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Abstract.    The effect of structural uncertainties or measurement errors on damage detection results makes 
the robustness become one of the most important features during identification. Due to the wide use of 
vibration signatures on damage detection, the development of vibration-based techniques has attracted a 
great interest. In this work, a review on vibration-based robust detection techniques is presented, in which 
the robustness is considerably improved through modeling error compensation, environmental variation 
reduction, denoising, or proper sensing system design. It is hoped that this study can give help on structural 
health monitoring or damage mitigation control. 
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1. Introduction 
 

Structural damage detection is a typical problem received much attention in engineering over 
the last decades. Damage in the structure deteriorates its performance and, in turn, reduces 
structural reliability and safety, leading to the development of various detection techniques 
summarized in some review papers (Cantwell 1992, Chang 1997, Zhou 2002, Sohn 2003, Worden 
2008, Antonino 2008, Ciang 2008, Ostachowicz 2008). As a relatively inexpensive technique with 
real-time in-situ potential, the vibration-based methods have been well investigated for years, of 
which the use of different vibration signatures for detection has been systematically reviewed by 
researchers (Salawu 1997, Doebling 1998, Zou 2000, Carden 2004, Alvandi 2006, Montalvao 
2006, Delia 2007, Gandomi 2008, Liu 2009, Li 2010, Annamdas 2010, Fan 2011). 

Though considerable progress has been made, in practical applications, however, many 
challenges still remain. For example, the existence of structural uncertainties might collapse the 
detection algorithm and consequently lead to suspicious results. Moreover, in many cases, a large 
amount of data needs to be measured and processed during detection. The uncertainties in data are  
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recognized as one of the main barriers against the application of vibration-based techniques in 
real-life structures (Zhang 2007). As mentioned by Xu et al. (2006), although vibration-based 
damage identification techniques offers several advantages, most of the available damage 
identification algorithms fail when applied to practical structures due to the effect of measurement 
errors, need to use incomplete mode shapes, mode truncation, and the non-unique nature of the 
solutions. To develop robust techniques is therefore critical for improving detection accuracy, 
under which the advanced algorithms have been explored, and the optimal sensing systems have 
been designed in recent years. To alleviate the need of reviewing extensive results, Beard et al. 
(2007) draw a sketch on essential elements of design and implementation process for robust 
damage detection and quantification. In an overview published by Hsieh et al. (2006), the robust 
damage detection scheme can be realized by using the vibrational data in conjunction with other 
monitoring approaches. Zhou et al. (2002) and Wild et al. (2008) provided a glance on robust 
detection from the sensing point of view. Although various techniques have been presented, no 
comprehensive review of vibration-based robust damage techniques has been made so far. 

This paper attempts to retrieve some information through a thorough review on the topic 
discussed. It is organized in six sections including a brief introduction in section 1. Sections 2 to 5 
review the vibration-based detection strategies, in which the robustness is improved by the 
modeling error compensation, the environmental/operational variance reduction, denoising and the 
sensing system design. Final, some conclusions are drawn. 
 
 
2. Robust detection: modeling error compensation 

 
The structural uncertainties are mainly originated from the modeling error due to model 

discretization or mode truncation. In general, the uncertainty effect on detection results can be 
compensated by developing vibration-based robust algorithms for model updating. For example, 
Alvin (1997) developed a sensitivity-based element-by-element method by minimizing the 
dynamic residual. The robustness for localizing model errors is indicated by embedding the 
Bayesian estimation to the algorithm. Shi et al. (2002) presented a damage quantification 
algorithm of using the elemental modal strain energy change. The mode truncation error and the 
finite-element modeling error from the higher modes can be significantly reduced by combining 
the stiffness information in the algorithm. Xu et al. (2007) proposed an iterative algorithm based 
on the changes of the first several natural frequencies, which takes the advantages of the multiple-
parameter perturbation and the generalized inverse methods to improve robustness.  

By optimizing an objective function defined as the discrepancy between the experimental and 
analytical modal parameters, Yu et al. (2010) updated the model using the trust-region approach, 
which makes the optimization process more robust and reliable. A further improvement was 
investigated by He et al. (2010), who modified the trust-region search technique so as to increase 
the convergence speed.  

Revisiting the works done by Yu et al. (2010) and He et al. (2010), the objective function for 
optimization is single objective composed of multiple error terms. Different from the single 
objective cases, the multi-objective approach can simultaneously minimize multiple error terms to 
enable robust detection with a lower false alarm rate (Jung 2010). Some multi-objective examples 
are: the eigen-frequency and the modal strain energy residual (Jaishi 2007), the modal flexibility 
and the frequency/mode shape-dependent damage location criterion (Perera 2008), the coordinate 
modal assurance criterion and the frequency response assurance criterion (Meo 2008), the modal 
force errors, and etc.  
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3. Robust detection: environmental/operational variance reduction 
 
The environmental and operational variances, can in some cases, affect the signals obtained 

from the sensors, and subsequently detection results. A subtle signal change due to defect can be 
masked by larger ambient variation of the environmental/operational conditions of an in-service 
structure. As reported by Carden et al. (2008), a primary challenge to implementing structural 
health monitoring techniques on civil infrastructure is the identification of structural changes in the 
presence of natural changes in structural response due to environmental variables such as 
temperature. Zhou et al. (2011) showed that, false-positive or false-negative damage may be 
signaled by vibration-based structural damage detection methods when the environmental effects 
on the changes of dynamic characteristics of a structure are not accounted for appropriately. 
Devriendt et al. (2010) pointed out that, the use of the transmissibility concept for damage 
detection is quite promising. However, when using frequency domain transmissibility functions to 
detect and locate damage, the techniques fail in the case of changing operational conditions.  

To better detect damage under variables, Lu et al. (2008) proposed a robust decision-making 
method combining statistical analysis and advanced signal processing. The Hotelling’s T2 
statistical analysis is employed to purify the baseline dataset first and then to quantify the deviation 
of the test data vector from the baseline dataset. By using a time reversal process and a consecutive 
outlier analysis, Sohn et al. (2007) developed an on-line robust diagnosis, which can minimize 
false-positive indications of damage caused by the undesired operational and environmental 
variations of the structure. Lin et al. (2004) presented an adaptive on-line identification algorithm 
based on a newly defined variable forgetting factor approach. At each time step, a recursive least-
square based algorithm upgrades the adaptation gain matrix using an adaptive forgetting factor that 
is expressed as the ratio between the minimum value of the diagonal elements of the adaptation 
gain matrix and a set of pre-defined threshold values. This approach requires only acceleration 
measurements and is particularly robust to the integration errors.   

However, the on-line monitoring leads to an increasing demand for computation time. Care 
must then be exerted in reducing the computation time, especially when the complicated data 
processing techniques are adopted for improving the probability of detection with a low false 
alarm rate. To save time, Clement et al. (2011) used the Jacobian feature vector formed by the 
Jacobian matrix of the dynamics as a damage sensitive feature, which offers a robust alternative to 
other frequently used but time-consuming features, e.g., the Lyapunov exponents (Casciati 2006). 
In the work presented by Figueiredo et al. (2011), four techniques, i.e., Akaike information 
criterion, partial autocorrelation function, root mean squared error, and singular value 
decomposition, were adopted to optimize the order of time-series autoregressive model. It was 
demonstrated that the autoregressive model order range defined by the four techniques provides 
robust damage detection in the presence of operational and environmental variability.  

Evidences show that, the linear approach is not robust with respect to environmental changes 
and inter-structure variability, whereas the nonlinear one is less sensitive to these effects, as 
reported by Vanlanduit et al. (2005). In their work, the robust singular value decomposition was 
adopted to determine the threshold, which was defined to decide if the observation comes from the 
damaged sample or the intact one. Yoder et al. (2010) discussed the structural health monitoring of 
aircraft, which operate in a wide variety of different environmental and boundary conditions. A 
nonlinear vibro-acoustic modulation technique utilizing a swept probing signal, which is highly 
sensitivity to the presence of nonlinearities, was presented to facilitate robust crack detection. 
Thanks to its good nonlinear mapping capability for establishing the relationship between 
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identification signatures and the status of structural damage, the neural network technique has been 
widely adopted for damage detection (Tsou 1994, Luo 1997). For example, Masri et al. (1996, 
2000) used vibration measurements from a “healthy” structure and the same structure under 
different episodes of damage to train a neural network. The robustness is clearly exhibited by 
identifying damage in structures under different testing states.  
 
 
4. Robust detection: denoising 
 

Prior to the implementation of detection, one practical issue to be addressed is the effect of 
noise on data acquisition. In this regard, the robustness can be improved if the developed 
techniques discriminate noise from signals efficiently (Chen 2008, 2010). For this purpose, Zhang 
et al. (2006) presented an incremental support vector regression training algorithm, a promising 
statistics technology, for large-scale, structural health monitoring. The approach was demonstrated 
accurate and robust to data contaminated with different kinds and intensity levels of noise. By 
mapping features of modal frequency to the statistical damage database, Lin et al. (2008) 
estimated the damage probabilities among various crack depths. The robustness was assessed by 
imposing noise on the measured frequencies during detection.  

As a promising technique, the wavelet analysis has been widely applied for denoising (Deng 
1998, Hou 2000, Bakhtazad 2000, Pakrashi 2007). If a suitable wavelet can be selected, the 
damage information will be extracted from the response signal in a simple and robust way 
(Ovanesova 2004). With this technique, Wang et al. (2010) suggested a wavelet energy spectrum 
method, which integrates the resulting wavelet energy functions over different frequency bands for 
robust denoising. A combination of wavelet packet analysis and Bayesian hypothesis testing can 
avoid the arbitrary selection of wavelet threshold, as discussed by Jiang et al. (2007). To identify 
small damage in a relatively lower signal-to-noise ratio environment, Cao et al. (2008) 
investigated the application of integrated wavelet transforms for damage detection of beams. The 
robustness and high performance of the proposed method were confirmed in detecting the damage 
in plate structure and eliminating noise. Fan et al. (2009) extended the results to the case of plate-
type structures, in which a two-dimensional continuous wavelet transform-based algorithm was 
presented. The proposed algorithm is superior in noise immunity and robust with limited 
measurement data. Nicknam et al. (2011) developed the curvelet transform via wrapping method 
for damage detection and denoising in two-dimensional structures.  

It is well known that, the genetic algorithm provides a highly efficient and robust search 
procedure in the entire solution space (Koh 2007, Uhl 2008), and the neural network is with good 
nonlinearity property. A mixed use of both with other techniques can further enhance the 
robustness of detection (Wu 2000). In the work reported by Friswell et al. (1998), a two-level 
approach incorporating the advantages of genetic algorithm and eigen-sensitivity analysis was 
developed. An excellent performance was demonstrated with high levels of experimental noise and 
inaccurate analytical model. Rus et al. (2009) combined genetic algorithms and gradient-based 
methods to ensure robust search algorithms convergence and maximize the probability of detection 
against noise effects. Based on modal energy and artificial neural network techniques, Xu et al. 
(2006) proposed a new two-step algorithm, which is quite effective in identifying the location and 
magnitude of damage, even in the presence of measurement errors in data. Due to the deficiencies 
of the training algorithms for available wavelet neural network used for structural health 
monitoring, Zheng et al. (2009) combined the hierarchy genetic algorithm and least-square method to 

162



 
 
 
 
 
 

A review on recent development of vibration-based structural robust damage detection 

 

improve the learning procedure of wavelet neural network. The simulation demonstrated that the 
wavelet neural network based on hybrid hierarchy genetic algorithm is robust, promising and 
converges very fast. 

In addition to develop advanced algorithms, an extra concern is the selection of damage 
sensitive features. For example, using the variation quantity of normalized instantaneous frequency, 
Chen et al. (2007) defined a feature index vector, which is sensitive to small crack and noise-
tolerant. However, the frequency-based feature is comparatively less sensitive to detect multiple 
cracks. The reason is that, the cracks occurring at different locations cause same amount of 
frequency shift at certain modes. To overcome this problem, Faverjon et al. (2008) used the 
frequency response function-based feature for multi-crack detection. A satisfactory precision on 
detection results was achieved even if 10% or 20% noise levels were added to simulations. The 
investigation on the frequency response function-based and the response power spectrum-based 
features demonstrates the superiority of using the former on robust detection compared with the 
latter, as done by Lu et al. (1998). Instead of using frequency-related features, Reddy et al. (2007) 
formulated a damage index with the Fourier coefficients of mode shapes, which is robust and 
unique for a given damage size and damage location. It was found that Fourier coefficients provide 
a useful indication of damage even in the presence of noise. However, higher modes are needed if 
a small defect is to be detected. Based on the fact that a small defect in the structure can be clearly 
discerned from the change of strains, the strain-based features, e.g., the curvature mode shape or 
the strain frequency response function (Pandey 1991, Wang 1997), have been well examined. A 
review paper presented by Li (2010) shows that, the strain energy-based features perform an 
excellent anti-noise ability in dealing with noisy signals.   
 
 
5.  Robust detection: sensing system designs 

 
The sensing system design is another way in improving the robustness of identification results, 

especially when limited sensors or incomplete and noisy measurement signals are used 
(Bedrossian 2003, Wang 2006, Frazier 2008, Bemont 2009, Wang 2010). As an example, Hong et 
al. (2011) found that, when a structure has cracks and structural variability (e.g., the uncertainty in 
the geometry or the material properties), the variability affects structural mode shapes, and thus the 
optimal sensor locations for detecting cracks. A novel sensor placement based on parametric 
reduced order models and bilinear mode approximation techniques was therefore proposed to 
minimize this effect.   

Recently, advance in sensing technology and computing power stimulates the application of 
distributed sensor networks, which can enhance the reliability and robustness of monitoring 
systems through network optimization (Song 2008, Soni 2010). By formulating the noise and 
uncertainty models as unknown deterministic functions, Savkin et al. (2001) solved the optimal 
robust sensor scheduling problem in terms of the existence of suitable solutions to a Riccati 
differential equation and a dynamic programming equation. Li et al. (2001) determined the optimal 
sensor locations with the spectral condition number of the Hankel matrix. The effect of noise on 
the optimal locations was analyzed using the matrix perturbation theory.  

Based on an active sensing scheme, Park et al. (2007) developed a sensor network system to 
identify cracks occurring at a welded zone of a steel truss member. In their study, four pairs of 
pitch-catch Lamb wave signals were utilized from the active sensing network system. A robust 
wavelet transform was applied to the original response signals to extract damage-sensitive features 
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from the dispersive Lamb waves. As the system is light, cheap, and useful as a built-in system, it 
offers special potential for real world applications.  

Azarbayejani et al. (2008) examined the optimal number and locations of sensors using a 
probabilistic approach, which provides a more robust design of sensor networks compared with the 
uniform distribution of sensors. A work devoted to this effort was also done by Wang et al. (2008), 
who designed an innovative piezoelectric circuitry network to enhance the detection performance 
under noise/variances by multivariate statistical analysis. 
 
 
6. Conclusions 

 
An increasing requirement on the accuracy of structural damage detection calls for the 

consideration of robustness, especially for the structure subjected to uncertainties or measurement 
errors. This paper summarized the robust approaches for damage detection, in which the emphasis 
is focused on the modeling error compensation, the environmental variation reduction, the 
denosing and the sensing system optimization. Some useful strategies for improving accuracy (e.g., 
to optimize multi-objective functions, to refine data processing techniques, or to select sensitive 
vibration signatures) are also reviewed. It is pointed out that, the aim of this paper is not to propose 
a new method, or to compare the superiority of one approach over the other during robust damage 
detection. Instead, it tries to address available information and sketch a global picture which might 
facilitate learning during robust damage detection analysis. 
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