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Abstract.    In this study, the effects of crack depth and crack location on the in-plane free vibration of 
cracked frame structures have been investigated numerically by using the Finite Element Method. For the 
rectangular cross-section beam, a crack element is developed by using the principles of fracture mechanics. 
The effects of crack depth and location on the natural frequency of multi-bay and multi-store frame 
structures are presented in 3D graphs. The comparison between the present work and the results obtained 
from ANSYS shows a very good agreement. 
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1. Introduction 
 

In many applications, frame structures are widely used, for example in buildings, bridges and 
gas or steam turbine blade packets. Frames are also one of the structures in which static and 
dynamic problems generally occur. These frames are subjected to concentrated and distributed 
static or dynamic loads which may cause static (buckling) and dynamic instability. Moreover, the 
cracks can be seen in frame structures due to reasons like erosion, corrosion, fatigue or accidents. 
The presence of a crack can not only cause a local variation in the stiffness, but many also affect 
the mechanical behavior of the entire structure to a considerable extent. 

Many investigations about the vibration and buckling (static stability) characteristics of frames 
of various types have been carried out. Syngellakis and Kameshki (1994) have studied the elastic 
critical loads for plane frames by using the transfer matrix method. Bayo and Loureiro (2001) have 
presented a direct one-step method, which is based on a non-linear analysis of the structure starting 
from an initial deformation state that includes the initial imperfections of the elements, for the 
buckling analysis of steel frame structures. Xu and Liu (2002) have developed a practical method 
for the stability analysis of semi-braced steel frames with the effect of semi-rigid behaviour of 
beam-to-column connections being taken into account. A simplified procedure for determining 
approximate values for the buckling loads of both regular and irregular frames was developed by 
Girgin et al. (2006); the procedure utilizes lateral load analysis of frames and yields errors on the 
order of 5%, which may be considered suitable for design purposes. Tong and Xing (2007) have 
studied the instability of braced frames by geometric and nonlinear material analysis accounting 
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for residual stresses, initial sway imperfection and member initial bow. In this study, the change in 
the buckling mode with increasing bracing stiffness was analyzed and the relationship between the 
ultimate load capacity and the bracing rigidity was developed. Trahair (2009) has studied the 
method of designing steel beams, columns, and plane frames against out-of-plane failure, which 
uses the results of an elastic flexural-torsional buckling analysis in the strength rules of design 
codes, which has been named design by buckling analysis (DBA). A general digital computer 
method based on a Sturm sequence procedure has been described by Gupta (1970) for determining 
the natural frequencies and associated modes of undamped free vibration of frames and other 
structures whose stiffness and mass matrices are of band form. Analytical and experimental 
investigations on vibrating frames carrying concentrated masses, and in-plane vibrations of portal 
frames with end supports, elastically restrained against rotation and translation, have been studied 
by using analytical solutions and the finite element method (Laurai 1987, Filipich 1987, 1989). 
Chang and Chang (1991) have examined free and forced out-of-plane vibrations of elastic plane 
frames using exact solutions of the Euler-Bernoulli equation for transversely vibrating beams 
coupled with torsional vibrations. The natural frequencies and mode shapes for the in-plane 
vibration of triangular closed and planar frames (portal, H and T frames) have been studied by 
using the Rayleigh-Ritz method (Lee 1993, Lee and Ng 1994). 

Christides and Barr (1984) have derived the differential equation and associated boundary 
conditions for a nominally uniform Bernoulli-Euler beam containing one or more pairs of 
symmetric cracks. A surface crack on a beam section has introduced a local flexibility to the 
structural member on a study carried out by Gounaris and Dimarogonas (1988). In this study, a 
finite element model for a cracked prismatic beam has been developed. Qian et al. (1990) have 
derived an element stiffness matrix of a beam with a crack from an integration of stress intensity 
factors and established a finite element model of a cracked beam for a cantilever beam with an 
edge-crack. Chondros and Dimarogonas (1989) have used the Rayleigh principle for an estimation 
of the change in the natural frequencies and modes of vibration of the structure if the crack 
geometry is known. Ostachowicz and Krawczuk (1990) have studied the forced vibrations of the 
beam and the effects of the crack locations and sizes on the vibrational behavior of the structure 
and discussed a basis for crack identification. Lee and Ng (1994) have determined the natural 
frequencies and modes for the flexural vibration of a beam due to the presence of transverse cracks 
by using the Rayleigh-Ritz method. In this study, a beam with a single-sided crack or a pair of 
double-sided cracks was modeled as two separate beams divided by the crack. The equation of 
motion and associated boundary conditions have been derived by Shen and Pierre (1994) for a 
uniform Bernoulli-Euler beam containing one single-edge crack and the generalized variational 
principle used allows for modified stress, strain and displacement fields that satisfy the 
compatibility requirements in the vicinity of the crack. Chati et al. (1997) have studied the modal 
analysis of a cantilever beam with a transverse edge crack. The opening and closing cracks were 
considered. Chondros et al. (1998) have developed a continuous cracked beam vibration theory for 
the lateral vibration of cracked Euler-Bernoulli beams with single-edge or double-edge open 
cracks. The Hu-Washizu-Barr variational formulation was used to develop the differential equation 
and the boundary conditions of the cracked beam as a one-dimensional continuum. Saavedra and 
Cuitino (2001) presented a theoretical and experimental dynamic behavior of different multi-beam 
systems containing transverse cracks. Kishen and Kumar (2004) studied fracture the behavior of 
cracked beam-columns, by using the finite element method and the beam-column element. 
Karaagac et al. (2009) have investigated the effects of crack ratios and positions on the 
fundamental frequencies and buckling loads of slender cantilever Euler beams with a single-edge 
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crack both experimentally and numerically, using the finite element method, based on energy 
approach. Sekhar (1999) has presented the Finite Element (FEM) analysis of a rotor system for 
flexural vibrations by including a shaft with two open cracks and the influence of one crack over 
the other for eigenfrequencies, mode shapes and for threshold speed limits has been observed. 
Zheng and Kessissoglou (2004) have studied the natural frequencies and mode shapes of a cracked 
beam using the finite element method. An “overall additional flexibility matrix”, instead of the 
“local additional flexibility matrix”, was added to the flexibility matrix of the corresponding intact 
beam element to obtain the total flexibility matrix, and therefore the stiffness matrix. Yokoyama 
and Chen (1998) have investigated the vibration characteristics of a uniform Bernoulli-Euler beam 
with a single edge crack using a modified line-spring model. Nikolakopoulos et al. (1991) have 
examined the problem of crack depth and position identification in one-bay frame structures using 
eigenfrequency measurements. The dynamical response of cracked concrete structures modeled as 
bilinear SDOF dynamical systems has been studied by Pandey and Benipal (2011). In this study, 
the dynamical behaviour of Model-I and Model- III subjected to sinusoidal loading has been 
investigated by using the techniques of nonlinear dynamical systems theory. Lu and Liu (2012) 
have presented a composite element method (CEM) to analyze the free and forced vibrations of a 
cracked Euler-Bernoulli beam with axial force. 

As seen from aforementioned references, all studies are related to the uncracked frames. The 
effects of cracks on the dynamic behaviors of beams have been the subject of many investigations. 
Unfortunately, literature research reveals that much less study investigating the static and dynamic 
behaviours of cracked frames is present in the published literature. 

In this work, the effects of crack depth and crack location on the in-plane free vibration cracked 
frame structures have been investigated numerically by using The Finite Element Method. For the 
rectangular cross-section beam, a crack element is developed by using the principles of fracture 
mechanics. The effects of crack depth and location on the first two natural frequencies of 
multi-bay and multi-store frame structures are presented in 3D graphs. The comparison between 
the present work and the results obtained from ANSYS shows a very good agreement. 
 
 
2. The local flexibility due to the crack 
 

A crack on a beam introduces considerable local flexibility due to the strain energy 
concentration in the vicinity of the crack tip under load. The idea of an equivalent spring i.e. a 
local compliance is used to quantify, in a macroscopic way, the relation between the applied load 
and the strain concentration around the tip of the crack (Karaagac et al. 2009). A beam element of 
rectangular cross-section has an edge crack with a tip line parallel to the z-axis, i.e., with a uniform 
depth. A generalized loading is indicated by three general forces: an axial force P1, shear force P2 
and bending moment P3 as seen in Fig. 1(a). 

In this work, the cross section of the beam is assumed to be rectangular. The additional strain 
energy due to the existence of a crack can be expressed as (Karaagac et al. 2009, Zheng and 
Kessissoglou 2004) 


cA

c GdA                                (1) 

where G is the strain energy release rate function and Ac is the effective cracked area. The strain 
energy release rate function G can be expressed as (Zheng and Kessissoglou 2004) 
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Fig. 1(a) Schematic view of a cracked beam under generalized loading conditions; (b) Geometry of cracked 
section showing integral limits 
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where EE   for plane stress problem, )1( 2 EE  for plane strain problem (Karaagac et 
al. 2009, Zheng and Kessissoglou 2004). KIn and KIIn (n = 1, 2, 3) are the stress intensity factors of 
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Fn(s = /h) represents the correction function which takes into account finite dimensions of the 
beam and takes particular forms for different geometry and loading modes. It is worth noting that a 
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is the final crack depth while  is the crack depth during the process of penetration from zero to the 
final depth. 

The elements of the overall additional flexibility matrix cij can be expressed as (Karaagac et al. 
2009, Zheng and Kessissoglou 2004). 
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Substituting Eqs. (3)-(6) in Eq. (7) yields the general equation for the local compliances as 
follows (considering that all K’s are independent of ; : see Fig. 1(b)) 
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where cij is the local flexibility matrix 
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3. The crack finite element model 
 

A finite element model is developed to represent a cracked beam element of length d and the 
crack is located at a distance d1 from the left end of the element as shown in Fig. 2. 

The element is then considered to be split into two segments by the crack. The left and right
segments are represented by non-cracked sub elements. The crack represents net ligament effect
created by loadings. This effect can be related to the deformation of the net ligament through the
compliance expressions (    ) by replacing the net ligament with a fictitious spring connecting both
faces of the crack (Yokoyama and Chen 1998). 

The spring effects are introduced to the system by using the local flexibility matrix given by
Eq. (9). The cracked element has 2 nodes with three degrees of freedom in each node. They are
denoted as lateral bending displacements      , slopes       , and longitudinal displacements
(u1, u2). 
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Fig. 2 Crack Locations in crack element 
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The coefficients a and b of the polynomials can be expressed uniquely in terms of the boundary 
conditions and the local flexibility concept at the crack location. Eventually, the following 
expressions are obtained for a cracked element: 

For lateral bending 
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At the crack location d1, the flexibility concept requires: 
For lateral bending: 
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Discontinuity of longitudinal displacement 
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Fig. 3 Transformations from local to global coordinates 
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By considering Eq. (10) describing the displacement for the left and right parts of the element 
and rearranging Eqs. (11)-(13), the nodal displacement can be expressed in matrix forms as 
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The generalized displacement vector according to local reference coordinates can be expressed 
as 

 222111             vvuv   vuq                            (15) 

As seen in Fig. 3, the relation between local and global reference coordinates can be written as 
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where T is the transformation matrix 
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Fig. 4 Frame structures, (a) one-bay frame; (b) multi-bay frame; (c) multi-story frame 
 
 
4. Energy equations 

 
Energy equations should be expressed separately from the crack element and intact elements on 

the left side of the crack element. 
The elastic potential energy U: 
For intact elements on the left side of the cracked element 
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For intact element on the right side of the cracked element 
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Similarly, the kinetic energy T of an element of length d in an Euler beam is given as follows 
for the intact elements on the left side of the cracked element 
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For the cracked element 

40



 
 
 
 
 
 

Vibration analysis of cracked frame structures 
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For intact element on the right side of the cracked element 
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In which the first and second terms represent the energies due to lateral and longitudinal 
motions, respectively. 

 
 

5. Equation of motion 
 
The elastic stiffness matrix  ek  and mass matrix  em  are obtained for both cracked finite 

element and intact finite elements. Mass and stiffness matrices of each beam element are used to 
form global mass and stiffness matrices. By performing the required operations for the entire 
system, one obtains the following governing matrix equations giving natural frequency (). 

     0( 2  qMK                              (20) 

Where  K and  M represent global elastic stiffness and mass matrices, respectively. 
 
 
Table 1 Properties of the frame structure 

Properties Quantity 

Modulus of elasticity, E 200 GPa 

Mass density,  7900 kg/m3 

Cross-section 
h 5 mm 

b 20 mm 

Column length 200 mm 

Beam length 100 mm 

 
Table 2 Comparison between the present work and ANSYS results; The crack location is at the fixed point of 
the one-bay frame structure 

Crack (a/h) ANSYS (Hz) Present work (Hz) ERROR% 

0 118.555 117.2552 1.108522 
0.1 118.356 117.2532 0.940545 
0.2 117.726 117.2223 0.429685 
0.3 116.648 117.0806 0.369526 
0.4 115.006 116.6234 1.386837 
0.5 112.594 115.3395 2.3804 
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Fig. 5 Crack effect on the natural frequencies of one-bay frame structure; (a) The first natural frequency; (b) 

The Second natural frequency 
 

 
Fig. 6 Crack effect on the natural frequencies of a two-bay frame structure 
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Fig. 6 Continued 

 

 

 
Fig. 7 Crack effect on the natural frequencies of a three-bay frame structure 
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Fig. 8 Crack effect on the natural frequencies of a four-bay frame structure 
 

 
Fig. 9 Crack effect on the natural frequencies of a five-bay frame structure 
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Fig. 9 Continued 

 

 

 
Fig. 10 Crack effect on the natural frequencies of a two-story frame structure 
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Fig. 11 Crack effect on the natural frequencies of a three-story frame structure 

 
 
6. Results comparison 

 
In this study, the multi-bay and multi-store frames constituting of column and beam, having 

rectangular cross-sections are used, as seen in Fig. 4 and the dimensions and material properties 
are given in Table 1. Comparison have been made between the natural frequencies of cracked 
frames obtained using the present model with the results obtained from the ANSYS software. The 
modelling of crack in ANSYS is built by using the method of concentrate meshing around the 
crack location. By using KSCON (a command in ANSYS) a concentration key-point is defined 
about which the mesh area will be skewed. This is useful for modelling stress concentrations and 
crack tips. During meshing, elements are initially generated circumferentially about, and radially 
away, from the key-point. Lines attached to the key-point are given appropriate divisions and 
spacing ratios (Phan 2010). 

As seen from Table 2, the maximum error is 2.3804%. The comparison shows that very good 
agreement obtained is between the results. 
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Table 3 Decreases in first natural frequency of the one-bay frame structure with respect to crack location 
when the crack ratio is 0.5 

Crack location  (nodes) 10th, 20th 1st, 30th 
Without crack

117.23 
Natural frequency (Hz) 116.3 115.33 

Percentage of decreases in the frequency 0.79% 1.62% 

 
Table 4 Decreases in first natural frequency of the two-bay frame structure with respect to crack location 
when the crack ratio is 0.5 

Crack location (nodes) 10th, 40th 20th 1st, 50th 30th 
Without crack

110.61 
Natural frequency (Hz) 110.09 109.72 109.51 109.26 
Percentage of decreases 

in the frequency 
0.47% 0.80% 0.99% 1.22% 

 
Table 5 Decreases in first natural frequency of the three-bay frame structure with respect to crack location 
when the crack ratio is 0.5 

Crack location (nodes) 10th, 60th 20th, 40th 1st, 70th 50th, 30th 
Without crack

108.32 
Natural frequency (Hz) 107.93 107.73 107.53 107.39 
Percentage of decreases 

In the frequency 
0.36% 0.54% 0.73% 0.86% 

 
Table 6 Decreases in first natural frequency of the four-bay frame structure with respect to crack location 
when the crack ratio is 0.5 

Crack location 
(nodes) 

10th, 80th 40th 20th, 60th 1st, 90th 50th 30th, 70th 10th, 80th 

Without 
crack 

106.96

Natural frequency 
(Hz) 

106.66 106.53 106.49 106.34 106.26 106.23 106.66 

Percentage of 
decreases  

in the frequency 
0.28% 0.40% 0.44% 0.58% 0.65% 0.68% 0.28% 

 
Table 7 Decreases in first natural frequency of the five-bay frame structure with respect to crack location 
when the crack ratio is 0.5 

Crack location (nodes) 10th, 100th 40th, 60th 20th, 80th 1st, 110th 50th, 70th 30th, 90th 
Without 

crack 
106.11

Natural frequency (Hz) 105.86 105.72 105.72 105.61 105.53 105.51 
Percentage of 

decreases  
in the frequency 

0.24% 0.37% 0.37% 0.47% 0.55% 0.57% 

 
 
6.1 Multi-bay frame structures 
 
Figs. 5(a), 6(a), 7(a), 8(a) and 9(a) show the effect of crack location and crack depth on the first 

natural frequencies of frame structures having one, two, three, four and five. As the crack depth 
increases, the variations of the first natural frequency become significant. 
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As seen in Figs. 5(a), 6(a), 7(a), 8(a) and 9(a) for a/h=0.5, when the crack location changes, the 
variations in the first natural frequencies of one, two, three, four and five bay frame structures are 
centered symmetrically around the 15th, 25th (except for the region between the 20th and 30th nodes), 
35th, 45th (except for the region between the 40th and 50th nodes) and 55th nodes of the FE, 
respectively. 

The maximum decreases in the first natural frequencies occur when the crack is at the fixed 
points (roots of the frame), the 30th node (root of the middle column), the 30th and 50th nodes (roots 
of the internal columns), the 30th and 70th nodes (roots of the second and fourth columns), the 30th 
and 90th nodes (roots of the second and fifth columns) respectively for one, two, three, four and 
five bay frame structures. These are about 1.62%, 1.22%, 0.86%, 68% and 0.57% with respect to 
the frequency of the frame without crack. Moreover, the crack does not affect the first natural 
frequency of the multi-bay frames structure when it is located at the particular points of the 
column and the beam lengths, since the stresses in these points are so small. 

Figs. 5(b), 6(b), 7(b), 8(b) and 9(b) show the effect of crack location and crack depth on the 
second natural frequencies of frame structures having one, two, three, four and five bays. As seen 
in Figs. 5(b), 6(b), 7(b), 8(b) and 9(b), similar to the effect of the crack on the first natural 
frequency, the left and the right hand side of the results obtained from maximum crack depth 
condition around the 15th, 25th (except for the region between the 20th and 30th nodes), 35th, 45th 

(except for the region between the 40th and 50th nodes) and 55th nodes of the FE are symmetric 
respectively for one, two, three, four and five bay frame structures. 

The maximum decreases in the second natural frequencies occur when the crack is at the fixed 
points (roots of the frame), the 30th node (root of the middle column), the 1st and 70th nodes (roots 
of the external columns), the 1st and 90th nodes (roots of the first and fifth columns), the 1st and 
110th nodes (root of the external columns) respectively for one, two, three, four and five bay frame 
structures. 

 
6.2 Two-story frame structure 
 
Fig. 10(a) shows the effect of crack location and crack depth on the first natural frequency of 

the two-story frame structure. As the crack depth increases, variation of the first natural frequency 
becomes significant. When the crack location changes, variation in the first natural frequency 
between the 1st and 30th nodes is centered symmetrically around the 15th node. On the other hand, 
the changes of frequency when the crack is between the 30th and 60th nodes is centered 
symmetrically around the 45th node of the FE as seen in Fig. 10(a) for a/h = 0.5. The maximum 
decrease in the first natural frequency occurs when the crack is at the 10th and 20th nodes (the joint 
point between the lower and the upper frame when the stresses due to the moment become 
maximum). 

Fig. 10(b) shows the effect of crack location and crack depth on the second natural frequency of 
the two-story frame structure. As seen in Fig. 10(b), similar to the effect of crack on the first 
natural frequency, the left and the right hand side of the results obtained from the maximum crack 
depth is symmetric when the crack is between the 1st and 30th nodes. There is also similar 
symmetry between the 30th and 60th nodes. The maximum decrease in the second natural frequency 
occurs when the crack is at the joint point between the lower and the upper frame at the 30th and 
60th nodes. Moreover, decreases in the second natural frequency also exist when the crack is at the 
1st, 10th, 20th, 40th and 50th nodes. 
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Table 8 Location of maximum decrease in the first natural frequencies in multi-bay frames 

 Frames 
Frequency at the 
crack ratio 0.5 

(see Figs. 5(a)-9(a) ) 

Location of 
Max. decrease 

in roots 

Location of 
Max. decrease

in corners 

One-bay 

 

1,2 1,2 

Two-bay 

 

2 2 

Three-bay 

 

2,3 2,3 

Four-bay 

 

2,4 2,4 

Five-bay 

 

2,5 2,5 

n: number of columns 2 , n-1 2 , n-1 

 
 

6.3 Three-story frame structure 
 
Fig. 11(a) shows the effect of crack location and crack depth on the first natural frequency of 

the three-story frame structure. As the crack depth increases, variation of the first natural 
frequency becomes significant. When the crack location changes, the variation in the first natural 
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frequency when the crack is between the 1st and 30th nodes is centered symmetrically around the 
15th node. There is the similar symmetry in the area between the 30th and 60th nodes, and the area 
between the 60th and 90th nodes of the FE as seen in the Figure. The maximum decrease in the first 
natural frequency occurs when the crack is at the 10th and 20th nodes (the joint point between the 
lower and the middle frame where the stresses due to the moment become maximum). Decreases 
in the frequency also occur when crack is at the 1st and 30th nodes (the roots of the frame) and 
when the crack is at 40th, 50th, 60th, 70th, 80th and 90th nodes. 

Fig. 11(b) shows the effect of crack location and crack depth on the second natural frequency of 
the three-story frame structure. As seen in the Figure, similar to the effect of the crack on the first 
natural frequency, the variation in the second natural frequency when the crack is between the 1st 
and 30th nodes is centered symmetrically around the 15th node, there is a similar symmetry 
centered around the 45th and 75th crack nodes for the area between the 30th and 60th, 60th and 90th 
nodes of the FE, respectively. The maximum decrease in the second natural frequency occurs when 
the crack is at the joint point between the middle and upper frame at the 40th and 50th nodes. 
Moreover, decreases in the second natural frequency also exist when the crack is at the 1st, 10th, 
20th, 30th, 60th, 70th, 80th and 90th nodes. 

 
 

7. Assessment of vibration analysis for the multi-bay frame structure 
 
When the results obtained from the free vibration analysis of multi-bay frames, shown in Figs. 

5(b), 6(b), 7(b), 8(b) and 9(b), are examined, generally the first natural frequencies decrease when 
the crack is located either at the roots or at the corner of the frames for all multi-bay frames. Crack 
location, first natural frequencies of the cracked structure, percentage of decreases and the first 
natural frequencies without crack are given in Tables 3-7. In these tables, percentage decrease in 
the first natural frequencies is calculated with respect to the maximum decrease. As seen in Tables 
3-7, the maximum decreases in the first natural frequency of the multi-bay frames occur, if the 
crack is located at the roots of the 2nd column or n-1 number of column and at the corner of the 2nd 
column or n-1 number of column (n: number of columns). In other words, it is observed that the 
locations of maximum decrease in the first natural frequency depend on the particular formulation. 
This formulation is given schematically in Table 8. This phenomenon is not observed for the 
second natural frequency, since, the second mode shapes do not have a similar form as the first 
mode shapes. 

 
 

8. Conclusions 
 
In this study, the effects of crack depth and crack location on the in-plane free vibration of 

cracked frame structures have been investigated numerically by using the Finite Element Method. 
For the rectangular cross-section beam, a crack element is developed by using the principles of 
fracture mechanics. The following conclusions are drawn. 
 The reduction of natural frequency depends on the crack depth and crack location. 
 Higher drops in the in-plane natural frequency are observed when the crack is located near 
the roots or corners of the frames. 
 When the number of columns increases in the multi-bay frame structures, the effect of the 
crack decreases on the natural frequencies. 

50



 
 
 
 
 
 

Vibration analysis of cracked frame structures 

 The locations of maximum decreases in the first natural frequency of the multi-bay frames 
depend on the particular formulation. 
 There is no effect of the crack on the in-plane natural frequency when the crack is located at 
the nodal points of the mode shape. 
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