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Abstract. Different mathematical models are proposed and their analytical solutions derived for the
analysis of linear elastic Reissner’s multilayer beams. The models take into account different combinations
of contact plane conditions, different material properties of individual layers, different transverse shear
deformations of each layer, and different boundary conditions of the layers. The analytical studies are
carried out to evaluate the influence of different contact conditions on the static and kinematic quantities.
A considerable difference of the results between the models is obtained. 
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1. Introduction

Composite structural elements are made of two or more components from one or more different

materials in a single cross section. The basic idea is to combine the components in such a way that

each of them fulfils the function for which its material characteristics are best suited. Due to this

optimized performance of their components, the composite systems are economical and have a high

bearing capacity. They are widely used in structures like steel-concrete composite beams, wood-steel

concrete floors, coupled shear walls, sandwich beams, concrete beams externally reinforced with

laminates and many more. The mechanical behaviour of these structures largely depends on the type

of the connection between the layers. The use of mechanical shear connectors such as nails, screws

and bolts is very common, but they provide only a partial interaction between the layers, thus the

interlayer slip and uplift occur.  Therefore, a partial interaction has to be taken into consideration in

the mechanical analysis of multilayered structures. To this end, a large number of references exist

on this very interesting topic. Among many others, a few examples are given here. Attard and Hunt

(2008) presented a hyperelastic formulation of a sandwich column buckling where interlayer slip

and uplift were neglected. Similar problems but with neglecting the effect of interlayer slip and

uplift on mechanical behaviour of layered structures were proposed by Bareisis (2006) and Vu-Quoc

et al. (1996). Taking into account the interlayer slip but neglecting the interlayer uplift was analyzed
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by Frostig (2003), Girhammar and Pan (2007), Kryžanowski et al. (2009), Schnabl et al. (2006,

2007, 2010, 2011), Sousa and da Silva (2010), and McCutheon (1986).

Much less literature is available on mechanical analysis of multilayer beams where both interlayer

slip and uplift were taken into account, see e.g. (Adekola 1968, Gara et al. 2006, Krofli  2010a, b,

2011, Nquyen et al. 2001, Ranzi et al. 2006, 2010). Recently, Schnabl and Planinc (2012) applied

both interlayer slip and uplift in the buckling analysis of two-layer composite columns where

transverse shear deformation is also taken into consideration. 

However, as far as the authors’ knowledge is concerned it seems that there is no systematic

analysis in the open literature for analytical modelling of bending of multilayer beams where

different combinations of contact conditions are considered. 

The aim of the present paper is to derive analytical models for bending of multilayer beams with

various combinations of contact conditions. To this end, it is shown how to reformulate the

governing equations in order to get well conditioned systems of generalized equations. In this paper,

four characteristic analytical models are proposed. 

2. Analytical model

2.1 Assumptions

A model of a planar multilayer beam composed of N layers and N − 1 contact planes is studied

with the following assumptions: (1) material is linear elastic; (2) displacements, rotations and strains

are small; (3) shear strains are taken into account (the Timoshenko beam); (4) normal strains vary

linearly over each layer (the Bernoulli hypothesis); (5) friction between the layers is neglected or is

taken into account indirectly through the material models of the connection; (6) cross sections are

symmetrical with respect to the plane of deformation and remain unchanged in the form and size

during deformation; (7) both transverse and longitudinal separations between the layers are possible

but they are assumed to be mutually independent; and (8) loading of a multilayer beam is

symmetrical with regard to the plane of deformation. 

2.2 Governing equations

An initially straight, planar, multilayer beam element of undeformed length L is considered, of

which two adjacent layers i and i + 1 separated by a contact plane α are shown in Fig. 1. The beam

is placed in the (X, Z) plane of a spatial Cartesian coordinate system with coordinates (X, Y, Z) and

unit base vectors EX, EY, and EZ. Each layer has its own reference axis which coincides with the

layer’s centroidal axis. The reference axis of an arbitrary layer i is denoted as xi in the undeformed

configuration and  in the deformed configuration. The material particles of each layer are

indentified by material coordinates . Besides, the material coordinate xi of each

layer is identical with its reference axis. In addition, it is assumed that . The

multilayer beam element is subjected to the action of the distributed load  and the

distributed moment  along the length of each layer. A differential segment of length dx

of layer i with the applied loading with respect to the reference axis, the cross-sectional equilibrium

forces and bending moments, and contact tractions in tangential and normal directions 

, and  is shown in Fig. 2.
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External point forces and moments can be applied only at the ends of the multilayer beam

element and are introduced via boundary conditions. The system of linear governing equations of

the multilayer beam is obtained using a consistent linearization of governing nonlinear equations of

a Reissner planar beam in the undeformed initial configuration (Reissner 1972). Thus, the linearized

system of governing equations consists of kinematic, equilibrium and constitutive equations with

accompanying boundary conditions of each layer and the constraining equations that assemble each

layer into a multilayer beam. 

2.2.1 Kinematic equations

The kinematic equations listed below define the relationship between the displacements and

strains for an arbitrary layer i (i = 1, 2,..., N)

Fig. 1 Undeformed and deformed configuration of a multilayer beam 

Fig. 2 Internal forces and interlayer tractions in a multilayer beam element 
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(1)

In Eq. (1),  denote the components of the displacement and rotation vector of the ith

layer at the reference axis xi = x with respect to the base vectors EX, EY, and EZ, respectively. The

prime (•)' denotes the derivative with respect to x. The extensional strain of the reference axis of the
ith layer, the shear and the bending strain of the corresponding cross section of the ith layer are

denoted by  and , respectively. 

2.2.2 Equilibrium equations

The relationship between the loads applied on the layer i, the corresponding internal equilibrium

forces and the distributed contact tractions are defined by the equilibrium equations derived from

Fig. 2, (i = 1, 2,..., N) 

(2)

where  and  represent the axial and shear equilibrium forces while  is the equilibrium

bending moment of the ith layer. On the other hand, , and  are the distributed loads on ith

layer given with respect to the reference axis xi = x. The tangential and the normal interlayer contact

tractions on the contact plane α are denoted by  and . On the outer planes of the multilayer

beam no contact exists, thus 

(3)

2.2.3 Constitutive equations
The constitutive internal forces  and  are related to the equilibrium internal forces

 and   by the following constitutive equations (i = 1, 2,..., N) 

(4)

In the case of a linear elastic material and when the layer reference axis coincides with its

centroidal axis, the constitutive forces are given by the linear relations with respect to εi, κi, and γi

(Hjelmstad 2005),  (i = 1, 2,..., N) 
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(5)

In Eqs. (5), Ei and Gi are the elastic and shear modulus, Ai denotes the area of the cross section,

and Ji is the second moment of area of the ith layer with respect to the reference axis xi = x. The

shear coefficient of the cross section of the ith layer is denoted by . For rectangular cross sections

and isotropic material this coefficient is 5/6 (Cowper 1966). 

2.2.4 Constraining equations

The constraining equations define the conditions by means of which an individual layer i is

assembled into a multilayer beam. When a material point on the contact plane α between layers i

and i + 1 is observed (see Fig. 1), it can be identified in the undeformed configuration with points

 and , the first one on the lower edge of the upper layer i and the

second one on the upper edge of the lower layer i + 1. In the deformed configuration these two

points become separated due to an interlayer separation. Vectors  and 

 determine the position of points  and 
 
in the deformed configuration 

(6)

where , ,  and

. Corresponding to the assumption of small displacements and

rotations, the vector of separation of points 
 
and  

 , reads

(7)

An interlayer slip between the adjacent layers is denoted by ∆uα and can be defined from Eq. (7)
as (α = 1, 2, ..., N − 1 and i = α) 

(8)

Since all the quantities in Eq. (8) are functions of material coordinate x, the notation of the

argument x is abandoned. The interlayer uplift (vertical separation) is marked by  and defined

from Eq. (7) as (α = 1, 2, ..., N − 1 and i = α) 

 (9)

The term interlayer distortion, , is introduced as well to describe the difference between the

rotation angles of adjacent layers as (α = 1, 2, ..., N − 1 and i = α) 

(10) 
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In general, flexibility of the contact highly depends on the way the contact is enforced. A

constitutive law of the connection between the layers generally assumes a nonlinear relationship

between contact displacements and interlayer tractions (Alfano and Crisfield 2001, Volokh and

Needleman 2002). In the present paper, as generally proposed in the structural engineering practice,

a linear constitutive law of the incomplete connection between the layers is assumed, see e.g.

(Adekola 1968, Krofli  et al. 2010a, Schnabl et al. 2007). For the contact plane α, a linear

uncoupled constitutive law of the connection between the layers can be written as (α = 1, 2,..., N − 1) 

(11)

where  and  are the slip and uplift moduli at the interlayer surface. On the other hand, the

rotational degree of freedom in the contact defined e.g., as 

 (12)

is in this paper not taken into account. With Eq. (10) only the difference of the cross sectional

rotations are defined which is due to different transverse shear deformations of the layers. Eq. (11)

can be used only in case when interlayer displacements are realized, thus  and/or .

For example, in the case when  from Eq. (11) it follows that . That is obviously

incorrect, since interlayer tractions also appear when interlayer displacements are absent. This

former contradiction originates from the fact that in the limiting case, i.e.,  and ,

the system of governing equations of a multilayer composite beam becomes singular (Hozjan et al.

2012). In these cases, the governing equations should be reformulated in a way that will be

described below. Note that when  = 0, the tangential contact tractions  are calculated from

the equilibrium equations, i.e. Eq. (2). Similarly, when  = 0, the same equilibrium equations are

used to express , as well. 

2.3 Basic models

The interlayer degrees of freedom can be described using , , and  .

By allowing or constraining a specific degree of freedom in the contact plane,  different

combinations of contact plane conditions are introduced. In the present paper only four basic and

most common models of different connections between the layers are elaborated although models

where the constraining equations are different for each contact plane can be formulated in a similar

manner. These common models and their corresponding interlayer degrees of freedom are presented

in Table 1. The model M000 obviously reintroduces the Bernoulli hypothesis over the entire cross-

section (thus enabling the problems in which  and  to be accurately

simulated), while the M001 relaxes this hypothesis to make it hold for each layer separately.

Therefore, the problems in which  and , but  remains finite may be

accurately simulated using this model. In the models M101 and M111 the deformed cross-sections are

not requested to remain continuous. Additionally, the model M101 obviously serves to simulate

accurately the situations in which . 
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2.3.1 Model M000 - the standard beam model

The contact plane conditions for the model M000 according to Table 1 are described by the

following expressions 

(13)

where the index k marks an arbitrary layer from . After considering relations (13) in the

general governing equations of the multilayer beam (1)-(5), the basic equations of the model M000

are the following
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Table 1 Basic models with corresponding interlayer degrees of freedom

MODEL ∆u ∆w ∆ϕ

M000 × × × 

M001 × × √

M101  √ × √

M111 √ √ √

×: zero value; √: non-zero value. 
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where 

, ,

Since every layer has its own separate reference axis, M� is not the total cross-sectional bending

moment of a composite beam because the axial forces N
i, that are mutually dislocated, contribute

to the total bending moment as well. Thus, , where ri is the distance between

the reference axis of the ith layer and the arbitrary axis with respect to which the total bending

moment is computed. The system (14) is a system of nine equations for nine unknown functions uk,

wk, ϕk, N, Q, M or MTOT, , and κk where the additional functions pt, i are expressed in terms

of strains εk and γk using (2), (4) and (5). Using the last three equations of system (13), we express
 and κk in the system (14) in terms of uk, wk and ϕk, finally obtaining a system of six ordinary

linear differential equations with constant coefficients for six unknown functions uk, wk, ϕk, N, Q,

and M or MTOT. This reduced system can be solved analytically with the following boundary

conditions from which six constants of integration are found

(15)

where  and  (n = 1, 2, 3), are the external end point forces and

moments of the beam, while  and  are the displacements and the rotations at the beam ends

that are identical for all layers. The coefficients  and  have values 1 or 0 depending on the

type of the support at the beam ends. 

2.3.2 Model M001 
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,

,

, , (17)

Similarly as in the model M000, the contact tractions  are expressed via the

strains εk, γk, and κi which are further expressed via displacements uk, wk, and ϕk, (i = 1, 2, ..., N).

This allows reducing the system (17) to a system of 4 + 2N linear first-order ordinary differential

equations with constants coefficients for the same number of unknown functions: ,

and  (i = 1, 2, ..., N). These functions are determined after the system is solved in conjunction

with the following boundary conditions (i = 1, 2,..., N) 

(18)

where  and  (n = 1, 2) and 
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coefficients at the beam ends for each layer i (i = 1, 2, ..., N). They have values 1 or 0 depending

on the type of the support at the both ends of each layer. External moments and rotations at the

ends of each layer are denoted by  and  respectively. In addition, note that

, and  are the same for all layers. 
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,

, , (20)

The strains  and κi are expressed via internal forces N
i, Q and M

i from the constitutive

equations (last 2N + 1 equations of the system (20)). The contact tractions pt,α are expressed via

displacements ui and rotations ϕi from Eqs. (19) and (8). The system (20) is reduced to a system of

2 + 4N linear first-order ordinary differential equations with constant coefficients for the same

number of unknown functions: , and  (i = 1, 2,..., N). To solve this system the

corresponding boundary conditions are considered 

(21)

where  and  while  and  are the boundary

conditions coefficients with values 0 or 1 depending on the type of support the ends of each layer.

The external longitudinal point forces and horizontal displacements at the ends of each layer are
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same for all layers. 
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(23)

where  and 
 
(  and n = 1, 2, 3) are the boundary conditions coefficients for

each layer, while  and  (  and n = 1, 2, 3) are the external transverse

point forces and vertical displacements at the ends of each layer, respectively. 

3. Analytical solution

The reduced systems of generalized equilibrium Eqs. (14), (17), (20), and (22) are the systems of

linear first-order ordinary differential equations with constant coefficients. Similarly, the systems of

generalized equations of other mathematical models not introduced in the paper are also systems of

linear first-order ordinary differential equations with constant coefficients. In general, such systems

of equations can be written in the following compact form as 

, (24)

where Y is the vector of unknown functions, g is the vector of external loading, B is the matrix of

constant coefficients, and Y0 is the vector of boundary parameters that are determined from the

boundary conditions of the multilayer beam. The solution of the inhomogeneous system of

differential Eq. (24) is composed of homogeneous and particular solutions (Perko 2001) 

(25)

When a multilayer beam is subjected only to point forces and moments, i.e., g = 0, the solution of

(24) is composed of a homogeneous solution only 
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example the influence of various parameters on the midspan vertical displacement of a sandwich

beam has been investigated. The influence of contact discontinuity between the layers of a

composite beam on its bearing capacity has been illustrated in the second example. 

4.1 Simply supported sandwich beam with uniformly distributed load

A parametric study for this example has been performed on a simply supported sandwich beam

subjected to a uniformly distributed load (see Fig. 3). The sandwich beam layers are denoted by i =

a, b, c and the contact planes by α = 1, 2, respectively. The geometrical and material characteristics

are the following: Li = L = 100 mm, ha = hc = 1 mm, hb = 18 mm, bi = 60 mm, Ea = Ec = 2 · 104 N/

mm2, Eb = Ea/50, Ga = Ea/8, Gb = 3/4Eb, Gc = Ec/8,  = 5/6. The uniformly distributed load,  =

2 N/mm, is applied on the layer a. 

Note that the values of the shear moduli fall outside the range of possible values for an isotropic

material, but are perfectly acceptable e.g., for timber (Schnabl et al. 2007). Due to symmetry, only

one half of the sandwich beam has been analysed, so that the boundary conditions are given as  

(27)

on the left-hand side of the beam, and 

(28)

on the middle of the beam, where i = a, b, c. Defining the boundary conditions in this manner

allows us to solve the problem where Kt,α = 0, (α = 1, 2). In Table 2 the vertical displacements of

the centroid axis at the midspan of the sandwich beam for different multilayer beam models are

presented depending on the L/h ratio. For L/h = 5 the same characteristics as given above have been

used, while for other L/h ratios only the length of the beam has been modified accordingly. A

vertical displacement of a homogeneous beam according to the classical engineering theory

proposed by Timoshenko (1940), , has been used as a reference

vertical displacement, where  and

. The non-dimensional vertical displacement, , is introduced,

where wM is the vertical displacements at the midspan of a sandwich beam for an arbitrary model

M. Four values of the slip modulus Kt,α for α = 1, 2 are analysed: 0, 1, 10 and 100 N/mm
2. The

model M000 shows exactly the same behaviour as the homogeneous beam, which is due to its rigid
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Fig. 3 Simply supported sandwich beam with uniformly distributed vertical load
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interlayer connection (  where α = 1, 2). The differences between the results of

the models M000 and M001 range between approximately 7% for a moderately thick beam (L/h = 10)

to more than about 53% for a very thick beam (L/h = 2). By allowing the interlayer slip to occur,

the vertical displacements at the midspan increase more considerably, especially as interaction

between the layers gets weaker (Kt,α → 0). In the last column in Table 2 the non-dimensional

vertical displacement for a sandwich beam with no interaction between the layers is given according

to the Bernoulli beam theory as  with . As expected, the results of

the model M101 with Kt,α = 0 approach this solution as the beam becomes thinner. 　

The core thickness ratio influence is described by hb/h, where hb is the core’s height while h is the

total height of the sandwich beam cross-section. By changing the core height but keeping the total

height constant (h = 20 mm) the vertical displacement at the midspan is studied (see Fig. 4). The

values of Kt,α are written in the parentheses next to M101 in the legend to Fig. 4. It is noticed that w

increases monotonically with hb/h ratio for the models M000 and M001, but for the model M101 an

extreme value of w appears for the presented values of Kt,α. For Kt,α = 0, the maximum vertical

displacement at the midspan is obtained for hc/h ≈ 0.8, while for the higher stiffnesses Kt,α the

maximum vertical displacement occurs at lower hb/h ratios. From the expression for w0, it can be

easily shown that the beam stiffness EI0 has a maximum at h
b/h = 0.7795 which coincides very well

with the present result for the model M101 with Kt,α = 0. 

uα∆ wα∆ ϕα∆ 0= = =

w0 w0/w∞
= w0 5pA

a
L
4
/ 384EI0=

Table 2 Non-dimensional vertical displacement ( ) at the midspan for various contact plane
conditions depending on L/h ratio  

L/h  (mm) M000 M001

M101

Kt,α★ = 100* Kt,α★ = 10* Kt,α★ = 1* Kt,α★ = 0*

2 0.00106 1.00000 1.53262 5.58215 6.51117 6.62796 6.64128 5.29600 

5 0.01621 1.00000 1.21944 6.09954 12.28912  13.88957 14.09633 13.54423 

7 0.05321 1.00000 1.13108 4.69571 12.52822  15.71016 16.17645 15.84678 

10 0.20161 1.00000 1.07063 3.24534 11.06386 16.58495 17.59765 17.42006 

★α = a, b; * in N/mm2 

wM wM/w∞
=

w
∞

w0

Fig. 4 w versus hb/h for different contact plane conditions. * means Kt,α in N/mm
2
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The influence of the core elastic-to-shear modulus ratio, Eb/Gb, on midspan vertical displacements

is displayed in Fig. 5. The range 0 < Eb/Gb < 100 is reasonable only for anisotropic materials. A

considerable difference of the results between the models M000 and M001 is observed by the

interlayer distortion which is dependent on the layer’s shear modulus. In case when  it

follows that  (see Eq. (5)), which means that the higher values

of the shear moduli produce smaller values of the interlayer distortion and thus smaller vertical

displacements. Obviously, as the Eb/Gb ratio increases the differences between the models M000 and

M001 become more pronounced. For models M101 the interlayer slip (depending on different Kt,α

values) causes a considerable increase in the vertical displacements in comparison to model M001. It

is noticed that all models have almost linear Eb/Gb − w relationship. 

4.2 Contact discontinuity influence studies

A simply supported two-layer beam is analysed in this example (see Fig. 6). Layers are marked

by i = a, b. The geometrical and material characteristics are as follows: Li = L = 200 cm, hi =

10 cm, bi = 20 cm, Ei = 800 kN/cm2, Gi = Ei/16,  = 5/6. The uniformly distributed load, = 0.2

kN/cm, is applied at the reference layer of the lower layer b. The beam is divided into three

segments, namely e1, e2 and e3, whose lengths are L1, L2, and L3, respectively. The central segment

is made of two completely separate layers, hence model M111 with Kt = Kn = 0 is used. The relative

mid-segment length is defined by β = L2/L. The outer segments’ layers are connected according to

the model M101. The connection between the segments is defined by the following continuity

conditions:  and , where , where i = a, b,

and . The conditions for transverse equilibrium at the connection of the segments are

 and . The influence of the interlayer slip

modulus Kt between the layers with the segment lengths L1 and L3, and separation length L2, on the

beam displacements and equilibrium forces has been examined next. It is noticed that although the

slip modulus has an influence on all displacements, the interlayer uplift (∆w) and distortion (∆ϕ),

remain unchanged for a given value of β under a variation of Kt (Fig. 7(a)). 

The interlayer uplift occurs only at the central segment where other than the applied loading, wi

depends on ϕi  at the contact with the outer segments, since the segments on a single layer are
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Fig. 5 w versus Eb/Gb for different contact plane conditions. * means Kt,α in N/mm
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rigidly connected. By expanding the expression for the interlayer distortion as ∆ϕ = ϕb − ϕa = γb −
wb' − , no dependence between ∆ϕ and Kt is noticed, since shear

forces are independent of Kt (see Eq. (22)). This means that ∆w is independent of Kt and so is ∆ϕ

(on the entire length of the beam). Vertical displacement along the span has been plotted for β = 0.5

and different values of Kt in Fig. 7(a). The interlayer slip, ∆u for β = 0.25, 0.5, 0.75, and Kt = 1,100

kN/cm2 has been shown in Figs. 7(b) and (c). As expected, ∆u, increases with decreasing of Kt and

increasing the separation length. 

The slip modulus Kt affects the distribution of the axial equilibrium forces and the tangential

contact tractions pt, which can be observed again for β = 0.25, 0.5, 0.75, and Kt = 1,100 kN/cm
2 in

Figs. 8-9. 

In case of Kt =1 kN/cm
2, the layers behave almost independently (not much difference between

the inner and the outer segments) and the variation of β has little effect. In the latter case the slip

modulus is high and the influence of β is more pronounced. The shear forces are, as stated earlier,

independent of Kt, and so are the normal interlayer tractions (see Eqs. (11) and (9)). Their

distributions are for different values of β shown in Fig. 10. 
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– w∆ ′–=

Fig. 6 Simply supported two-layer beam

Fig. 7 (a) Vertical displacements for β = 0.5 and various Kts, (b) Interlayer slip for Kt = 1 kN/cm
2 and

various βs, (c) Interlayer slip for Kt = 100 kN/cm
2 and various βs 
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Fig. 8 Axial equilibrium forces (a) Kt = 1 kN/cm
2, (b) Kt = 100 kN/cm

2  

Fig. 9 Tangential contact tractions (a) Kt = 1 kN/cm
2, (b) Kt = 100 kN/cm

2  

Fig. 10 Shear forces (a) layer a, (b) layer b, and (c) normal contact tractions. All quantities are Kt independent 
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4.3 Comments on the boundary layer effect

In the context of composite beams with interlayer slip, the boundary layer effect appears in the

case of bending due to boundary moments M0 and becomes increasingly pronounced with growing

shear stiffness of the interlayer connection. When each individual layer of a two-layer beam is

subjected to an end moment (  and ) with zero axial

load (  and ), the normal forces in each layer and the

tangential tractions at the interlayer connection emerge between the beam boundaries even though at

the boundaries they do not exist. 

This problem was investigated by Challamel and Girhammar (2011) for a two-layer beam with

interlayer slip using the Euler-Bernoulli beam theory. In the present work the same problem is

investigated using the Timoshenko beam theory. Substituting  band  from

(20) into overall equilibrium along the beam 
 
yields

(29)

while substituting  and  from (20) into the derivative of (8) and the result

into the derivative of (19)3 and then into the derivative of  from (20) yields 

 (30)

Likewise, substituting  and  from (20) into (19)2 yields 

(31)

Solving (29) and (30) for  and  and substituting the result into the derivative of (31) we

obtain the following fourth-order differential equation 
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(35)

(36)

For the Euler-Bernoulli beam theory, shear moduli  and , 

reducing Eq. (32) to exactly the same form as given by Challamel and Girhammar (2011) 

(37)

where 

(38)

(39)

Using the model M101 and considering a simply supported two layer beam with identical

geometrical and material properties as in the previous example without discontinuity in the

interlayer connection (L2 = 0, see Fig. 11), a numerical analysis is performed according to Challamel

and Girhammar (2011). 

Since for the case of pure bending no transverse forces appear, the results obtained using model

M101 are exactly the same as the results proposed by Challamel and Girhammar (2011). Following

the notation due to these authors, the dimensionless quantities are introduced 
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Fig. 11 Beam model for the boundary-effect analysis 
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is the normal force associated with the full composite beam. In Fig. 12, the  diagram is shown

for various values of parameter , which is defined as  and is proportional to the

interlayer tangential stiffnesses. The results shown in Fig. 12 correspond perfectly with the results

proposed by Challamel and Girhammar (2011). It is also noticed that for this example the

distribution of the total moment M0 between the layers has no influence on the normal forces, axial

strains and tangential interlayer traction in the composite beam. 

4. Conclusions

The paper has presented different mathematical models for analytical studying the mechanical

behaviour of linear elastic multilayer Reissner’s composite beam with interlayer slip and uplift

between the layers. The analytical studies have been carried out to evaluate the influence of

different parameters on static and kinematic quantities of multilayer beams with different

combinations of contact conditions. Based on the results of this analytical study and the parametric

evaluations undertaken, the following conclusions can be drawn: 

1. Different interlayer contact conditions have a considerably different influence on static and

kinematic quantities of multilayer beams. As a results, considerable differences in results between

the models have been obtained. 

2. The slip modulus has an influence on all displacements, while the interlayer uplift (∆w) and
distortion (∆ϕ), remain unchanged for a given separation length under a variation of Kt. 

3. The slip (∆u) increases with decreasing Kt and increasing the separation length. The shear

forces are independent of Kt, and so are the normal interlayer tractions. 
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