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Abstract.   Current methods of analysis of trusses depend on matrix formulations based on equilibrium 
equations which are in fact derived from energy principles, and compatibility conditions. Recently it has 
been shown that the minimum energy principle, by itself, in its pure and unmodified form, can well be 
exploited to analyze structures when coupled with an optimization algorithm, specifically with a 
meta-heuristic algorithm. The resulting technique that can be called Total Potential Optimization using 
Meta-heuristic Algorithms (TPO/MA) has already been applied to analyses of linear and nonlinear plane 
trusses successfully as coupled with simulated annealing and local search algorithms. In this study the 
technique is applied to both 2-dimensional and 3-dimensional trusses emphasizing robustness, reliability and 
accuracy. The trials have shown that the technique is robust in two senses: all runs result in answers, and all 
answers are acceptable as to the reliability and accuracy within the prescribed limits. It has also been shown 
that Harmony Search presents itself as an appropriate algorithm for the purpose. 
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1. Introduction 

 
Recent decades have witnessed the introduction of many meta-heuristic methods for solving 

optimization problems. Harmony search (HS), which has been developed recently (Geem et al. 
2001), has proved to be very efficient in solving many kinds of engineering optimization problems. 
It is a memory based random search method simulating musical improvisation. Similar to other 
meta-heuristic methods, it does not involve complex mathematical operations, the functions to be 
optimized need not be differentiable, and the constraints can be in the forms of equalities and/or 
inequalities. Since the roots of the method are in finding a harmony among its variables which are 
musical notes, HS was first designed for discrete problems, but it has also been successfully 
applied to problems with continuous variables (Lee et al. 2005, Lee and Geem 2005).  

Revisions have been made to improve the method by Mahdavi et al. (2007) and Omran and 
Mahdavi (2008) under the names “improved harmony search” and “global – best harmony search”. 
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Other improvements have taken place on adaptive determination of the parameters of the 
method (Hasancebi et al. 2010, Geem and Sim 2010) thus eliminating excessive a-priori 
knowledge about the problems and experience about the algorithm. Very recently, the explorative 
power of HS is analyzed and a modified form of HS, called Explorative HS (EHS), is introduced 
with the aim of outperforming preceding versions in solution quality and CPU time (Das et al. 
2011). 

For structural problems, HS has been applied successfully to optimum design of truss structures 
(Lee and Geem 2004), frames (Degertekin 2008, Saka 2009) grillage systems (Erdal and Saka 
2009), and tuned mass dampers (Bekdaş and Nigdeli 2011). All these applications concern the 
design aspect of structures, and in all of them, whenever necessary, structural analyses were 
carried out using the very popular Finite Element Method (FEM). 

It has been shown in the present study that structures can be analyzed through the HS method 
without having recourse to FEM or to any other classical matrix method. The technique is based 
on a very fundamental principle in mechanics which states that the statical equilibrium 
configuration of a structure corresponds to a minimum potential energy state. This principle is very 
well known and is applied in different ways for analyzing some simple structures under statical 
loadings (see for example Timoshenko and Gere 1961 and Oden 1967). Other applications include 
works on cable structures (see for example Buchholt (1985), Sufian and Templeman (1992, 1993)), 
geometrically nonlinear truss analyses (Rezaiee-Pajand and Naghavi 2011, Greco et al. 2012). But 
its combination with meta-heuristic methods gave rise to a method called the Total Potential 
Optimization with Meta-heuristic Methods (TPO/MA) which enabled problems involving 
profound geometric and material nonlinearities to be solved (Toklu 2004, Saffari et al. 2008). 
 
 
2. Harmony Search 
 

The HS method can be explained briefly as in the pseudo code given below: 
 
 Choose a range R of notes 
 Compose p number of partitions using notes in R 
 While not satisfied 

 Compose p+1st partition applying special rules of HS 
 Determine the worst of the partitions among the p+1 ones and eliminate it 
 Decide if satisfied or not 

 If satisfied, output the best partition and end 
 
A partition in HS corresponds to a candidate solution vector. Thus, choosing p partitions 

actually means forwarding p candidate solutions for the given problem. The p+1st partition is in 
fact a candidate which is expected to be better than the p previous ones, or at least not worse than 
all of them. HS then imposes that the worst of these p+1 vectors will be wiped out to leave a new 
set of p vectors which is better than or the same as the previous set. The procedure continues until 
it can be said that no better sets can be obtained or some other stopping criterion, related to the 
number of iterations or the accuracy reached, becomes satisfied. 

The determination of better and worse is done by calculating the objective function 
corresponding to each of these vectors. This evaluation will include the penalties calculated and 
added to the objective function in accordance with the constraints unsatisfied (Statnikov et al. 
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2009). The counterpart of this mathematical evaluation in music is the appreciation of the audience. 
The special rules of HS mentioned above are important when defining a new partition, i.e. the 

p+1st vector. Any element of this vector will be chosen either from the set of corresponding 
elements of the existing p vectors, or independent of them, from the whole domain defined. If the 
first choice prevails, the value of the element may or may not be changed a small amount. This last 
choice corresponds to the musical interpretation that either the note will be played as is, or will be 
used with small variations, half a note above or half a note below. The above described procedure 
is accomplished through the following two parameters (Geem et al. 2001): 
 

 HMCR: Harmony memory considering rate, probability with which the already chosen 
“notes” will be used in the new “partition” (with 1-HMCR probability a note will be 
chosen from the whole range R). 

 par: Pitch adjusting rate, probability that a component will be used with minor changes in 
case it is preferred to notes in the whole range (with 1-par  probability, value will be 
used as it is, without any change). 

 
 
3. Total Potential Optimization Method for Structural Analysis of Trusses 
 

As mentioned in the above sections, meta-heuristic methods have been recently applied to 
structural analysis problems defining them as optimization problems in contrast to the usual trend 
of formulating them as equilibrium problems (Toklu 2004). With this consideration, the 
equilibrium problem is defined as an optimization problem following the very basic principle of 
mechanics that of all the possible deformed shapes of a structure, the one corresponding to the 
state of equilibrium is the one corresponding to the minimum potential energy of the system. Thus 
the method is called Total Potential Optimization with Meta-heuristic Methods (TPO/MA). 

When analyzing a structure, the total potential energy of the structure can be calculated as 

where strains in the body are characterized by ε, creating the generalized deflections ui coupled 
with the generalized loads Pi, and e(ε) is the strain energy density 

The relationship between σ and ε can be found in the constitutive equation σ = σ(ε), which can 
be linear or not, and is assumed to be known and integrable. NP is the number of loads; V is the 
volume of the body. 

Consider a truss with Nm prismatic members, Nj joints and NP loads. Consider the element ij 
(see Fig. 1) with original end coordinates (xi, yi, zi) and (xj, yj, zj) and with original length L(0) as 
given in Eq. (3). After end displacements (ui, vi, wi) and (uj, vj, wj) corresponding to a configuration 
c, the final length will be L(c) as given in Eq. (4). 
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The elongation of the member then is ΔL(c) = L(c)-L(0) and the uniform strain in a member is 

With ε at hand for a given deformed shape, σ can be calculated using the constitutive equation, 
which enables the calculation of the strain energy density e from Eq. (2), for a given member. For 
example, for a truss member made of linear elastic material with the constitutive equation σ = Eε, 
E being the modulus of elasticity, the strain energy becomes e = Eε(c)2/2. For nonlinear materials, 
this calculation will necessitate the integration Eq. (2). Thus, it becomes possible to determine the 
potential energy of a structure with Eq. (6) if the end displacements are known 

where AjLj is the volume of the truss element j, Aj being the cross sectional area. The method of 
analysis is based on the minimization of the total potential energy U, which forms the objective 
function of the problem, calculated using Eq. (6). The constraints are the restrictions on nodal 
displacements. In the nodes that correspond to supports of a truss, some displacements may be 
limited from above, from below, or from both sides. The last case corresponds to a fixed nodal 
displacement; zero in most of the cases, or a finite value in cases where there exist imposed 
support displacements. 

According to the formulation described above, the unknowns of the problem are the 
displacement components at the joints of the truss which form the unknown vector d = [u1 v1 w1 … 
uNj vNj wNj]

T, with 2Nj components for a plane truss, and with 3Nj components for a space truss. As 
stated above, there may be constraints on the components of d, forcing some of them to be zero at 
the supports, or limiting them from above and/or below, depending on the geometrical conditions 
of the truss. There may even be linear relations between some components, corresponding for 
instance to inclined supports. 

TPO/MA then involves determination of d that minimizes U, the total potential of the system, 
satisfying the constraints of the problem, using a meta-heuristic optimization technique. In the 
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Fig. 1 Deformation of truss element ij in three dimensional space 
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Fig. 2 Flow chart of the program 
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program developed in the scope this study, random displacements are given to the nodes of the 
truss, forming several vectors d, and total potential energy of the structure is calculated depending 
on the formulation above. By using the HS technique the iterations are continued until no smaller 
potential can be found by changing the configuration of the system within the range imposed by 
the accuracy desired or when a prescribed number of cycles have been performed. 
 
 
4. Harmony Search Applied to Truss Analysis 
 

In this study, in order to perform structural analysis of trusses using the HS technique, special 
purpose software was prepared based on the Visual Basic 2008 programming language. 

The flow chart of the program is given in Fig. 2. Data read into the program consists of three 
blocks, one being related to the problem being solved, the second being related to the parameters 
of the HS method, and the third being related to convergence and stopping of the cycles. 

Structural data includes the number of joints, number of members, original joint coordinates, 
constraints on joint displacements, i.e., support conditions, member connectivity information, 
member areas and material properties, and finally loads acting on the structure. As can be seen, 
these are the normal data which would be necessary for analyzing the performance of trusses by 
any other method. 

Data inherent to the HS method are p, population number of vectors to be kept in memory, 
HMCR, harmony memory considering rate, and, par, pitch adjusting rate, which are already 
described above. 

Third group of data, which are related to stopping criteria are s, s_min, Ns, s_factor1, s_factor
2, and maxiter, which are described below. Their role in the calculations can be followed from Fig. 
2. 

The neighborhood for fine adjustment is characterized by the parameter s. Its original value is 
increased by factor s_factor1 each time a better solution is obtained and decreased by factor 
s_factor2 whenever a better solution is not obtained after Ns cycles. Obviously s_factor1 ≥ 1.0 and 
s_factor2 < 1.0. The stopping operations are triggered when s goes down below a prescribed value 
s_min. 

The limiting number of iterations is maxiter. When number of iterations reach this level, 
another type of stopping operations are triggered, meaning that no convergence is obtained with 
the accuracy defined by s_min. 

As shown in Fig. 2, the cycles begin by the creation of p harmony vectors and calculation of 
potentials corresponding to these vectors U1, …, Up. Then the best and worst vectors among them 
are chosen corresponding to the minimum and maximum of potentials, Umin and Umax, respectively. 
The rest of the procedure consists of cycles involving the creation of a new vector following the 
well-known rules of HS, increasing the population from p vectors to p+1 vectors, and then 
eliminating the vector with the largest potential again reducing the population number down to p.  

Originally, HS was defined in such a way that the fine adjustment was to be done to an upper 
half tone or to a lower half tone, i.e., in a discrete way. In this application of truss analysis, since 
the deflections of joints are continuous, their fine adjustments are done by picking randomly a 
number within that variable’s neighborhood defined by s. It is to be noted that s diminishes as 
iterations gets closer to the final solution. 

For a given problem, the initial choices of the deflected shape yield in general very different 
values for the total potential, resulting in a great discrepancy between the best and worst choices. 
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As iterations progress, both the best and worst choices in the p vectors in the memory gets 
better and better, the discrepancy between them diminishing with the iterations. After a sufficient 
number of iterations, the difference in energy between the best and worst vectors becomes 
negligible. In this case, a great number of additional iterations become necessary for obtaining 
even slightly better solutions. The stopping operations are then triggered when it becomes clear 
that new iterations do not result in obtaining better solutions. At this stage, the required joint 
displacements become determined as the components of the vector corresponding to the minimum 
total potential energy Umin. Determination of joint displacements in this way enables calculation of 
both member elongations and member forces. This completes the analysis of a truss. 
 
 
5. Numerical examples 
 

To verify the program developed, two problems relevant to the subject have been solved, one 
with 3 loadings. A computer having a Core 2 Duo T7700 processor has been used for the analyses. 
In the algorithm of the program developed, random numbers have been created by using the Visual 
Basic 2008 Rnd function. CPU time for the first example is between 4-52 seconds and for the 
second one between 25-591 seconds depending on the vector populations and loadings. These 
problems, which involve nonlinearity due to large deflections, were also analyzed by using FEM 
software capable of solving linear and geometrically nonlinear problems. The comparisons are 
done with respect to joint displacements, member forces, and the total potential energy calculated 
using Eq. (6). 

 
5.1 Example 1. 6-bar truss 
 
The first example is a 6-bar plane truss system, which has previously been used in structural 
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analysis through TPO/MA (Toklu 2004). The system is shown in Fig. 3. The point load P at the 
node 4 equals 150 kN, the modulus of elasticity E is 200 GPa for all the members, the cross-
sectional area of the members marked 1, 5, 6 is 200 mm2 and of the members marked 2, 3, 4 is 100 
mm2. This example is used for checking results with solutions obtained using other methods and 
also for making trials on the parameters of the technique. 

Fig. 4 shows the general behavior in minimization of the total potential of the system as a 
function of the number of iterations performed. It is to be noted that the best and worst solutions in 
the population approach each other as the number of iterations increases. It is also to be noted that 
improvements take place in the worst solution much more frequently than improvements in the 
best solution. 

It is evident that the total potential of the system is null in the undeformed configuration if one 
adopts an appropriate datum for the applied loads. The fact that the total potential may be of the 
order of 3 × 107 MNm in the first iterations, as can be seen in Fig. 4, indicates that iterations may 
start from very unrealistic configurations and still approach the best possible solution that 
corresponds to a total potential which is around -1.06 kNm. 

While the total potential approaches a minimal value, the displacements and member forces 
approach their final values. This behavior is demonstrated in Fig. 5 for two displacements of the 6-
bar truss corresponding to best values in the successive populations. It is to be noted that in the 
relevant run the trials for the y displacement of joint 5, v5, start from around 1572 mm and end at 
the value 2.33 mm. The corresponding values for the x displacement of joint 4, u4, are -1241 mm 
and 14.12 mm. 

The roles of the parameters of the technique applied are investigated through this example. 
First trials have shown that the initial diameter can be taken as the half of the bigger exterior 
dimension of the system, which is 4000 mm for the current example. This dimension is then 
modified through the computations using a value of the parameter s_factor1 of 1.005, s_factor2 of 
0.995 and Ns as 200. This means that the radius is taken as 4000 mm at the start, it is increased 
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whenever a better solution is found by multiplying it by 1.005, and whenever a better solution is 
not found in 200 successive iterations, and it is reduced by the factor 0.995. This continues until 
the radius falls below a prescribed value which is of the order of s_min = 10-3 mm depending on 
the accuracy desired. 

Fig. 6 demonstrates the effect of the number of vectors in the population. It is evident that 
number of iterations multiplied by the number of vectors is a measure of the number of total 
potential evaluations. With this view in mind, one would expect that for a small number of 
iterations, solutions corresponding to larger populations should give better results. This 
expectation is clearly validated in Fig. 6 where the potentials are averages of three independent 
runs starting with different seeds of random numbers. It is concluded in this respect that if a small 
population of vectors is used in the calculations, the number of iterations needed to find a solution 
with sufficient accuracy will be increased. Based on these considerations the iterations are run with 
20 vectors in the applications that follow. 

The trials on the parameters HMCR and par defined above have shown that the combination 
HMCR = 0.9, par = 0.4 gives better results for a given number of iterations meaning that, in 
creating a new vector, in 90% of the cases previously used components will be used, and in 10 % 
of the cases the components will be chosen from the whole range. If the first case is valid, that is if 
already used components are to be used again, in 60% of cases these components will be used as 
they are, and small adjustments will be made with about 40% probability. In other words when 
creating a new vector, 54% of its components will be taken from existing ones and used without 
any change, 36% will be taken from existing ones and used with minor changes, and the remaining 
10% will be chosen randomly from the whole range defined. 

The solutions obtained for the 6-bar truss using the HS technique as proposed in this study are 
compared to three other solutions for this truss, one corresponding to a previous study  obtained 
again by TPO/MA but with the local search technique (Toklu 2004), and the two others obtained 
from linear and geometrically nonlinear FEM applications. Though the truss in question 
demonstrates nonlinear behavior at the considered level of loading, the linear FEM analysis is 
included to provide another basis for comparison. Non-zero joint displacements, member forces, 
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Table 1 Solutions for the 6-bar plane truss 

 
 
and total potentials are given in Table 1 corresponding to these solutions. 

A good way of comparing these results is by looking at the total potential energies. It can be 
seen in this way that FEM-linear is the worst solution and the solutions obtained by the present 
application are the ones with the lowest potential energies thus they correspond to a more feasible 
deformed configuration. One interesting point in these results is that although the difference 
between the highest and lowest total potential is of the order of 0.005% (between the linear FEM 
solution and the results from the present study), the difference between the lowest and highest 
member forces for the most significant member force may go up to 0.2% (between the linear and 
nonlinear FEM solutions for member 2, and even larger for other members which have less force). 
If the linear FEM solution is excluded in this comparison, the corresponding values become 
0.002% difference in the total potentials and 0.01% difference in the most significant member 
force. 

Another observation relates to the three independent runs made using the present method: 
although the energy level reached is the same, the member forces are not the same, corresponding 
to different solutions. This can be explained by the fact that, around the optimal point which is 
characterized by a pit in the multi-dimensional energy surface, small changes in the position result 
in very small changes in the energy. 

 
5.2. Example 2. 25-bar space truss 
 
To verify the program in three dimensions, a 25-bar space truss system (Venkaya 1971) shown 

in Fig. 7 is analyzed. All the members are characterized with the same material having a modulus 
of elasticity of 200 GPa and the same cross sectional area of 10 mm2. The problem is solved with 
three loadings: 

 
 Loading 1: at joint 1, Py = 80 kN and Pz = -20 kN 

  at joint 2, Py = -80 kN and Pz = -20 kN 
 Loading 2: at joint 1, Px = 800 kN and Pz = -200 kN 

  at joint 2, Px = -800 kN and Pz = -200 kN 
 Loading 3: at joint 1, Px = 800 kN, Py = 800 kN and Pz = -200 kN. 

  
Present study – TPO/MA 

Toklu (2004)
FEM 

5 vectors 10 vectors 20 vectors Linear Nonlinear 

Joint 
displace-

ments (mm) 

u4 14.119 14.119 14.118 14.12 14.150 14.120 
v4 2.825 2.828 2.830 2.83 2.843 2.828 
u5 0.301 0.302 0.304 0.30 0.300 0.302 
v5 2.311 2.316 2.319 2.32 2.309 2.317 

Member 
forces (N) 

1 49825.84 49808.69 49789.18 49811 49725.13 49810.25 
2 94134.8 94134.82 94131.58 94142 94331.33 94140.09 
3 -6672.743 -6686.72 -6687.501 -6688 -6669.14 -6688.4 
4 42961.98 42970.56 42977.97 42974 43055.99 42973.59 
5 4025.542 4032.102 4074.446 4035 4001.49 4034.16 
6 5374.823 5354.307 5354.774 5352 5335.31 5351.45 

Total potential (kNm) -1.059734 -1.059734 -1.059734 -1.059735 -1.059727 -1.059735 
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The solutions obtained for these loadings using the presented method and the nonlinear FEM 
method are presented in Table 2. 
 
 

 
Table 2 Solutions for the 25-bar space truss under three loadings 
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Fig. 7 25-bar space truss 

 
Loading 1 Loading 2 Loading 3 

Present study FEM nonlinear Present study FEM nonlinear Present study FEM nonlinear

Jo
in

t d
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en

ts
 (

m
m
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u1 -0.076 0.000 1257.533 1261.101 2522.412 2522.974 
v1 37.910 37.847 -527.509 -528.823 1840.283 1840.856 
w1 -37.214 -37.199 -455.548 -456.667 -3078.900 -3083.146 
u2 -0.064 0.000 -1264.620 -1261.101 2437.300 2441.255 
v2 -37.766 -37.847 529.739 528.823 2522.971 2523.148 
w2 -37.153 -37.199 -457.905 -456.667 -1435.857 -1441.611 
u3 0.892 0.867 -48.858 -48.610 -393.940 -394.610 
v3 -1.731 -1.744 -288.344 -288.313 -371.211 -371.344 
w3 -16.342 -16.392 -362.120 -362.743 -904.675 -905.218 
u4 0.924 0.867 -203.107 -202.750 579.074 579.039 
v4 1.750 1.744 -296.619 -296.792 198.927 199.088 
w4 -16.355 -16.392 -67.535 -68.466 44.972 44.423 
u5 -0.822 -0.867 48.774 48.610 1013.812 1015.303 
v5 1.751 1.744 288.714 288.313 1037.329 1038.580 
w5 -16.402 -16.392 -363.583 -362.743 -353.069 -356.179 
u6 -0.844 -0.867 202.232 202.750 407.347 408.348 
v6 -1.746 -1.744 297.259 296.792 802.637 803.160 
w6 -16.430 -16.392 -69.186 -68.466 -36.622 -36.688 
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Table 3 Comparison FEM and TPO/MA analysis results for the 25-bar space truss 

 
 

It can be observed from the given results that for all three cases investigated, the solutions are 
very close to each other as to the energy, deflected shape and member forces. In fact, the energy 
levels are the same. The most significant displacements and member forces for the three cases and 
the discrepancies can be seen in Table 3. 
Thus the maximum discrepancy in the most significant displacements is smaller than 0.3%. For 
member forces this limiting value is much smaller, 0.02%. These values are somewhat greater than 
those found in the 1st example. 

Table 2 Continued 

M
em

be
r 

fo
rc

es
 (

N
) 

1 75675.54 75693.19 692590.19 692496.23 107639.85 106577.59 
2 3914.70 3893.38 -334407.98 -334606.7 273603.10 274287.68 
3 3882.78 3893.38 73046.40 72764.01 -310371.76 -310685.58 
4 3890.05 3893.38 72342.98 72764.01 247022.79 246394.01 
5 3885.09 3893.38 -334711.31 -334606.7 -70531.59 -70014.67 
6 -13844.06 -13883 275293.86 274675.19 -10172.10 -10676.67 
7 -13875.23 -13883 -189136.75 -189232.9 359300.79 359448.95 
8 -13899.23 -13883 -189278.62 -189232.9 187013.94 187700.44 
9 -13893.96 -13883 273926.72 274675.19 471844.41 472058.79 

10 1735.60 1733.72 -132534.71 -132732.2 -110993.33 -111425.75 
11 1745.12 1733.72 -132868.16 -132732.2 -180274.51 -180522.63 
12 -3481.69 -3488.52 35618.38 35767.34 -26908.42 -26811.14 
13 -3497.44 -3488.52 35797.63 35767.34 -106788.78 -106798.40 
14 -3376.39 -3394.96 -52294.17 -52346.49 -260641.29 -260940.19 
15 -3411.65 -3394.96 -125338.75 -125276.5 -237250.26 -237646.69 
16 -3366.09 -3394.96 -125143.20 -125276.5 238850.10 238740.82 
17 -3411.79 -3394.96 -52509.14 -52346.49 -177596.69 -178358.89 
18 -4657.28 -4655.87 116226.47 116024.86 -125783.32 -125978.40 
19 -4643.16 -4655.87 -174650.86 -174821.5 -248091.29 -248092.67 
20 -4654.23 -4655.87 -175120.58 -174821.5 -190077.70 -190716.96 
21 -4662.30 -4655.87 115946.41 116024.86 332334.87 332665.42 
22 -7378.16 -7367.45 -46776.43 -46167.64 -52548.72 -52284.93 
23 -7354.86 -7367.45 -54924.78 -55263.71 -106706.62 -106579.02 
24 -7364.58 -7367.45 -45581.17 -46167.64 -50751.51 -50960.27 
25 -7357.67 -7367.45 -55421.23 -55263.71 542044.64 542081.79 

TP (kNm) -3.7645 -3.7645 -1444.6 -1444.6 -2860.5 -2860.5 

 Parameter Difference FEM TPO/MA 

Loading 1 
v2 0.21% 37.847 mm 37.766 mm 

f1 0.02% 75693.19 N 75675.54 N 

Loading 2 
u1 0.28% 1261.101 mm 1257.533 mm 

f1 0.01% 692496.2 N 692590.2 N 

Loading 3 
w1 0.14% 3083.146 mm 3078.90 mm 

f25 0.007% 542081.8 N 542044.6 N 
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In Fig. 8, the convergence behavior of the best and worst vectors in the HS population are 
shown for the 25-bar space truss problem for three independent runs under Loading 1 obtained 
with 20 vectors in the HS population. 

Table 4 gives the results corresponding to multiple runs carried out on 25-bar space truss. In the 
table, complete results are presented for 100 independent runs with three different choices of 
population vectors, 5, 10 and 20 namely. For each choice of population number and for each 
variable of the truss, i.e., nodal displacements, member forces and total potential energy, minimal 
and maximal values, average, and standard deviation calculated for these 100 runs are tabulated. 

The first observation that can be made here is the one made for the 6-bar plane truss: The 
minimum energy is not sensitive to small changes in the configuration near the optimal point. 
Indeed, the total potential is the same up to 6 significant digits for all the runs considered. The 
standard deviation for total potentials is of the order of 0.5 × 10-6 kNm for all three cases p = 5, 10 
and 20. The results show that the choice p = 5 is as acceptable as the choices p = 10 and p = 20. 

As to the joint displacements and member forces, the same behavior can be observed with the 
additional and reasonable advertence that for more significant values, the deviations from the 
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Fig. 8 Convergence of the best and worst vectors in three independent runs for the 25-bar space truss 
under Loading 1 
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Table 4 Evaluation of 100 independent solutions of the 25-bar space truss under Loading 1 using TPO/MA 

  p = 5 vectors p = 10 vectors p = 20 vectors 

  Min Max Aver. St. Dev. Min Max Aver. St. Dev. Min Max Aver. St. Dev. 

Jo
in

t d
is

pl
ac

em
en

ts
 (

m
m

) 

u1 -0.099 0.099 0.004 0.035 -0.080 0.063 -0.002 0.027 -0.076 0.062 -0.001 0.029 

v1 37.730 37.941 37.834 0.043 37.756 37.930 37.843 0.041 37.756 37.980 37.845 0.043 

w1 -37.245 -37.143 -37.195 0.021 -37.239 -37.150 -37.197 0.022 -37.261 -37.151 -37.199 0.020 

u2 -0.074 0.090 0.003 0.036 -0.079 0.079 -0.001 0.037 -0.070 0.068 0.001 0.029 

v2 -37.960 -37.768 -37.857 0.044 -37.941 -37.745 -37.849 0.041 -37.933 -37.719 -37.851 0.043 

w2 -37.242 -37.169 -37.204 0.017 -37.238 -37.157 -37.199 0.018 -37.247 -37.132 -37.200 0.021 

u3 0.828 0.898 0.866 0.015 0.838 0.898 0.867 0.013 0.831 0.912 0.872 0.016 

v3 -1.783 -1.709 -1.745 0.016 -1.782 -1.711 -1.744 0.013 -1.782 -1.715 -1.744 0.015 

w3 -16.431 -16.348 -16.390 0.017 -16.434 -16.350 -16.391 0.018 -16.467 -16.342 -16.387 0.018 

u4 0.823 0.905 0.868 0.015 0.834 0.907 0.867 0.015 0.837 0.924 0.869 0.015 

v4 1.713 1.782 1.744 0.016 1.711 1.776 1.745 0.014 1.697 1.789 1.745 0.016 

w4 -16.436 -16.350 -16.396 0.018 -16.430 -16.348 -16.390 0.017 -16.437 -16.330 -16.393 0.020 

u5 -0.899 -0.832 -0.868 0.015 -0.903 -0.823 -0.866 0.016 -0.896 -0.822 -0.867 0.014 

v5 1.705 1.779 1.743 0.016 1.707 1.773 1.743 0.015 1.708 1.775 1.745 0.014 

w5 -16.437 -16.359 -16.394 0.017 -16.431 -16.353 -16.392 0.017 -16.425 -16.358 -16.390 0.015 

u6 -0.905 -0.831 -0.869 0.015 -0.902 -0.831 -0.869 0.015 -0.906 -0.831 -0.863 0.017 

v6 -1.779 -1.711 -1.746 0.015 -1.776 -1.713 -1.745 0.013 -1.794 -1.714 -1.746 0.015 

w6 -16.436 -16.341 -16.388 0.021 -16.431 -16.351 -16.390 0.019 -16.460 -16.338 -16.391 0.019 

M
em

be
r F

or
ce

s (
N

) 

1 75650.45 75721.20 75690.92 12.73 75656.04 75730.11 75692.38 14.10 75659.18 75730.36 75696.01 13.92 

2 3871.38 3917.71 3892.29 9.74 3875.27 3913.21 3892.85 8.60 3867.07 3918.56 3893.39 9.46 

3 3868.04 3914.54 3893.44 9.11 3876.71 3914.24 3894.07 7.73 3866.81 3916.95 3893.72 8.96 

4 3872.51 3915.60 3892.91 8.64 3873.19 3917.09 3893.26 8.36 3875.26 3915.78 3891.98 8.82 

5 3869.55 3919.12 3893.76 10.38 3875.43 3914.98 3893.67 8.73 3872.23 3923.64 3893.46 10.54 

6 -13909.65 -13859.26 -13883.46 10.76 -13913.77 -13851.61 -13883.32 12.35 -13906.80 -13844.06 -13882.37 12.24 

7 -13906.94 -13861.84 -13883.60 9.29 -13912.01 -13857.79 -13882.85 12.02 -13923.35 -13840.75 -13883.95 12.86 

8 -13905.49 -13849.83 -13882.38 11.37 -13908.04 -13860.39 -13881.64 11.98 -13919.32 -13853.82 -13884.21 11.16 

9 -13910.92 -13858.18 -13881.03 11.58 -13914.45 -13851.49 -13882.35 11.90 -13918.23 -13848.32 -13884.40 13.02 

10 1705.80 1765.05 1734.62 12.60 1707.54 1764.53 1735.78 11.44 1705.93 1766.72 1734.79 12.75 

11 1705.51 1763.35 1736.01 12.52 1690.66 1770.07 1732.89 13.85 1697.75 1775.15 1735.52 12.37 

12 -3516.06 -3453.07 -3489.27 11.92 -3522.60 -3461.71 -3488.94 12.14 -3524.45 -3449.70 -3489.14 14.67 

13 -3521.55 -3459.36 -3488.81 12.28 -3514.75 -3460.53 -3488.54 10.90 -3518.21 -3459.22 -3490.59 11.40 

14 -3413.21 -3375.77 -3394.85 7.10 -3407.95 -3371.07 -3394.72 6.94 -3414.31 -3374.47 -3392.02 7.79 

15 -3413.06 -3377.86 -3393.14 7.98 -3410.32 -3376.20 -3393.63 6.80 -3422.24 -3370.15 -3396.07 8.04 

16 -3413.70 -3378.92 -3395.62 6.72 -3409.07 -3377.53 -3394.53 7.26 -3412.64 -3366.09 -3394.44 7.72 

17 -3410.18 -3378.61 -3395.33 7.00 -3411.58 -3375.91 -3395.57 6.71 -3411.79 -3378.43 -3394.58 6.23 

18 -4682.18 -4638.81 -4656.94 7.74 -4670.87 -4637.61 -4655.73 7.12 -4677.98 -4626.20 -4656.63 7.53 

19 -4673.59 -4639.01 -4655.78 6.90 -4677.70 -4639.61 -4655.54 6.81 -4677.72 -4640.55 -4655.44 6.98 

20 -4676.09 -4640.97 -4656.10 7.29 -4670.56 -4635.93 -4655.47 7.16 -4672.47 -4638.43 -4655.67 6.23 

21 -4673.19 -4637.34 -4655.80 6.72 -4671.07 -4637.99 -4656.14 6.39 -4675.76 -4638.74 -4655.69 7.21 

22 -7396.32 -7341.05 -7365.85 11.27 -7390.28 -7340.46 -7366.96 10.73 -7388.04 -7340.15 -7365.53 9.14 

23 -7383.33 -7345.04 -7366.15 7.76 -7387.93 -7348.53 -7366.81 8.04 -7402.04 -7347.83 -7366.83 8.86 

24 -7396.88 -7341.28 -7369.94 10.47 -7383.57 -7345.91 -7366.79 8.01 -7392.49 -7343.60 -7368.13 10.25 

25 -7387.32 -7350.26 -7369.08 7.41 -7387.65 -7344.12 -7367.67 9.47 -7390.95 -7345.83 -7366.72 8.07 

TP (kNm) -3.764502 -3.764499 -3.764501 0.58 x10-6 -3.764502 -3.764499 -3.764501 0.49 x10-6 -3.764502 -3.764499 -3.764501 0.54 x10-6 
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average get smaller. This behavior is visualized in Fig. 9 where the ratios standard deviation/ 
average or the normalized standard deviation values which are also known as coefficients of 
variation are plotted against average values for the case p = 20 vectors. It can be seen on this figure 
that as the calculated values get bigger in absolute value, the discrepancies from the average values 
diminish. This behavior can be explained by the fact that the variables which affect more the total 
potential of the system are found more accurately as compared to variables which have negligible 
effect on the total potential energy. That is why the above mentioned ratio, which can be 
considered as a measure of relative accuracy, is smallest for the displacements v1, w1, v2 and w2, 
where the external loads are applied, and for the elements 22, 23, 24 and 25, where the member 
forces are more important. A closer look at the Fig. 9(a) which is drawn excluding the 
displacements u1 and u3 which are practically zero, shows that the relative accuracy is less than 
0.01% in the example problem for more significant joint displacements, but may go up to 2% for 
insignificant variables which do not affect the total potential of the system. For member forces 
these figures are of the order of 0.02% and 0.7% for significant and insignificant member forces 
respectively, as seen from Fig. 9(b). 
 
 
6. Conclusions 
 

Total Potential Optimization Method in combination with meta-heuristic techniques has a very 
simple but sound principle behind it. In this paper two and three dimensional problems with 
geometric nonlinearity are treated to demonstrate the power of the named method. It has been 
shown that Harmony Search can be incorporated into this method to yield an efficient and accurate 
method for treating relevant problems. The results obtained by using this technique are compared 
with the results obtained from well-known nonlinear structural analysis programs which are based 
on FEM. As seen from the presented results, the solutions found using these two methods are close 
to each other within tolerable limits for the treated examples. Further study is necessary for 
checking the correctness of this observation for all types of trusses and for all levels of loads. 

One observation about the application of HS in TPO/MA is that the values assigned to 
parameters inherent to the technique are important only to a certain degree: by increasing the 
number of iterations, sufficiently accurate results can be obtained for almost any combination of 
parameters. On the other hand, if one aims to minimize the number of iterations, then a 
comprehensive search on them will be necessary. One such effort in this study gave the best values 
for the main parameters as HMCR = 0.9 and par = 0.40 meaning that the components of the new 
vectors will be chosen among the already used options with 90% probability with a further search  
within a “small” neighborhood  around them in 40% of the cases. It has been seen that such a 
choice results in a meaningful reduction in the number of function evaluations. 

One further remark about the method presented is its robustness. Effectively, it has been seen 
that every run performed in this study has ended with acceptable results independent of the truss 
type, loading, choice of parameters, and starting point related to the seed of the random numbers. 
This is certainly very important for a meta-heuristic method considering that many optimization 
problems are very sensitive to problem types and starting options. 

The study has also drawn attention to an interesting point on the accuracy of the results 
obtained by TPO/MA. It has been observed that the total potential energy of the system after the 
application of loads can be optimized and calculated with a very high accuracy. But the level of 
accuracy is not the same for all variables of the system, it is higher for the ones which contribute 
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more to the total potential of the system and less for the ones with smaller order of magnitude thus 
with less significant effect on the total potential. This of course is due to the fact that the system is 
solved by minimizing a single scalar objective function which depends on a great number of 
variables. 
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