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Abstract.    The present study deals with the dynamics of the flapwise (out-of-plane) vibrations of a rotating, 
internally damped (Kelvin-Voigt model) tapered Bernoulli-Euler beam carrying a heavy tip mass. The 
centroid of the tip mass is offset from the free end of the beam and is located along its extended axis. The 
equation of motion and the corresponding boundary conditions are derived via the Hamilton’s Principle, 
leading to a differential eigenvalue problem. Afterwards, this eigenvalue problem is solved by using 
Frobenius Method of solution in power series. The resulting characteristic equation is then solved 
numerically. The numerical results are tabulated for a variety of nondimensional rotational speed, tip mass, 
tip mass offset, mass moment of inertia, internal damping parameter, hub radius and taper ratio. These are 
compared with the results of a conventional finite element modeling as well, and excellent agreement is 
obtained. 
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1. Introduction 
 

Rotating cantilever beams with or without tip masses are found in several engineering 
applications. Dynamics of such beams have been studied by many researchers. Some of  
representative studies are given and outlined in the work of Gürgöze and Zeren (2009).  

Further, Ozdemir Ozgumus and Kaya (2010) have investigated the flapwise vibrations of a 
tapered Timoshenko beam using differential transform method. Zhu (2011) has presented a 
modeling method of flapwise and chordwise vibrations analysis of rotating pre-twisted 
Timoshenko beams. In the work of Yan et al. (2011), an integral equation method was presented to 
analyze free vibrations of rotating nonuniform beams. Attarnejad and Shahba (2011a, b) have 
studied the free vibrations analysis of rotating tapered beams by introducing the concept of basic 
displacement functions in finite element method. Further, Zarrinzadeh et al. (2012) have improved 
the concept of basic displacement functions to the analysis of rotating beams made of axially 
functionally graded material. In the study of Shahba et al. (2011), a new beam element whose 
shape functions are expressed in basic displacement functions has been presented for free 
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vibrations analysis of rotating tapered functionally graded beams. Ganesh and Ganguli (2011) 
have developed new basis functions to solve the free vibrations problem for rotating beams by 
using finite element method. Gunda et al. (2007) have implemented a superelement based on a 
combination of polynomials and Fourier series to be used for vibration analysis of rotating 
structures. Banerjee et al. (2006) have investigated free vibrations of rotating tapered beams by 
using dynamic stiffness method. In Kumar and Ganguli (2011), the authors have studied rotating 
beams whose eigenpair (frequency and mode-shape) are same as that of uniform nonrotating 
beams for a particular mode with the aid of the flexural stiffness functions. 

Generally speaking, most of these studies given above have focused mainly on the dynamics of 
rotating undamped beams without any tip mass. The publications (Abolghasemi and Jalali 2003, 
Younesian and Esmailzadeh 2010, Arvin and Bakhtiari-Nejad 2011) are considered also with 
rotating beams in which nonlinear oscillations are investigated. 

Unlike the articles above, the beam considered in the work of Gürgöze and Zeren (2011) has a 
tip mass and more importantly, the interest there lies in establishing the “exact” characteristic Eq. 
of a rotating visco-elastic beam (Kelvin-Voigt model) such that its eigenvalues can be obtained. 

 
 

Table 1  The effect of the nondimesional rotational speed   on the nondimensional fundamental 
eigenvalues 2,1  of a rotating tapered beam sytem shown in Fig. 1 for the values of the nondimensional 
parameters M = d = R = c = sJ =0, 95.0  and 8.0  

  2,1  ω1 

0 
±5.2738i 

5.2738 
±5.2738i 

1 
±5.3904i 

5.3903 
±5.3904i 

2 
±5.7249i 

5.7249 
±5.7249i 

3 
±6.2403i 

6.2402 
±6.2403i 

4 
±6.8929i 

6.8928 
±6.8929i 

5 
±7.6444i 

7.6443 
±7.6444i 

6 
±8.4653i 

8.4653 
±8.4654i 

7 
±9.3347i 

9.3347 
±9.3348i 

8 
±10.2380i 

10.2379 
±10.2380i 

9 
±11.1651i 

11.1650 
±11.1652i 

10 
±12.1092i 

12.1092 
±12.1093i 

11 
±13.0657i 

13.0657 
±13.0658i 

12 
±14.0313i 

14.0313 
±14.0314i
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Table 2 The nondimensional eigenvalue pairs 2,1  of the rotating uniform beam system shown in Fig. 1 for 
various values of the nondimensional rotational speed, tip mass and hub parameter  , M , R ,with 

01.0c , 01.0sJ , 1.0d , 0 , and 0  

R    M = 0.1 M = 1 M = 2 M = 5 

0 

0 
-0.412355 ± 2.842019i 
-0.412418 ± 2.842230i 

-0.116375 ± 1.521167i 
-0.116394 ± 1.521300i 

-0.064686 ± 1.135578i 
-0.064697 ± 1.135680i 

-0.027729 ± 0744182i 
-0.027734 ± 0.744237i 

1 
-0.412413 ± 3.034221i 
-0.412475 ± 3.034420i 

-0.116646 ± 1.867320i 
-0.116666 ± 1.867420i 

-0.065176 ± 1.570604i 
-0.065187 ± 1.570670i 

-0.028699 ± 1.313332i 
-0.0287043 ± 1.31337i 

2 
-0.413195 ± 3.547170i 
-0.413257 ± 3.547310i 

-0.119638 ± 2.636432i 
-0.119658 ± 2.636500i 

-0.069626 ± 2.430450i 
-0.069637 ± 2.430490i 

-0.034546 ± 2.255252i 
-0.034551 ± 2.25527i 

3 
-0.416066 ± 4.263066i 
-0.416128 ± 4.263180i 

-0.127709 ± 3.549652i 
-0.127729 ± 3.549700i 

-0.079169 ± 3.387034i 
-0.079181 ± 3.387060i 

-0.043352 ± 3.239944i 
-0.0433567 ± 3.23996i 

4 
-0.422278 ± 5.093395i 
-0.422340 ± 5.093460i 

-0.140305 ± 4.511377i 
-0.140325 ± 4.511410i 

-0.091605 ± 4.369141i 
-0.091617 ± 4.369160i 

-0.052923 ± 4.2338031i
-0.0529281 ± 4.23381i 

5 
-0.432483 ± 5.987762i 
-0.432544 ± 5.987790i 

-0.155712 ± 5.492063i 
-0.155732 ± 5.492080i 

-0.105183 ± 5.360395i 
-0.105194 ± 5.360400i 

-0.062582 ± 5.231095i 
-0.0625869 ± 5.2311i 

10 
-0.535049 ± 10.799539i 
-0.535104 ± 10.799500i 

-0.241539 ± 10.470287i
-0.241558 ± 10.470300i

-0.172434 ± 10.354736i
-0.172444 ± 10.354700i

-0.108151 ± 10.234035i
-0.107662 ± 10.23400i 

0.01 

0 
-0.412356 ± 2.842019i 
-0.412418 ± 2.842230i 

-0.116375 ± 1.521167i 
-0.116394 ± 1.521300i 

-0.064686 ± 1.135578i 
-0.0646974 ± 1.135680i

-0.027728 ± 0.744182i 
-0.0277337 ± 0.744237i

1 
-0.412414 ± 3.036479i 
-0.412476 ± 3.03666i 

-0.116650 ± 1.870602i 
-0.116670 ± 1.870720i 

-0.065184 ± 1.574407i 
-0.0651951 ± 1.574480i

-0.028714 ± 1.317734i 
-0.0287194 ± 1.31777i 

2 
-0.413206 ± 3.554866i 
-0.413269 ± 3.55501i 

-0.119683 ± 2.645569i 
-0.119703 ± 2.645630i 

-0.069689 ± 2.439996i 
-0.0697011 ± 2.440040i

-0.034619 ± 2.25064i 
-0.0346241 ± 2.26509i 

3 
-0.416111 ± 4.277408i 
-0.416173 ± 4.27752i 

-0.127834 ± 3.564662i 
-0.127854 ± 3.56471i 

-0.079313 ± 3.402094i 
-0.0793246 ± 3.40212i 

-0.043478 ± 3.254943i 
-0.0434835 ± 3.25495i 

4 
-0.422387 ± 5.114635i 
-0.422448 ± 5.114690i 

-0.140517 ± 4.532096i 
-0.140537 ± 4.532120i 

-0.091819 ± 4.389584i 
-0.091831 ± 4.389600i 

-0.053094 ± 4.253937i 
-0.0530994 ± 4.25394i 

5 
-0.432678 ± 6.015875i 
-0.43274 ± 6.0159100i 

-0.155996 ± 5.518402i 
-0.156017 ± 5.518410i 

-0.105452 ± 5.386174i 
-0.105464 ± 5.38618i 

-0.062792 ± 5.256351i 
-0.0627967 ± 5.25635i 

10 
-0.535747 ± 10.861033i 
-0.535802 ± 10.860900i 

-0.241992 ± 10.524437i
-0.242011 ± 10.524400i

-0.172867 ± 10.407082i
-0.172878 ± 10.407100i

-0.075274 ± 10.200542i
-0.108010 ± 10.284800i

0.05 

0 
-0.412355 ± 2.842019i 
-0.412418 ± 2.842230i 

-0.116375 ± 1.521167i
-0.116394 ± 1.52130i 

-0.064686 ± 1.135578i
-0.0646974 ± 1.13568i

-0.027728 ± 0.744182i
-0.027733 ± 0.744237i

1 
-0.412417 ± 3.045494i 
-0.412479 ± 3.045700i 

-0.116668 ± 1.883671i
-0.116688 ± 1.883790i

-0.065217 ± 1.589521i
-0.065228 ± 1.589590i

-0.028775 ± 1.335186i
-0.028780 ± 1.335220i

2 
-0.413253 ± 3.585482i 
-0.413315 ± 3.585680i 

-0.119862 ± 2.681791i
-0.119882 ± 2.681870i

-0.069946 ± 2.477791i
-0.069957 ± 2.477840i

-0.034909 ± 2.303867i
-0.034914 ± 2.303890i

3 
-0.416297 ± 4.334289i 
-0.416359 ± 4.334460i 

-0.128333 ± 3.624054i
-0.128354 ± 3.624120i

-0.079885 ± 3.46146i 
-0.079897 ± 3.461690i

-0.043980 ± 3.314224i
-0.043985 ± 3.314240i

4 
-0.422829 ± 5.198708i 
-0.422892 ± 5.198890i 

-0.141359 ± 4.614004i
-0.141380 ± 4.614070i

-0.092667 ± 4.470381i
-0.092679 ± 4.470420i

-0.053771 ± 4.333503i
-0.053777 ± 4.333520i

5 
-0.433473±6.126999i 
-0.433536±6.127190i 

-0.157128±5.622483i 
-0.157149±5.622540i 

-0.106519±5.488042i 
-0.106531±5.488080i 

-0.063621 ± 5.356150i
-0.063626 ± 5.356170i

10 
-0.538628 ± 11.103470i 
-0.538690 ± 11.103700i 

-0.243796 ± 10.738248i
-0.243817 ± 10.738300i

-0.174582 ± 10.613837i
-0.174593 ± 10.613900i

-0.188134 ± 10.098788i
-0.109380 ± 10.485600i
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Table 2 Continued 

0.1 

0 
-0.412355 ± 2.842019i 
-0.412418 ± 2.842230i 

-0.116375 ± 1.521167i
-0.116394 ± 1.521300i

-0.064686 ± 1.135578i
-0.064697 ± 1.135680i

-0.027728 ± 0.744182i
-0.027734 ± 0.744237i

1 
-0.412422 ± 3.056724i 
-0.412484 ± 3.056930i 

-0.116691 ± 1.899878i
-0.116711 ± 1.899990i

-0.65259 ± 1.608205i 
-0.065270 ± 1.608270i

-0.028853 ± 1.356662i
-0.028858 ± 1.356700i

2 
-0.413313 ± 3.623382i 
-0.413375 ± 3.623540i 

-0.120091 ± 2.726364i
-0.120110 ± 2.726440i

-0.070269 ± 2.524192i
-0.070280 ± 2.524230i

-0.035269 ± 2.351408i
-0.035274 ± 2.351430i

3 
-0.416537 ± 4.404334i 
-0.416599 ± 4.404430i 

-0.128958 ± 3.696894i
-0.128978 ± 3.696940i

-0.080595 ± 3.534602i
-0.080607 ± 3.534630i

-0.044597 ± 3.386795i
-0.044602 ± 3.386810i

4 
-0.423398 ± 5.301880i 
-0.42346 ± 5.301950i 

-0.142403 ± 4.714313i
-0.142423 ± 4.714340i

-0.093709 ± 4.569285i
-0.093721 ± 4.569300i

-0.054600 ± 4.430879i
-0.054606 ± 4.430880i

5 
-0.434495 ± 6.263059i 
-0.434556 ± 6.263080i 

-0.158522 ± 5.749850i
-0.158542 ± 5.749860i

-0.107828 ± 5.612691i
-0.107840 ± 5.612700i

-0.064635 ± 5.478269i
-0.064640 ± 5.478270i

10 
-0.542415 ± 11.398987i 
-0.54247 ± 11.398900i 

-0.246029 ± 10.999546i
-0.246049 ± 10.999500i

-0.176683 ± 10.866651i
-0.176693 ± 10.866600i

-0.134548 ± 10.744433i
-0.111049 ± 10.731300i

 

 
Fig. 1 Rotating tapered visco-elastic Bernoulli-Euler beam carrying a heavy tip mass 

 
 
The study of Gürgöze and Zeren (2011) represents to some extent a more general form of 

Gürgöze and Zeren (2009) in that in the latter study, mass of moment of inertia and offset of the 
tip mass are taken into consideration, as well. 

The present study is an extension of the above study in that the beam here is assumed to be 
tapered and is attached to a hub, through which a more realistic model is supplied for many 
practical applications, even though in a very simplified form. To the best knowledge of the present 
authors, the characteristic equation derived here and the numerical results obtained from it, have 
not previously been given in the technical literature. Therefore, Table 1 and Table 2 contain ample 
numerical results which provide researchers with the opportunity to compare their work on the 
dynamics of rotating beams. Apart from Table 1 and Table 2 serving as reference material, some 
of the numerical results are given in the form of graphs, as well. 
 
 
2. Theory 
 

The system examined, shown schematically in Fig. 1 is a beam of variable cross section, 
carrying a so called heavy tip mass M. Its mass moment of inertia with respect to the perpendicular 
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axis at the centroid S is denoted by JS. The centroid S of the tip mass is offset by c from the free 
end of the beam and is located along its extended axis. The beam attached to a hub with radius R is 
rotating around the vertical axis with constant angular velocity  . The beam is made of a visco-
elastic material (Kelvin-Voigt model). 

It is assumed that the effects of shear deformations and rotary inertia are neglected, in other 
words, Euler-Bernoulli Beam is considered. Further, it is assumed that the cross section of the 
rotating beam is doubly symmetric and consequently, the shear center and geometric centers are 
coincident. As is known, this leads to the simplification that the displacements along y and z axes, 
i.e., in-plane and out-of-plane bending displacements and the twist angle are uncoupled. 
Additionally, it is also assumed that the breadth/thickness ratio is high, such that the more 
dominant out-of-plane vibrations of the rotating beam need to be investigated only. Differently 
from the work of Gürgöze and Zeren (2011), it is assumed here that the beam has a variable cross 
section along its length in the form of a taper, and furthermore, it is attached to a hub of radius R. 

 
2.1 Derivation of the Eq. of motion and the boundary conditions 
 
Gürgöze and Zeren (2011) have derived the Eq. of motion by using the classical method, i.e., 

via the formulation of the bending moment at a cross section of the beam and then taking the 
appropriate partial derivatives. In the present study, however, the Hamilton’s Principle is 
employed for the derivation of the equation of motion and the corresponding boundary conditions, 
as it enables one to obtain the equation of motion and the corresponding boundary conditions in a 
very systematic manner. Additionally, it is more suitable for further generalizations of the present 
mechanical system which the authors plan to do. 

One can write the extended form of the Hamilton’s Principle with the notations used in the 
present study as 

 
1

0

d 0
t

t

T U W A t                                                        (1) 

In the above expression, T denotes the total kinetic energy of the system and the term U  
contains both potential energy and work of centrifugal forces along the x axis. The term W  
represents the virtual work done by the moment of the inertial forces of the tip mass M. Finally, 

A' indicates the virtual work of the non-conservative forces. 
Total kinetic energy T  

1 2T T T                                                                   (2) 

consists of the following parts 

   

 

2
1

0

2 2
2

1
, d ,

2

1 1
, .

2 2

L

S S

T A x w x t x

T Mv J w L t



 

 



                                                  (3) 

 1T  and 2T denote here the kinetic energies of the beam and of the tip mass M, respectively. In the 
above expressions, SJ  indicates mass moment of inertia of the tip mass with respect to the 
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perpendicular axis at the centroid S. The out-of-plane bending displacements are denoted by the 
function  txw ,  where x and t denote location of the beam element and time, respectively.   and 
 xA  represent mass density and variable cross section of the beam respectively. The over dot and 

prime denote respectively partial differentiation with respect to time t and longitudinal coordinate 
x. 

Velocity of the centroid of the tip mass Sv  in z -direction is written as follows 

   , ,Sv w L t cw L t                                                         (4) 

Potential energy of the system includes two parts, one for bending and the other due to the 
work of centrifugal forces along the x axis 

1 2U U U                                                                 (5) 

The term 1U  can be written as 

 2
1

0

1
( ) , d

2

L

U EI x w x t x                                                     (6) 

The work done by the centrifugal forces along the x axis is 

 
   

2
*

2

0

,
, d

2

L w x t
U X x t x


                                                    (7) 

In the last expression, *X  represents the resultant of the axial inertial forces acting at the right 
of the differential element along the x axis due to rotating. Axial displacements due to bending (the 
so called, foreshortening) can be shown to be   2/,2 txw  (Meirovitch 1967). The force *X consists 
of the sum of two axial force components as shown in Fig. 1: Namely, the sum of the axial inertial 
forces acting on the differential element d  indicated by X and inertial forces of the tip mass 

      * 2 2, d
L

x

X x t A R M L R c                                       (8) 

The term W  can be expressed as 

 ,AW M w L t  
                                                         (9) 

where AM  indicates the moment of the axial inertial forces of the tip mass with respect to point A, 
as shown in Fig. 1. 

The term AM  can be written as 

   2 ,AM M c L R c w L t                                                   (10) 

Finally, the work done by the non-conservative forces, i.e., damping forces, can be expressed as 
follows 

ddamp

V

A V                                                           (11) 
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In the present study, the damping stresses obey Kelvin-Voigt model as stated previously 

damp                                                                 (12) 

where   represents the visco-elastic constant of the beam material (Banks and Inman 1991). Here, 
the dot above the term indicates the derivative with respect to time t. According to Bernoulli-Euler 
beam theory, strain of a fiber of the beam can be expressed as 

0z                                                                (13) 

where   22 , xtxw  , 0  and z  indicate the curvature of the beam, strain at the centerline and 
the distance from the centerline to the fiber in the curvature plane respectively (Stevens 1966). The 
expression (11) can be written with the help of the expressions of (12) and (13) as 

     
0

, , d
L

A I x w x t w x t x                                             (14) 

Substituting expressions (2), (5), (9), and (14) into (1), carrying out the necessary variations, 
and after lengthy operations, the following partial differential Eq. of fifth order with variable 
coefficients is obtained as the Eq. of motion of the beam 

       

   

2

2

( ) ( , ) ( ) ( , ) ' ,

( , ) ( , ) 0.

L

x

EI x w x t I x w x t R A w x t d

M L R c w x t A x w x t

    




      
 

     





             (15) 

The corresponding boundary conditions are as follows 

 0),0( tw                                                                (16) 

0),0(  tw                                                                (17) 

    0),(),(),(),()(),()( 22  tLwMctLwMcJtLwccRLMtLwLItLwLEI S     (18) 

    0),(),(),(),()(),()( 2   tLwcRLMtLwMctLwMtxwxItxwxEI Lx         (19) 

The boundary conditions (16) and (17) represent deflection and rotation at 0x  while the Eqs. 
(18) and (19) are balance-expressions between the bending moment and rotation of the inertia 
element and shear force with inertia force. 
 

2.2 Derivation of the eigenvalue problem 
 
Differential Eq. (15) and the boundary conditions (16)-(19) set up a boundary value problem 

(Meirovitch 1967). Assume a solution of this problem in the following form 

texWtxw )(),(                                                            (20) 

In the above expression,  xW  and   are the amplitude function and the corresponding 
eigenvalue, respectively. They are both complex in general. Substituting (20) into the partial 
differential Eq. (15) and the boundary conditions (16)-(19), yields 
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     

     

2

2 2

( ) ( ) ( ) ( )

( ) 0,

L

x

EI x W x I x W x W x R A d

L R c M W x A x W x

     

 

        
 

     

           (21) 

0)0( W                                                                  (22) 

0)0( W                                                                 (23) 

      0)()()()()()( 2222  LWMcLWMcJLWccRLMLWLILEI S    (24) 

       0)()()()( 22   LWMLWcRLMxWxIxEI Lx                  (25) 

Ordinary differential Eq. (21) and the boundary conditions (22)-(25) establish a differential 
eigenvalue problem for the continuous system shown in Fig. 1. It is reasonable to write down the 
above differential equation and the boundary conditions in a non-dimensional form. After lengthy 
algebraic manipulations, the above differential eigenvalue problem can be expressed as 

         

   

1

( ) ( ) ( )

1 ( ) ( ) 0

x

M

f x W x a W x R g d R x g x W x

R c aW x bg x W x

  



 
         

 
    


             (26) 

0)0( W                                                                 (27) 

0)0( W                                                                (28) 

   2(1) (1) 2 1 (1) (1) (1) 0M s M Mf W a R c cW b J c W b cW                   (29) 

 
1

( ) ( ) 2 1 (1) (1) 0M M
x

f x W x bc a R c W bW 


                             (30) 

 where the following non-dimensional quantities are introduced 

Lxx / ,    L/  ,    LWW / ,    Lcc / ,    LRR /  
4

00
2

0 / LAEI   ,    0/ ,    0/   
3

0 / LId  ,    00/  LAdd    

LAMM 0/   ,     3
0/ LAJJ ss   

)1(2/2 da  ,    )1/(2  db   

(31)

In addition, the new functions )(xf  and )(xg  indicate the changes of the second moment of 
cross sectional area )(xI  and area of the cross section )(xA  along x axis, respectively 

)()( 0 xfIxI  ,     )()( 0 xgAxA                                               (32) 
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2.3 Series solution of the eigenvalue problem 
 
In this section, we seek the solution to the differential eigenvalue problem introduced above. 

The solution procedure aims to find values of the parameter   for which there are nonvanishing 
amplitude functions )(xW  satisfying the differential Eq. (26) and the corresponding boundary 
conditions (27)-(30). Frobenius method of solution in power series is a suitable method, as the 
differential Eq. (26) has variable coefficients. For a linearly tapered beam, the functions )(xf  and 

)(xg  can be represented as 

xxg
xxf







1)(
1)(

                                                           (33) 

Now, the solution in power series can be expressed as 

0

( ) n r
n

n

W x C x






                                                         (34) 

where nC  represent unknown coefficients which are interrelated via recurrence relationships. To 
obtain these recurrence relationships, one can substitute the solution (34) into the differential Eq. 
(26) and then, the following expression can be obtained, after lengthy operations 

0)1)(2)(3(0  rrrrC                                                 (35) 

Some details of the derivation are given in an Appendix. In the above equation, r can take 
values 0, 1, 2, and 3. Consequently, the solution can be expressed in the form of four linearly 
independent functions 

0

( ) r n r
r n

n

u x C x






  (r = 0, 1, 2, 3).                                            (36) 

For unknown coefficients r
nC , the following recurrence relationships depending on r, can be 

obtained 

)1(

)1(0
1 




r

rC
C

r
r 

                                                         (37) 

 
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C M
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                               (38) 

 
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3 
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                   (39) 

 
)1)(2)(3)(4(

)1(21)1()2()1()3()2( 0012
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4 
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
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  (40) 
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

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





   (41) 

(n=5, 6,…) 
 

It is seen from (37) to (41) that all unknown r
nC  coefficients can be written in terms of rC0 . 

However, the coefficients rC0  are arbitrary, so they can be chosen as “one”. 
 Via the recurrence relationships (37)-(41), the solution (34) in power series can be rearranged 

as 

 
3

0 0 1 1 2 2 3 3
0

( ) ( ) ( ) ( ) ( )r r
r

W x A u x A u x Au x A u x A u x


                         (42) 

 The four linearly independent functions )(0 xu  to )(3 xu  in the above expression, can be written as 

2
0

(1 )
( ) 1 ....

2
Ma R c

u x x x
 


       …..                             (43) 

3
1

(1 )
( ) ....

2
Ma R c

u x x x
                                             (44) 

2
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2

2 (1 )
( ) ....

3 12
Ma R c

u x x x x
                                     (45) 

                              
2

3 4 5
3

6 (1 )
( ) ...

2 20
Ma R c

u x x x x
           .                          (46) 

where the new abbreviation 

1 1

2 3 2

R
R   

    
 

                                                     (47) 

is introduced. 
Use of the boundary conditions (27) and (28) and the formulas (43)-(47) in (42) leads to 

0)0( 0  AW                                                        (48) 

0)0( 1  AW                                                             (49) 

So, the general solution (42) reduces to 

2 2 3 3( ) ( ) ( )W x A u x A u x                                                   (50) 
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Fig. 2 Numbering the elements and nodes of the finite element model 

 
 
The boundary conditions (29) and (30) can be expressed in matrix notation as 

22 23 2

32 33 3

0

0

p p A

p p A

     
     
    

                                                    (51) 

where the element functions are given as 

     2
2 (1) (1) 2 1 (1) (1) (1) 0k k M k s M k M kp f u a R c cu b J c u b cu               (52) 

     3
1

( ) ( ) 2 1 (1) (1) 0k k M k M k
x

p f x u x bc a R c u bu  


                    (53) 

with 3 ,2k  and the prime denotes derivatives with respect to x . For a non-trivial solution pair 
of 2A  and 3A , the determinant of the square matrix in (51) must be equal to zero 

22 33 23 32 0p p p p                                                         (54) 

The values of the parameter   which satisfy this characteristic equation, give the 
nondimensional eigenvalues of the rotating, tapered visco-elastic beam with a tip mass having an 
offset as shown in Fig. 1. To determine these values, the elements )(2 kp  and )(3 kp  with 

3 ,2k are computed according to the expressions given in (52) and (53), using a sufficient 
number of terms in the series (34), employing MATLAB’s “fsolve” function. 

In order to be able to validate the numerical results that will be obtained from the procedure 
above, a finite element model of the system will be established in the following section. 

 
2.4 Finite element modeling 
 
For finite element analysis, the rotating beam is discretized into n elements with two-nodes 

shown in Fig. 2 where the numbers above and below the beam represent the corresponding 
element and node numbers, respectively. The transverse displacements of an element can be 
approximated by a cubic polynomial with four constants 

1

22 3 2 3
1 2 3 4

3

4

( ) 1w x a a x a x a x x x x






 
 
          
 
 

                           (55) 
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In the above expressions, x and i  indicate the spatial coordinate and unknown constants, 
respectively. An element has two nodes and a node has two degrees of freedom: transverse 
displacement and slope 

 e ew x w ,     
e

e
x x

w

x








                                                (56) 

Displacements of the element e can be written in vector form as 

 1 1, , ,e e e ew w   T

ed                                                      (57) 

In the above expression, xe and xe+1 denote the spatial coordinates of the node at the left end and 
right end, respectively. 

The transverse displacements of the eth element can be expressed as 

( ) ew x  Nd                                                              (58) 

where N is the vector whose elements are the well known cubic Hermite shape functions 

     
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2 2
2 1

2 3
3 1

2 2
4 1

2 3 ,

,

2 3 ,

.
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N x x x x x x h

N x x x x x h

N x x x x x x h

N x x x x x h

 







   

  

    

  

                                    (59) 

In the above expressions, he indicates the length of the eth element. Substituting the expression 
(58) into (3) leads to the kinetic energy of eth element 

 
11

d
2

e

e

x
T T

e e e

x

T A x x
 

   
 
d N N d                                              (60) 

From the above expression, the element mass matrix can be obtained as 

 
1

d
e

e

x
T

e

x

A x x


 m N N                                                     (61) 

The element potential energy can be written with the help of the expressions (6) and (58) as 

1

1

1
( ) d

2

e

e

e

x
T T
e e

x

U EI x x
 

    
 
d N N d                                            (62) 

The element stiffness matrix is introduced as 

1

( ) d
e

e

x
T

e

x

EI x x


  k N N                                                     (63) 
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Other element matrices are given below 

 
1 1 1

( ) d , ( ) d , d .
e e e

e e e

x x x
T T T

e e e

x x x

I x x H x x M L R c x
  

           c N N s N N m N N    (64) 

In the above expression, the function  H x  is defined as 

  ( ) d
L

x

H x A R                                                     (65) 

The above element matrices are assembled in the conventional way to form the global matrices 

1 1 1 1 1
, , , ,

n n n n n

e e e e e
A A A A A
    

    e e e e L eM m K k C c S s M m                    (66) 

Implementation of the boundary conditions at the right end of the beam introduces some 
additional terms to the indicated elements of the global matrices M and K 

 

(67)

Finally, the quadratic eigenvalue problem can be formulated in terms of the above global 
matrices 

  2        
2

LM C K S M d 0 ,                                     (68) 

where   and   denote eigenvalues and rotational speed of the beam, respectively. The 
eigenvalue problem is numerically solved using the well known software MATHEMATICA. 
 
 
3. Numerical evaluations 
 

This section is devoted to the discussion of the numerical solution of the characteristic Eq. 
obtained in the previous section. Fig. 3 represents the convergence features of the nondimensional 
eigenvalue of the rotating beam for a set of nondimensional parameters shown in the figure. The 
solid line in the figure indicates the exact value of the nondimensional eigenvalue (Wright et al. 
1982). It is seen from the figure that the use of 200 terms in the series solution of the characteristic 
Eq. (54) is sufficient to obtain converged numerical results. So all numerical calculations based on 
the series solution (34) are conducted by using 200 terms. 

 The nondimensional “first” eigenvalues, or more properly the pair of eigenvalues, of the 
mechanical system in Fig. 1 are given in Table 1 and 2 for various nondimensional system 
parameters:  , M , d , R , c , SJ ,  ,  . In Table 1, the effect of the rotational speed on the non- 
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Fig. 3 The convergence test 

 
 

dimensional eigenvalues of a rotating tapered beam is investigated. In the second column, the 
values of the pair of eigenvalues 2,1  in the first row of each cell are the results based on the series 
solution of the characteristic Eq. (54). The bold values in the second row of each cell in the second 
column are the simulation results obtained by the conventional finite element method. The number 
of the terms used in the series solution (34) is 200, whereas 50 elements were used during the 
finite element calculations. 

Eigenvalues have only imaginary parts due to the absence of the internal damping. (i.e., 0d ). 
The comparison of both complex numbers in each cell of the second column shows that the 
agreement of solutions from series solution and finite element method is very good. The values 1  
in the third column are taken from Table 5 of the study of Wright et al. (1982) which is probably 
one of the most cited works in the field of rotating beams. Excellent agreement of the values in the 
second and third column verifies the formulas established in this study. Table 1 reveals the fact 
that magnitudes of the imaginary parts of the nondimensional eigenvalues increase for increasing 
values of the rotational speed. 

Another numerical application is to investigate the effect of the nondimensional hub radius R  
on the eigenvalues 2,1  of a rotating uniform beam. The eigenvalues corresponding to various 
values of the parameter R are given in Table 2 for certain ranges of nondimensional angular 
velocity   and tip mass parameter M . Remaining nondimensional parameters are selected as: 

1.0d  and 01.0 SJc . Table 2 shows that for other parameter ranges chosen, the system is 
“oscillatory damped” as the first pairs of eigenvalues corresponding to this region are fully 
complex numbers. Table 2 reveals that the real parts of the nondimensional eigenvalues increase 
for increasing values of the nondimensional hub parameter when the angular velocity and mass of 
the tip mass are kept constant. The real parts of the eigenvalues are related to internal damping of 
the system, so increase of the hub radius strengthens the damping effect. Additionally, increase of 
the hub radius results in an increase in the absolute values of the imaginary parts of the 
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eigenvalues of the system, as expected. 
Some numerical results based on the series solution of the characteristic Eq. (54) are given in 

Figs. 4-7. In Fig. 4, various values of the cross section parameters   and  , tip mass parameter 

M  and corresponding eigenvalues of the system are illustrated for a range of nondimensional 
rotating velocity  . For the smallest value of the tip mass parameter M  (Fig. 4(a1)), absolute 
values of the real parts of the eigenvalues increase as the cross section parameters   and   
increase. The taper ratio strongly affects the stiffness of the beam. As expected, the stiffness of the 
beam decreases as the taper ratio increases. This results in increasing the damping effect. This 
trend is more evident at higher rotation velocities and for the highest taper ratio 
( 95.0 , 80.0 ). On the contrary, when the nondimensional tip mass parameter gets larger, 
increase of the cross section parameters   and   weakens the damping effect. (Figs. 4(b1), 4(c1) 
and 4(d1)). The weakening of the damping effect is more evident at low rotational speeds. Higher 
rotational speeds counteract this effect. 

From Figs. 4(a2) to 4(d2), it is seen that increasing mass of the tip mass leads to a moderate 
decrease of the absolute value of the imaginary parts of the eigenvalues, i.e., the increase of the 
mass of the system leads the complex eigenfrequencies decrease. The change of the taper ratio has 
very little effect on the complex eigenfrequencies of the system. For the configuration in which the 
tip mass parameter is selected as 0.1 in Fig. 4(a2), as the taper ratio gets larger, the complex 
frequencies of the system increases in the range of   values up to 4. In contrast, the complex 
frequencies get smaller as the cross section parameters get larger at rotational speeds higher than 4. 

Fig. 5 represents the effect of the damping parameter, i.e., visco-elastic constant and the cross 
section parameters on the eigenvalues. In this figure, offset parameter c , the tip mass moment 
inertia parameter SJ , and hub parameter R  are taken as 0.01, whereas the tip mass parameter M  
is chosen as 0.1. Damping parameter d takes the values 0, 0.01, 0.1 and 0.5, respectively in Figs. 
5(a)-5(d1), and 5(d2). The following can be observed from these figures: The complex 
eigenfrequencies increase slightly as the taper ratio increases in the range of the rotational speed 
  up to 4. There is a node at 4  where all cross section parameters yield the same value for 
the eigenvalues. Behind this point, the increment of the rotational speed leads to smaller complex 
eigenfrequencies, as the taper ratio gets larger. The maximal decrement arises at the configuration 
in which the taper ratio has its greatest value as represented by the bold solid curves in Figs. 5(a)-
5(c2). When the damping ratio attains its largest value 0.5 as in Fig. 5(d2), cross section parameters 
have no further influence on the values of the imaginary parts of the eigenvalues: The complex 
eigenfrequencies increase as the rotational speed increases, as the system becomes stiffer. 

The increase of the damping parameter d  leads to an increase of the internal damping of the 
system as expected. (Figs. 5(b1)-5(d1)). It is also seen from these figures that generally, higher 
taper ratios strengthen damping effect in the mechanical system shown in Fig. 1. 

It is seen from Figs. 5(b1) and 5(c1), that the vertical distance between each  2,1Real  curve is 
nearly constant in the region of the rotational speed   up to 4. For larger rotational speeds, the 
highest taper ratio ( 90.0 , 80.0 ) leads to the maximal increment of the internal damping of 
the system. To sum up, it can be stated that higher taper ratios strengthen damping effect of the 
viscoelatic beam especially at higher rotational speeds. 

The fact obviously seen from Figs. 5(b2)-5(d2) is that the increase of the taper ratio slightly 
increase the complex eigenfrequencies up to some rotational speed ( 4 ).This issue could be 
explained by considering that herewith both of stiffness and mass parameters decrease. In contrast, 
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Fig. 4 Influence of the beam cross section parameters  ,   and the tip mass parameter M  on the 
nondimensional eigenvalues 2,1  depending upon the nondimensional rotational speed  , where: 
offset parameter 01.0c  , mass moment of inertia of the tip mass parameter 01.0SJ , hub 
parameter 01.0R , and damping parameter 1.0d . (a1), (a2): tip mass parameter 1.0M ; (b1), 
(b2): 1M ; (c1), (c2): 2M ; (d1), (d2): 3M  
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Fig. 5 Influence of the beam cross section parameters  ,    and the nondimensional damping parameter 
d  on the nondimensional eigenvalues 2,1  depending upon the nondimensional rotational speed  ,
where: offset parameter 01.0c  , mass moment of inertia of the tip mass parameter 01.0SJ , hub 
parameter 01.0R  and tip mass parameter 1.0M  . (a): 0d ; (b1), (b2): 01.0d ; (c1), (c2): 

1.0d ; (d1), (d2); 5.0d  
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Fig. 6 Influence of the offset parameter c  on the nondimensional eigenvalues 2,1  depending upon the 
nondimensional rotational speed  , where: mass moment of inertia of the tip mass parameter

01.0SJ , hub parameter 01.0R , damping parameter 1.0d , and cross section parameters 
25.0 , 1.0 ; (a1), (a2): tip mass parameter 1.0M ; (b1), (b2): 1M ; (c1), (c2): 2M ; 

(d1), (d2): 5M  
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Fig. 7 Influence of the mass moment of inertia of the tip mass parameter SJ on the nondimensional 
eigenvalues 2,1  depending upon the nondimensional rotational speed  , where: offset parameter

01.0c , hub parameter 01.0R , damping parameter 1.0d , and the cross section parameters 
25.0 , 1.0 .(a1), (a2): tip mass parameter 1.0M ; (b1), (b2): 1M ; (c1), (c2): 2M ; 

(d1), (d2): 5M  
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for higher rotational speeds, higher taper ratios cause a decrease in the complex eigenfrequencies 
as the system becomes less stiff. This effect is more evident when damping parameter d  is taken 
as 0.01 and 0.1 as shown in Figs. 5(b2) and 5(c2). It is seen that for the largest damping parameter, 
cross section parameters have no considerable influence on the complex eigenfrequencies at small 
rotational speeds up to 6. As the rotational speed increases, the increase of the taper ratio causes 
the complex eigenfrequencies to decrease slightly. 

In order to visually emphasize the influences of the offset parameter c  and mass moment of 
inertia SJ  of the tip mass on the eigenvalues 2,1 , the absolute values of the real and imaginary 
parts of 2,1  are depicted in Figs. 6 and 7 as functions of the rotational speed  , for some selected 
values of the remaining physical parameters. In Fig. 6, the mass moment of inertia of the tip mass 
parameter SJ  and the hub radius parameter R  are taken as 0.01. Damping parameter d is 0.1 and 
cross section parameters   and   are selected as 0.25 and 0.1, respectively. The tip mass 
parameter M  takes the values 0.1, 1, 2 and 5 in Figs. 6(a1), 6(a2) to 6(d1), and 6(d2), respectively. 
The increase of the offset parameter c  weakens the damping effect, as the effective mass 
increases when the offset is increased. The offset parameter c  has very little influence on the 
imaginary parts of the eigenvalues. The effective mass increases as the offset is increased. It is 
seen from Figs. 6(a1)-6(d1) that as the tip mass parameter M  gets larger, the damping effect 
diminishes. 

In Fig. 7, the mass moment of inertia of the tip mass parameter SJ  takes the values 0, 0.01, 0.1 
and 0.2. The tip mass parameter M  is selected as 0.1, 1, 2 and 5 in Figs. 7(a1), 7(a2) to 7(d1), 
7(d2). In Fig. 7(a1), at low rotational speeds, increase of the mass moment of inertia of the tip mass 
parameter SJ  weakens the damping effect to a large extent. Generally, the  2,1Real  -curves rise 
and get closer as the rotational speed gets larger. There is one exception, however: For 1.0SJ , 
the absolute values of the real parts of the eigenvalues increase much more as the rotational speed 
parameter   increases, and takes the maximum value at the largest rotational speed. As the tip 
mass parameter M  gets larger (Figs. 7(b1)-7(d1)), the damping effect weakens. This point is in 
agreement with the findings of Gürgöze et al. (2007) where a non-rotating cantilevered visco-
elastic beam carrying a tip mass was represented by a spring-damper-mass, i.e., a one-degree-of-
freedom system. For small values of the mass moment of inertia of the tip mass parameter SJ , the 

 2,1Real  -curves rise slightly as the rotational speed increases. On the contrary, larger values of 

SJ  like 0.1, and 0.2 lead to the strengthening of the damping effect much more at high rotational 
speeds. But this effect is suppressed as the tip mass parameter M  gets larger, as it is seen from 
Fig. 7(d1). 

Finally, from Figs. 7(a2)-7(d2) it is seen that the complex eigenfrequencies increase as the 
rotational speed increases. Inspection of Figs. 7(a2)-7(d2) reveals that the increase of the values of 

SJ  leads to a decrease in the complex frequencies. This effect is more dominant for small values 
of the tip mass parameter M  (Figs. 7(a2) and 7(b2)). As the parameter M  gets larger, the effect 
of the parameter SJ on the eigenfrequencies weakens. For the largest value of the parameter M , 

 2,1Imag  -curves are almost identical. 
 
 
4. Conclusions 
 

This study investigated the out-of-plane (flapwise) vibrations of a rotating visco-elastic non-
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uniform beam carrying a heavy tip mass. The heavy tip mass possesses a mass moment of inertia 
and its centroid is offset from the free end of the beam. The cross section of the beam is doubly 
symmetric and hence, in-plane and out-of plane displacements and twist angle can be assumed to 
be uncoupled. Additionally, it is assumed that the out-of-plane displacements are dominant for a 
slender beam like the one investigated in this study. The significant contribution of this study is to 
obtain the exact characteristic Eq. of the mechanical system that is made of a centrifugally 
stiffened, visco-elastic non-uniform (tapered) Bernoulli-Euler beam with a heavy tip mass. To the 
best knowledge of the authors, characteristic equation of this system has not been given previously 
in the technical literature. 

The “fundamental” eigenvalue pairs obtained from the characteristic Eq. above and finite 
element model are tabulated for various physical system parameters. Some numerical results are 
also given in graphical form in order to better put forward visually the influences of taper ratio of 
cross section of the beam, damping parameter and tip mass parameter on the eigenvalues. Inspection 
of the numerical results shows clearly that the offset and the mass moment of inertia of the tip 
mass, taper ratio of the beam and hub radius may affect considerably the eigencharacteristics of 
rotating beams carrying a heavy tip mass. Hence, these parameters must be seriously considered in 
modeling of the rotating beam systems. 

Some of the findings of this study regarding the influence of various physical parameters on the 
eigencharacteristics of a rotating beam can be summarized as follows: 

 
 The increase of the rotational speed of the beam causes the complex eigenfrequencies to 

increase, as herewith the beam will be stiffer through the increasing centrifugal forces. 
 When the tip mass increases, the complex eigenfrequencies gets smaller, as expected. 
 At higher rotational speeds, the increase of the mass moment of inertia causes the complex 

eigenfrequencies to decrease, as herewith the effective mass increases. 
 The increase of the taper ratio strengthens the damping effect, as the taper ratio strongly 

effects the stiffness of the beam. 
 The increase of the tip mass and offset parameters weakens the damping effect. The effect 

of increasing of the offset parameter is the same as increasing tip mass. 
 At lower rotational speeds, increase of the mass moment of inertia of the tip mass and the 

increase of the taper ratio for larger tip mass values, weaken the damping effect. 
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Appendix 
 

After substituting expressions (33) and (34) into the differential equation (26), one obtains the 
following expression 
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(A.1) 
Collecting the factors of same powers of  x ’s leads to 
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(A.2) 
After rearranging the above expression, one can write 
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 Let us make all summations start at k = 5 
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Collecting the coefficients of same power of x  leads to 
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On the dynamics of rotating, tapered, visco-elastic beams with a heavy tip mass 

 

One can obtain the following relationships, after equating the coefficients of the same power of 
x  to zero 

     
           
                 

            
       
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2
3 2

2
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2
4 3

2
2 1

3 2 1 0,

2 1 1 2 1 0,

1 1 2 1 1 1 1 0,

1 2 3 1 2

1 1 0,

1 2 3 4 1 2 3

1
1 1 2 1 1
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M

M

M

C r r r r

C r r r r C r r r

C r r r r C r r r a R c C r r

C r r r r C r r r

a R c C r r aRC r

C r r r r C r r r

a R c C r r aRC r a R



  



 



 

   

      

           

     

      

       

             0 01 0.C r r bC   

 

(A.6) 
The above relationships depending on r represent the recurrence formulae (35) and (37-40) for 

the unknown coefficients r
nC . 
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