50.26 -18.49 -50.80 -18.49 -50.80
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Table 4 Example 2: Comparison of member end moments with semi-rigid connections for linear and 
 nonlinear frame analysis 

Member 

Member end moments (kNm) 

Neglecting the effect of shear deformation 
(v = 0) 

Considering the effect of shear 
deformation (v = 0.3) 

Nonlinear 
Gorgun (1992) 

Nonlinear 
Present study 

Linear 
Gorgun et al. (2012)

Nonlinear 
Gorgun et al. (2012)

m1 m2 m1 m2 m1 m2 m1 m2 

1 -13.75 104.68 -13.75 104.68 -15.76 108.46 -15.89 109.46 

2 18.15 120.79 18.15 120.79 16.15 119.35 16.29 120.25 

3 7.24 115.23 7.24 115.23 5.98 115.82 5.89 116.69 

4 15.85 36.56 15.85 36.56 15.39 38.67 15.84 39.26 

5 63.97 81.30 63.97 81.30 61.61 79.67 62.34 80.48 

6 53.35 67.23 53.35 67.23 52.63 67.02 53.08 67.58 

7 20.44 -0.78 20.44 -0.78 21.19 0.39 21.67 0.45 

8 70.56 50.55 70.56 50.55 69.40 49.44 70.04 49.74 

9 63.46 42.64 63.46 42.64 62.68 41.91 63.16 41.97 

10 7.20 -21.55 7.20 -21.55 8.95 -20.75 9.14 -20.91 

11 60.07 26.01 60.07 26.01 58.97 24.98 59.32 24.98 

12 50.97 17.69 50.97 17.69 50.48 17.37 50.67 17.22 

13 -22.81 -68.99 -22.81 -68.99 -22.91 -67.40 -23.38 -67.87 

14 -30.46 -74.47 -30.46 -74.47 -28.43 -73.00 -28.90 -73.47 

15 -15.07 -92.20 -15.07 -92.20 -15.78 -90.68 -16.29 -91.20 

16 -22.32 -96.00 -22.32 -96.00 -20.36 -94.53 -20.88 -95.05 

17 1.11 -73.84 1.11 -73.84 -0.44 -73.19 -0.77 -73.50 

18 -22.73 -81.15 -22.73 -81.15 -21.18 -80.05 -21.53 -80.38 

19 -7.20 -41.42 -7.20 -41.42 -8.91 -41.23 -9.14 -41.40 

20 -18.65 -50.97 -18.65 -50.97 -17.74 -50.48 -17.92 -50.67 

 
 
Table 5 Example 2: Comparison of joint displacements with semi-rigid connections for linear and nonlinear 
      frame analysis 

Displacement no. 

Joint displacements 
lateral and vertical translations (mm), rotations (radians) 

Neglecting the effect of shear deformation
(v = 0) 

Present study 

Considering the effect of shear 
deformation (v = 0.3) 
Gorgun et al. (2012) 

Linear Nonlinear Linear Nonlinear 

1 2.982 3.007 3.443 3.475 

2 -0.599 -0.597 -0.597 -0.595 

3 -0.001357 -0.001368 -0.001434 -0.001447 
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Table 5 Continued 

3 -0.001357 -0.001368 -0.001434 -0.001447 

4 2.989 3.014 3.450 3.482 

5 -1.326 -1.326 -1.332 -1.333 

6 -0.001177 -0.001187 -0.001191 -0.001203 

7 2.985 3.010 3.446 3.478 

8 -0.985 -0.986 -0.980 -0.981 

9 -0.001237 -0.001249 -0.001268 -0.001281 

10 8.494 8.568 8.477 9.567 

11 -1.029 -1.026 -1.025 -1.022 

12 -0.001595 -0.001608 -0.001702 -0.001717 

13 8.425 8.499 8.408 9.499 

14 -2.434 -2.434 -2.447 -2.447 

15 -0.0013760 -0.001388 -0.001400 -0.001413 

16 8.399 8.473 9.380 9.471 

17 -1.679 -1.682 -1.671 -1.674 

18 -0.001396 -0.001409 -0.001434 -0.001449 

19 13.783 13.898 15.233 15.371 

20 -1.301 -1.298 -1.295 -1.291 

21 -0.001354 -0.001363 -0.001462 -0.001472 

22 13.652 13.767 15.101+ 15.240 

23 -3.099 -3.099 -3.116 -3.116 

24 -0.001148 -0.001156 -0.001169 -0.0012 

25 13.584 13.699 15.033 15.172 

26 -2.075 -2.078 -2.064 -2.068 

27 -0.001160 -0.001169 -0.001194 -0.001204 

28 17.851 17.990 19.632 19.798 

29 -1.365 -1.361 -1.358 -1.353 

30 -0.001026 -0.001031 -0.001119 -0.001125 

31 17.567 17.706 19.353 19.519 

32 -3.305 -3.305 -3.323 -3.324 

33 -0.000759 -0.000763 -0.000777 -0.000782 

34 17.441 17.580 19.228 19.395 

35 -2.181 -2.184 -2.170 -2.174 

36 -0.000780 -0.000785 -0.000812 -0.000818 
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Fig. 15 Example 3: First- and second-order analysis of an unbraced frame with semi-rigid connections: 

       (a) Structural model; (b) Degrees of freedom (adapted from Aristizabal Ochoa 2012) 
 
 
            Table 6 Example 3: Comparison of member end moments with semi-rigid  
                  connections for the first-order elastic analysis 

Member

Member end moments (kNm) 
First-order elastic analysis 

Aristizabal-Ochoa 
(2012) 

Present 
study 

m1 m2 m1 m2 

1 15.9560 4.6638 16.4602 4.6059 
2 1.2732 2.7759 1.2827 2.8219 
3 16.7500 9.5043 16.5340 9.2749 
4 10.7720 15.1790 10.7774 15.1180 
5 -5.9371 -14.5950 -5.8886 -20.0523 
6 -2.7759 -15.1790 -2.8219 -15.1180 
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Table 7 Example 3: Comparison of member end moments with semi-rigid connections for the  
      second-order elastic analysis 

Member 

Member end moments (kNm) 

Second-order elastic analysis 
(First Iteration) 

Second-order elastic analysis 
(Second Iteration) 

Aristizabal-Ochoa 
(2012) 

Present study 
Aristizabal-Ochoa 

(2012) 
Present study 

m1 m2 m1 m2 m1 m2 m1 m2 

1 19.3610 5.9407 19.5320 6.0656 19.3610 5.9277 19.5564 6.0591

2 3.1824 5.2304 2.8463 4.9060 3.1927 5.2348 2.8500 4.9074

3 20.076 10.950 19.2536 10.6313 20.060 10.962 19.2325 10.6343

4 12.254 17.315 12.4380 17.2401 12.245 17.308 12.4357 17.2367

5 -9.1231 -23.204 -8.9119 -23.0693 -9.1205 -23.207 -8.9090 -23.0700

6 -5.2304 -17.315 -4.9060 -17.2401 -5.2348 -17.308 -4.9074 -17.2367

 
 
  Table 8 Example 3: Comparison of joint displacements with semi-rigid connections for the first- and  
        second-order elastic analysis 

Degrees 
of 

Freedom 

Joint displacements 
Lateral and vertical translations (m), Rotations (radians) 

First-order 
elastic analysis 

Second-order 
elastic analysis 
(First Iteration) 

Second-order 
elastic analysis 

(Second Iteration) 
Aristizabal 

Ochoa 
(2012) 

Present study
Aristizabal 

Ochoa 
(2012) 

Present study
Aristizabal 

Ochoa 
(2012) 

Present 
study 

1 -0.020630 -0.021129 -0.026878 -0.025486 -0.026867 -0.025479

2 -0.002 -0.001439 -0.002 -0.001358 -0.0016 -0.001358

3 0.053 0.054484 0.073 0.066206 0.073 0.066203

4 -0.017756 -0.018188 -0.022796 -0.021382 -0.022803 -0.021385

5 -0.003 -0.002601 -0.003 -0.002487 -0.003 -0.002487

6 0.115 0.117700 0.157 0.144576 0.157 0.144572

7 -0.016215 -0.016211 -0.021721 -0.020550 -0.021724 -0.020553

8 -0.002 -0.002126 -0.003 -0.002207 -0.003 -0.002206

9 0.053 0.054484 0.073 0.066214 0.073 0.066213

10 -0.007795 -0.007917 -0.011130 -0.010881 -0.011514 -0.010874

11 -0.004 -0.003569 -0.004 -0.003683 -0.004 -0.003683

12 0.115 0.117424 0.157 0.144304 0.157 0.144300
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5. Conclusions 
 

The first and second order modified stiffness matrix and fixed end moments of an Euler-
Bernoulli beam-column member with semi-rigid beam-to-column end connections including the 
combined effects of bending plus shear deformations and shear component of the applied axial 
forces are derived in a classical manner. The proposed method herein is based on the modified 
stability functions for beam-columns with semi-rigid connections. The validity and effectiveness 
of the modified proposed equations are verified against well documented solutions on plane 
frames (Aksogan and Akkaya 1991, Aksogan and Dincer 1991, Gorgun 1992, Aristizabal-Ochoa 
2012) 

The main advantages of the proposed method: (1) the method attempts at including/neglecting 
shear deformation into a beam-column element in order to then analyse plane frames with the 
effects of semi-rigid connections. The effects of semi-rigid connections are condensed into the 
stiffness matrix coefficients and into the modified fixed end moments of each element for zero (the 
first-order elastic analysis), compression and tension axial force (the second-order elastic analysis) 
without introducing any additional degrees of freedom. It can be understood that using such 
elements would severely reduce the computational time when analysis large frame structures. The 
second-order elastic analysis of structures made of Timoshenko beam-columns is cumbersome. 
This is due to the combined effects of shear distortions and shear forces induced by the axial forces 
along each beam-column element as they deflect laterally along their span that must be taken into 
account in the second order analysis. Current Finite Element Methods and computer programs do 
not take into account these two effects. However, commercially available finite element software 
has the capability to deal with: shear deformation in beams, deep beam analysis and nonlinear 
analysis. (2) the matrices are defined in terms of the elastic axial stiffness and the “modified” 
stability functions. (3) the modified stiffness matrices and fixed end forces for various span 
loadings can be incorporated into computer programs without major difficulties making the 
method practical and versatile. Different types of span loadings are considered and most of the 
span loadings not being found in the literature for zero, compression and tension axial forces. (4) 
the proposed method is more accurate than any other method available and capable of capturing 
the phenomena of buckling under axial forces with the above mentioned effects. 

The modified stiffness matrices are limited to the elastic stability and second-order analyses of 
framed structures with semi-rigid connections made of Timoshenko beam-columns of various 
cross sections having different shape factor. In framed structures in which the external loads are 
applied along their beam-column members, the process of determining the induced axial forces in 
each beam-column member in a second-order static analysis is iterative requiring more than one 
set of calculations and checks. The validity of both matrices and fixed end moments is verified 
against available solutions of stability analysis and nonlinear geometric elastic behaviour of 
framed structures with semi-rigid connections using a single segment for each beam and column 
member without introducing additional degrees of freedom. Three examples are included to 
demonstrate the effectiveness of the proposed matrices and fixed end forces. 

The analytical results indicate that the stability and the nonlinear response of framed structures 
are not only affected by the magnitude of the axial force in its members, the magnitude and 
location of the restraints against horizontal drift, and the degree of the semi-rigidity of the 
connections, but also by the reduction in the axial stiffness of each member caused by the bending 
moments and shear deformations along their spans. Shear deformations and the flexibility of the 
semi-rigid connections increase the lateral deflections of the framed structures and reduce their 
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critical axial loads. The effects of shear deformations, semi-rigid connections and second-order P-
 effects must be considered in the analysis of the beam-column with relatively low effective shear 
areas or low shear modulus resulting in members with shear stiffness GAs of the same order of 
magnitude as EI/L2. Significant increases in the modified end bending moments and in the 
horizontal deflections are caused by the geometric nonlinear effects. The second-order effects 
should not be neglected, particularly in slender framed structures. 

It is noticed from the design examples that semi-rigid connection flexibility affects the 
distribution of forces in the frame and causes increase in the drift of the frame. This in turn 
necessitates the consideration of P   effect in the frame analysis. It required three to five 
iterations in the design examples considered to obtain the nonlinear response of frame which 
clearly indicates the significance of geometric nonlinearity in the analysis and design of semi-rigid 
steel frames. It is also noticed that consideration of P   effect and shear deformation yields a 
heavier frame in the case of semi-rigid as well as rigid frame. The analysis examples demonstrate 
that the proposed nonlinear analysis method based on bending, shearing and axial stiffness 
approximately simulates the elastic behaviour of steel structures. Comparisons with results found 
by other methods for the frame examples determined that the proposed method can effectively 
predict the member end forces of steel frameworks, achieve more accurate results than the 
conventional method. 

Compared to other approaches, the primary advantages of the proposed method are its 
simplicity, practicality and efficiency. The proposed stiffness coefficients simplify the means to 
account for geometric nonlinearity, effect of shear deformation, and semi-rigid connections. 
Finally, studies have shown that the proposed method can be readily and effectively implemented 
for the advanced analysis and design of steel frames and especially, nowadays, widely used precast 
reinforced concrete structures. 
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