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Abstract. In this paper, the first-order shear deformation theory (FSDT) (Mindlin) for continuum
incorporating surface energy is exploited to study the static behavior of ultra-thin functionally graded (FG)
plates. The size-dependent mechanical response is very important while the plate thickness reduces to
micro/nano scales. Bulk stresses on the surfaces are required to satisfy the surface balance conditions
involving surface stresses. Unlike the classical continuum plate models, the bulk transverse normal stress
is preserved here. By incorporating the surface energies into the principle of minimum potential energy, a
series of continuum governing differential equations which include intrinsic length scales are derived. The
modifications over the classical continuum stiffness are also obtained. To illustrate the application of the
theory, simply supported micro/nano scaled rectangular films subjected to a transverse mechanical load are
investigated. Numerical examples are presented to present the effects of surface energies on the behavior
of functionally graded (FG) film, whose effective elastic moduli of its bulk material are represented by
the simple power law. The proposed model is then used for a comparison between the continuum analysis
of FG ultra-thin plates with and without incorporating surface effects. Also, the transverse shear strain
effect is studied by a comparison between the FG plate behavior based on Kirchhoff and Mindlin
assumptions. In our analysis the residual surface tension under unstrained conditions and the surface Lame
constants are expected to be the same for the upper and lower surfaces of the FG plate. The proposed
model is verified by previous work.

Keywords: functionally graded plates; surface energy effect; ultra-thin films; size-dependent analysis;
finite element analysis 

1. Introduction

Atoms at a free surface experience a different local environment than do atoms in the bulk of a

material. As a result, the energy associated with these atoms will be different from that of the atoms

in the bulk. The excess energy associated with surface atoms is called surface free energy. In

classical continuum mechanics, such surface free energy is typically neglected because it is

associated with only a few layers of atoms near the surface and the ratio of the volume occupied by

the surface atoms and the total volume of material of interest is extremely small. However, for

micro/nano-size particles, wires and films, the surface to volume ratio becomes significant, and so
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does the effect of surface free energy.

Ultra-thin plate structures with submicron thicknesses have attracted much attention due to their

potential as sensitive, high frequency devices for applications in Micro-electromechanical Systems

(MEMS) and Nano-electromechanical Systems (NEMS) (Evoy et al. 1999, Lavrik et al. 2004,

Craighead 2000). For structures with submicron sizes, due to the increasing surface-to-bulk ratio,

surface effects are likely to be significant and can considerably modify macroscopic properties.

When the thickness of ultra-thin plates-like films reduces to submicron scale, the surface effect,

which is usually neglected in classical thin plate elasticity theory, becomes significant with the

increasing of surface-to-bulk ratio (Cammarata 1994, Muller and Saul 2004). It is noticed obviously

that there exists a size-dependent mechanical behavior of ultra-thin elastic films with nano-scale

thickness (Cammarata and Sieradzki 1989, Wolf 1991, Miller and Shenoy 2000, Liang et al.

2002).The understanding and modeling of such size-dependence due to surface effects is currently

of particular interest (He et al. 2004, Sharma and Ganti 2004, He and Li 2006).

Atomistic simulations results have shown that elastic constants of ultra-thin films can be larger or

smaller than their bulk counterparts due to the effect of surface elasticity (Zhou and Huang 2004,

Shim et al. 2005). In addition, the atomistic lattice model further demonstrates that the values of

elastic constants of ultra-thin films are thickness dependent and approach the bulk value as the film

thickness increases (Sun and Zhang 2003, Zhang and Sun 2004, Guo and Zhao 2005). However,

systematic atomistic studies of mechanical response of thin films need a tremendous computational

source and hence they are limited in practical applications.

Gurtin and Murdoch (1975a, b, 1978) formulated a generic continuum model of surface elasticity,

where the surface of solids can be viewed as a two dimensional elastic membrane with different

material constants adhering to the underlying bulk material without slipping. It is found that the

continuum by incorporating surface elasticity can predict the same accurate elastic response of thin

films as the case of atomistic modeling if the proper surface constitutive constants are used (Miller

and Shenoy 2000). Recently, He et al. (2004) proposed a rigorous continuum surface elasticity

model and successfully analyzed the size-dependent deformation of nano-films. The surface effects

on the large deflection of ultra-thin films are investigated by incorporating surface elasticity into the

Von Karman plate theory without consideration of the non-zero normal stress along the thickness

direction (Lim and He 2004).The continuum model proposed by Lu et al. (2006) takes into account

the effect of non-zero normal stress but neglects the effect of nonlinearity. Huang (2008),

investigated a modified continuum model of elastic films with nano-scale thickness by incorporating

surface elasticity into the conventional nonlinear Von Karman Plate theory. By using Hamilton’s

principle, the governing equations and boundary conditions of ultra-thin film including surface

effects are derived with the Kirchhoff’s assumptions, where the effect of non-zero normal stress and

large deflection are taken into account simultaneously. The proposed model is then applied to study

the bending, buckling and free vibration of simply supported micro/nano-scale thin film in-plane

strains and explicit exact solutions are obtained for these three cases.

For the surface of solids, Gibbs (1961) pointed out that surface energy and surface stress are not

identical; meaning that, a different amount of reversible work is required to form a unit surface than

to increase a large surface by unit area through reversible stretching it. Shuttleworth (1950) derived

the relations between surface stress and surface strain for small deformations, which are interpreted

from an atomistic viewpoint (Nix and Gao 1998). Gurtin and Murdoch (Gurtin and Murdoch 1975a,

Murdoch 2005) established the theoretical framework of the surface elasticity under the classical

theory of membrane. Steigmann and Ogden (Steigmann 1999, Steigmann and Ogden 1997)
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generalized the Gurtin-Murdoch theory to incorporate flexural stiffness of the free surface directly

into the constitutive response of surface. Dingreville and Qu (2008) investigated the influence of

Poisson’s ratio effect on the surface properties under general loading conditions. The effect of

surface tension on the elastic properties of nano structures is studied by Wang et al. (2010). Where

in the absence of external loading, surface tension will induce a residual stress field in the bulk of

nano structures. Based on the elastic behavior of nano-sized structural elements such as nano-

particles, nano-wires and nano-films, Dingreville et al. (2005) investigated an approach for the size

dependency of the overall elastic behavior of such nano-sized structural elements. For more review

the reader can refer to (Wang et al. 2011).

Functionally graded materials (FGMs) are microscopically inhomogeneous composite materials, in

which the volume fraction of the two or more materials is varied smoothly and continuously as a

continuous function of the material position along one or more dimension of the structure. These

materials are mainly constructed to operate in high temperature environments. The concept of

functionally graded material (FGM) was proposed in 1984 by the material scientists in Japan

(Koizumi 1997). Alieldin et al. (2011) suggested three approaches to transform the laminated

composite plate, with stepped material properties, to an equivalent functionally graded (FG) plate

with a continuous property function across the plate thickness. Such transformations are used to

determine the details of a functional graded plate equivalent to the original laminated one. FGMs

are usually made of a mixture of ceramic and metals. The ceramic constituent of the material

provides a high temperature resistance due to its low thermal conductivity, while the ductile metal

constituent, on the other hand, prevents the fracture caused by thermal stress due to high

temperature gradient in a very short period of time. 

The FGM is suitable for various applications, such as thermal coatings of barrier for ceramic

engines, gas turbines, nuclear fusions, optical thin layers, biomaterial electronics, etc. Alibeigloo

(2010) derived an exact solution for thermo-elastic response of functionally graded rectangular

plates subjected to thermo-mechanical loads. A finite element analysis of thermo-elastic field in a

rotating FGM circular disk is studied by Afsar and Go (2010). This study focuses on the finite

element analysis of thermo-elastic field in a thin circular functionally graded material disk subjected

to a thermal load and an inertia force due to rotation of the disk. Tung and DinhDuc (2010) derived

a simple analytical approach to investigate the nonlinear stability of functionally graded plates under

mechanical and thermal loads. Equilibrium and compatibility equations for FG plates are derived by

using the classical plate theory.

Functionally graded materials are used in many applications, owing to their stability in high

thermal environments. To this aim, many approaches are developed to study the thermo-elastic

behavior of functionally graded materials. One of these approaches is finite element analysis of such

material type.

A generalized refined theory including surface effects is developed by Lü et al. (2009a, b) for

functionally graded ultra-thin films with different surface properties. The classical generalized shear

deformable theory is adopted to model the film bulk, while the bulk stresses along the surfaces of

the bulk substrate are required to satisfy the surface balance equations of the continuum surface

elasticity. As a result, the shape function also shows size-dependence on the film thickness. It is

established that the proposed FGM thin films exhibit significant size-dependence when the thickness

approaches to micro-scale. The theory is then used to investigate a simply supported thin film in

cylindrical bending. Numerical examples are presented to clarify the effects of surface energies on

the bending behavior of FGM films, whose effective elastic moduli are predicted using the Mori–
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Tanaka method. The nature of intrinsic length scales and the effects of gradient index and aspect

ratio on the displacements are also discussed.

In this paper, the first-order shear deformation theory (FSDT) (Mindlin) for continuum

incorporating surface energy is exploited to study the behavior of ultra-thin functionally graded

(FG) plates. By incorporating the surface energies into the principle of minimum potential energy, a

series of continuum governing differential equations which include intrinsic length scales are

derived. The modifications over the classical continuum stiffness are also obtained. Simply

supported micro/nano scaled rectangular films subjected to a transverse mechanical load are

investigated. Also, a parametric study is provided to investigate the effect of surface energy and

transverse shear strain on the FG plate response. In our analysis the residual surface tension under

unstrained conditions and the surface Lame constants are expected to be the same for the upper and

lower surfaces of the FG plate. 

2. Formulation of a continuum plate model incorporating surface effects

In this section the FSDT incorporating surface effects is presented. The FG plate is expected to

consist of two material constituents. In our analysis the residual surface tension under unstrained

conditions and the surface Lame constants are expected to be the same for the upper and lower

surfaces of the FG plate. A series of continuum governing differential equations which include

surface energy and transverse shear strain effects are derived. The obtained modifications over the

classical continuum model concern two aspects, the material stiffnesses and governing equations.

The formulation is built up based on the model that given by Lu et al. (2006).

2.1 Governing equations for classical continuum model

In the first order shear deformation plate theory (FSDT) (Mindlin), the Kirchhoff hypothesis is

relaxed by making the assumption; the transverse normals do not remain perpendicular to the mid

surface after deformation. This amounts to including transverse shear strains in the theory. The

inextensibility of transverse normals requires that the vertical deflection ω not be a function of the

thickness coordinate z.

Under the same assumptions and restrictions of the classical laminate theory, the displacement

field of the first order theory is of the form

(1)

where  are unknown functions to be determined, and  denotes the

displacements of the mid plane (z = 0). Note that  and  which indicate that

 and  are the rotations of a transverse normal about the y-axis and x-axis respectively.

The strain is the variation of the continuum deformation with respect to its volume. So, the linear

Green-Lagrange strains components for small deformations and moderate rotations (10o-15o) can be

determined from the displacement field given in Eq. (1) as follow 

u x y z, ,( ) u0 x y,( ) zØx x y,( )+=

v x y z, ,( ) v0 x y,( ) zØy x y,( )+=

ω x y z, ,( ) ω0 x y,( )=

u0 v0 ω0 Øx Øy, , , ,( ) u0 v0 ω0, ,( )
∂u/∂z Øx= ∂v/∂z Øy=

Øx Øy



Size-dependent analysis of functionally graded ultra-thin films 435

(2)

where εij are the strain components. 

The governing equations of the first order theory will be derived using the principle of minimum

potential energy

(3)

where the virtual strain energy , and the virtual work done by applied forces  are given by 

(4)

(5)

where q is the distributed force at the upper surface of the plate. So by integrating through the plate

thickness, the minimum total potential energy in terms of the nodal displacements is given by

substituting for strain components into Eq. (4) and Eq. (5).

(6)

where (Nij and Mij) are the stress resultants and ( ) are the virtual

displacements. So the Euler-Lagrange equations of the theory are obtained by setting the virtual

displacements over domain to zero separately 

(7)

The stress resultants can be obtained by integration of the stress components through the plate

thickness for classical continuum model neglecting surface effects as follow

, (8)

The stress resultants are related to the generalized displacements  by the

εxx u0 x, zØx x,+=

εyy v0 y, zØy y,+=

γxy u0 y, v0 x, z Øx y, Øy x,+( )+ +=

γxz ω0 x, Øx+=

γyz ω0 y, Øy+=

δΠ Uδ Vδ– 0= =

Uδ Vδ

Uδ σijδεij zd
z
∫⎝ ⎠
⎛ ⎞ x ydd

A
∫=

Vδ qδω0 x ydd
A
∫=

δΠ Nxx x, δu0 Nyy y, δv0 Nxy y, δu0 Nxy x, δv0 Mxx x, δØx Myy y, δØy Mxy y, δØx+ + + + + +=

 Mxy x, δØy Nxz x, δω0 NxzδØx Nyz x, δω0 NyzδØy qδω0–+ + + + + 0=

δu0 δv0 δω0 δØx δØy, , , ,

δu0:  Nxx x, Nxy y,+ 0=

δv0:  Nxy x, Nyy y,+ 0=

δω0:  Nxz x, Nyz y, q–+ 0=

δØx:  Mxx x, Mxy y, Nxz–+ 0=

δØy:  Mxy x, Myy y, Nyz–+ 0=

Nij σij zd
h/2–

h/2

∫= Mij zσij zd
h/2–

h/2

∫=

u0 v0 ω0 Øx Øy, , , ,( )
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following relations for plates neglecting surface effects

(9)

where for the classical continuum model 

, , (10)

where  are the equivalent material property stiffnesses (Alieldin et al. 2011).

Finally, the equilibrium equations for isotropic FG plate for the classical continuum model where

is no body forces are included neglecting surface effects in terms of the nodal displacements can be

written as

(11)

Nxx A11u0 x, A12v0 y, B11Øx x, B12Øy y,+ + +=

Nyy A22v0 y, A12u0 x, B22Øy y, B12Øx x,+ + +=

Nxy A66 u0 y, v0 x,+( ) B66 Øy x, Øx y,+( )+=

Nxz A44 ω0 x, Øx x,+( )=

Nyz A55 ω0 y, Øy y,+( )=

Mxx D11Øx x, D12Øy y, B11u0 x, B12v0 y,+ + +=

Myy D11Øy y, D12Øx x, B22v0 y, B12u0 x,+ + +=

Mxy D66 Øx y, Øy x,+( ) B66 u0 y, v0 x,+( )+=

Aij Qij zd
h/2–

h/2

∫= Dij z
2
Qij zd

h/2–

h/2

∫= Bij zQij zd
h/2–

h/2

∫=

Qij

A11u0 xx,
A12v0 xy,

B11Øx xx,
B12Øy xy,

A66u0 yy,
A66v0 xy,

B66Øx yy,
B66Øy xy,

+ + + + + + + 0=

A66u0 xy,
A66v0 xx,

B66Øx xy,
B66Øy xx,

A12u0 xy,
A22v0 yy,

B12Øx xy,
B22Øy yy,

+ + + + + + + 0=

A44ω0 xx,
A44Øx x, A55ω0 yy,

A55Øy y, q–+ + + 0=

B11u0 xx,
B12v0 xy,

D11Øx xx,
D12Øy xy,

B66u0 yy,
B66v0 xy,

D66Øx yy,
D66Øy xy,

A44 ω0 x, Øx+( )+ + + + + + + + 0=

B12u0 xy,
B22v0 yy,

D12Øx xy,
D22Øy yy,

B66u0 xy,
B66v0 xx,

D66 Øx xy,
Øy xx,

+( ) A55 ω0 y, Øy+( )+ + + + + + + 0=

Fig. 1 A simply supported boundary conditions used in the FG plate solution
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The illustrated governing equations are then solved and used to study the mechanical behavior of

FG plates subjected to sinusoidal distributed load. Fig. 1 shows a set of simply supported boundary

conditions that are used in the solution of the FG plate. So, based on the illustrated boundary

conditions, the terms that have  and A66 can be eliminated from the governing equations.

2.2 Governing equations for continuum model incorporating surface energy

In this section a mathematical continuum model incorporating surface effects for plates subjected

to mechanical loads is formulated based on the first-order shear deformation theory. The plates are

expected to be functionally graded through the plate thickness according to the simple power law. 

Consider a thin plate structure with thickness h. The upper and lower surfaces S+ and S− of the

plate are defined by , respectively. The governing equations for the body of the plate,

where there is no body forces are included, are given by

(12)

where  denotes the stress components. The surface stresses on the surfaces S+ and S− of the plate

are denoted by  and , respectively, and satisfied the equilibrium relations (Gurtin and

Murdoch 1975a, 1978)

(13)

where  are the bulk stresses at , respectively.

Since the plate is thin, the stress component σzz is small comparing to the in-plane stress

components, which is simply assumed to be zero in the classical plate theories. However, the

surface condition Eq. (13) will not be satisfied with the assumption. To improve the weakness, it is

assumed here that the stress component σzz varies linearly through the thickness and satisfies the

balance conditions on the surfaces. With the assumption, σzz can be written as

(14)

The resultant forces  and resultant moments  are defined in Eq. (8). So, the governing

equations for continuum plates incorporating surface energy take the form

(15)

Bij A11 A12, ,

z ±h/2=

σij j, 0=

σij

τiα
+

τiα
–

τiα α,

+
σiz

+
– 0=

τiα α,

–
σiz

–
+ 0= i x y z; α, , x y,= =

σiz

±
σiz z ±h/2=( )= z ±h/2=

σzz 0.5 τβz β,

+
τβz β,

–
–( ) z

h
--- τβz β,

+
τβz β,

–
+( )+=

Nij Mij

Nxx x, Nxy y, τxx x,

+
τxx x,

–
τxy y,

+
τxy y,

–
+ + + + + 0=

Nyy y, Nxy x, τyy y,

+
τyy y,

–
τxy x,

+
τxy x,

–
+ + + + + 0=

Nxz x, Nyz y, τyz y,

+
τyz y,

–
τxz x,

+
τxz x,

–
q–+ + + + + 0=

Mxx x, Mxy y, Nxz–
h

2
--- τxx x,

+
τxx x,

–
–( ) h

2
--- τxy y,

+
τxy y,

–
–( )+ + + 0=

Myy y, Mxy x, Nyz–
h

2
--- τyy y,

+
τyy y,

–
–( ) h

2
--- τxy x,

+
τxy x,

–
–( )+ + + 0=
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If the surface stresses are neglected, Eq. (15) are reduced to the classical continuum plates

governing equations (Eq. (7)). The generalized resultant forces and resultant moments can be

defined for continuum plate incorporating surface effects as

(16)

where the constitutive relations of the surface layers S+ and S− as given by Gurtin and Murdoch

(1975a, 1978) can be expressed as follow, where the top and bottom layers have same material

properties

(17)

Where  is the residual surface tensions under unconstrained conditions, λ0 and µ0 are the

surface Lame constants on the upper and lower surfaces, and  denotes the

displacement fields as

(18)

The resultant forces  and the resultant moments  for the FSDT can be obtained by

substituting the displacement fields and the strain components into Eq. (14) and then into Eq. (8)

and Eq. (16). If the top and bottom surface layers have considered having the same material

properties, the resultant forces and moments can be obtained as

Niα

*
Niα τiα

+
τiα
–
; i+ + x y z, ,= =

Mαβ

*
Mαβ

h

2
--- ταβ

+
ταβ
–

–( ); α β,+ x y,= =

ταβ
±

τ0δαβ µ0 τ0–( ) uα β,

±
uβ α,

±
+( ) λ0 τ0+( )uγ γ,

±
δαβ τ0uα β,

±
+ + +=

ταz
±

τ0uz α,

±
=

τ0
ui
±
i x y,= z ±h/2=,( )

ux
±

u x y ±h/2, ,( ) u0 x y,( )±h
2
---Øx x y,( )= =

uy

±
v x y ±h/2, ,( ) v0 x y,( )±h

2
---Øy x y,( )= =

uz
±

ω x y,( ) ω0 x y,( )= =

Niα

*
Mαβ

*

Nxx

*
4τ0 A11 2 2µ0 λ0+( )+( )u0 x, A12 2 λ0 τ0+( )+( )v0 y, B11Øx x, B12Øy y,+ + + +=

Nyy

*
4τ0 A22 2 2µ0 λ0+( )+( )v0 y, A12 2 λ0 τ0+( )+( )u0 x, B22Øy y, B12Øx x,+ + + +=

Nxy

*
4τ0 A66 2µ0+( ) u0 y, v0 x,+( ) B66 Øy x, Øx y,+( )+ +=

Nxz

*
A44 ω0 x, Øx x,+( ) 2τ0ω0 x,+=

Nyz

*
A55 ω0 y, Øy y,+( ) 2τ0ω0 y,+=

Mxx

*
D11 µ0h

2 λ0h
2

2
----------+ +⎝ ⎠

⎛ ⎞Øx x, D12

λ0 τ0+( )h2

2
--------------------------+⎝ ⎠

⎛ ⎞Øy y,

υτ0h
2

6 1 υ–( )
-------------------⎝ ⎠
⎛ ⎞ ω0 xx,

ω0 yy,
+( ) B11u0 x, B12v0 y,+ + + +=
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(19)

So, the equilibrium equations for the continuum model incorporating surface effects for FG plates,

take the form

(20)

where the material parameters for isotropic FG plate will be

(21)

By comparing Eq. (20) with Eq. (11), some terms have been added to the governing equations of

the classical model to incorporate surface effects. The additional terms appeared as a result of the

plate surface tension, which provides additional stiffnesses to the classical form of the governing

equations. For zero surface tensions, Eq. (20) reduces to the classical form of governing equations.

Myy

*
D11 µ0h

2 λ0h
2

2
----------+ +⎝ ⎠

⎛ ⎞Øy y, D12

λ0 τ0+( )h2

2
--------------------------+⎝ ⎠

⎛ ⎞Øx x,

υτ0h
2

6 1 υ–( )
-------------------⎝ ⎠
⎛ ⎞ ω0 xx,

ω0 yy,
+( ) B22v0 y, B12u0 x,+ + + +=

Mxy

*
D66

µ0h
2

2
----------+⎝ ⎠

⎛ ⎞ Øx y, Øy x,+( ) B66 u0 y, v0 x,+( )+=

A11

*
u0 xx,

A12

*
v0 xy,

B11Øx xx,
B12Øy xy,

A66

*
u0 yy,

A66

*
v0 xy,

B66Øx yy,
B66Øy xy,

+ + + + + + + 0=

A66

*
u0 xy,

A66

*
v0 xx,

B66Øx xy,
B66Øy xx,

A12

*
u0 xy,

A22

*
v0 yy,

B12Øx xy,
B22Øy yy,

+ + + + + + + 0=

A44 ω0 xx,
Øx x,+( ) 2τ0ω0 xx,

A55 ω0 yy,
Øy y,+( ) 2τ0ω0 yy,

+ + + q=

B11u0 xx,
B12v0 xy,

D11

*
Øx xx,

D12

*
Øy xy,

B66u0 yy,
B66v0 xy,

D66

*
Øx yy,

D66

*
Øy xy,

+ + + + + + +

 A44 ω0 x, Øx+( )
υτ0h

2

6 1 υ–( )
-------------------⎝ ⎠
⎛ ⎞ ω0 xxx,

ω0 yyx,
+( )+ + 0=

B12u0 xy,
B22v0 yy,

D12

*
Øx xy,

D22

*
Øy yy,

B66u0 xy,
B66v0 xx,

D66

*
Øx xy,

Øy xx,
+( ) A55 ω0 y, Øy+( )+ + + + + + +

 
υτ0h

2

6 1 υ–( )
-------------------⎝ ⎠
⎛ ⎞ ω0 xxy,

ω0 yyy,
+( )+ 0=

A11

*
A22

*
A11 2 2µ0 λ0+( )+= =

A12

*
A12 2 λ0 τ0+( )+=

A66

*
A66 2µ0+=

D11

*
D22

*
D11 µ0h

2 λ0h
2

2
----------+ += =

D12

*
D12

λ0 τ0+( )h2

2
-------------------------+=

D66

*
D66

µ0h
2

2
----------+=
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Also, in Eq. (21) some terms have been added to the classical plate stiffnesses to incorporate

surface effects.

2.3 Effect of surface energy on the constitutive relations of the bulk material of the plate 

In this section the effect of the surface energy on the bulk of the isotropic FG plate is focused.

This effect appears on the plate continuum strains and stresses. The obtained modifications over the

classical continuum model affect the plate deformation, and hence the continuum strains. The plate

continuum stresses are related to its continuum strains and material stiffnesses. 

(22)

3. Effective mechanical properties of FG plates

Mechanical properties of a FG plate include Young’s modulus E, shear modulus G, Poisson’s ratio

υ, and mass density ρ, and thermal properties include the coefficient of thermal expansion α, the

thermal conductivity γ, and the specific heat capacity C. ρ and υ are usually linear functions of

material volume ratios, but others are nonlinear functions of material volume ratios because they

depend on material microstructures (Aboudi 1991). The effective property P of a FG plate will be

estimated using the simple, Voigt arithmetic method where the distributions of volume fractions

through the plate thickness are assumed to follow the simple power law

where P1 and P2 are the properties of the first and second constituent materials (metal and ceramic),

n can be any non-negative real number and . Where the plate thickness . For

detailed modeling of effective material properties of FGMs the reader has to refer to Aboudi (1991),

Suresh and Mortensen (1998), Muliana (2009).

4. Numerical results

In this section, some numerical examples are simulated to verify the proposed model and to study

the effect of surface energy on the continuum plate response. 
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4.1 Verification of the model stiffnesses

The following numerical examples are used to verify the proposed continuum model incorporating

surface effect. Consider an isotropic homogenous simple supported square plate of thickness h and

side length a. The isotropic plate is expected to be made of two sets of material parameters are

given in Table 1.

From the proposed continuum model incorporating surface effects, the bending stiffness for the

isotropic homogenous plate for Material I and Material II are found to be

For Material I

For Material II

while, from the model proposed by Lu et al. (2006), the bending stiffness of the same plate

materials are found to be 

For Material I

For Material II

also, from the model proposed by Lü et al. (2009a, b), the bending stiffness of the same plate

materials are found to be 

For Material I

For Material II
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Table 1 Material I and Material II material properties

Material parameter Material I Material II

Young’s Modulus

Poisson’s ratio

Lama Constants

Surface tension

E 5.625 10
10
N/m

2
×= E 17.73 10

10
N/m

2
×=

υ 0.25= υ 0.27=

λ0 7000 N/m, µ0 8000 N/m= = λ0 8– N/m, µ0 2.5 N/m= =

τ0 110 N/m= τ0 1.7 N/m=
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The bending stiffness based on the classical continuum model is given by for both materials

For Material I

For Material II

Fig. 2 and Fig. 3, show the non-dimensional difference between the plate bending stiffness

predicted by the continuum model incorporating surface effects and the classical continuum model

for both Material I and Material II respectively ( ). For Material I, the size effect

becomes significant when the thickness of the plate is smaller than 10 µm (Fig. 2), while for

Material II it is significant when the thickness of the plate is of order of 1 nm (Fig. 3). The results

D11 5 * 10
9
h
3

=

D11 1.5936 * 10
10
h
3

=

D11

*
D11/D11–

Fig. 2 Non-dimensional difference between plate bending stiffness predicted by continuum model incorporating
surface effects and the classical continuum model for Material I

Fig. 3 Non-dimensional difference between plate bending stiffness predicted by continuum model incorporating
surface effects and the classical continuum model for Material II
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Table 2 Material properties of the FG plate

Property Aluminum Silicon

Young's modulus EL = 68.5 GPa EU = 210 GPa

Poisson's ratio υL = 0.35 υU = 0.35

Surface tension

Surface Lama constants

τ0L 0.7575 N/m= τ0U 0.7575 N/m=

µ0L 1.575, λ0L– 1.177 N/m= = µ0U 1.575, λ0U– 1.177 N/m= =

Fig. 4 Non-dimensional differences between deflection predicted by continuum model incorporating surface
effects and classical continuum model for a/h = 10

agree with the discussions of Lu et al. (2006) and Lim and He (2004) for the same problems. It is

also noted that the bending stiffness increases for Material I, while decreases for Material II, when

the plate thickness is reduced. It shows that surface effects could stiffen or soften the material

properties (Zhou and Haung 2004). The significant difference of the thickness order on the

influence of the size effects for Material I and Material II is due to the surface elastic properties

defined for the two materials.

4.2 Size-dependent analysis of ultra-thin FG plates

In this section, some numerical examples are performed for infinitely wide isotropic FG plate of

length a and of thickness h (a/h = 10). The FG plate is expected to be made of Silicon (Si) at the

upper surface and Aluminum (Al) at the lower surface and functionally graded according to the

simple power law. Table 2, shows the bulk material properties and the surface properties of Al and

Si. The plate is subjected to a sinusoidal transverse distributed mechanical load of intensity

q = 1 kPa.
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Fig. 4, shows the non-dimensional difference between central deflection predicted by the size-

dependent model (continuum model incorporating surface effects) and the classical continuum

model (neglecting surface effects) ( ) for different grading material parameter n. The

results are agreed with that obtained at (Lü et al. 2009b). The figure shows that the FG and

homogenous films provides negative non-dimensional differences in deflection, which means that

surface tensions stiffen the films. Also, the surface tension of Al is higher than that of Si, so the

non-dimensional differences for Al are higher than that of Si. Increasing the grading parameter n

reducing the non-dimensional differences in deflection, for FG plates whose upper surface tension is

smaller than its lower surface tension.

Figs. 5-7, show the non-dimensional stress distribution through the FG plate thickness for

different grading parameter n and plate thicknesses. The non-dimensional axial stresses

 are calculated at the center point  for difference plate thicknesses. Fig. 5

shows a linear distribution for axial stress. For grading parameters more than zero, a nonlinear

distribution is presented. The axial stresses are shown to be compressive at both surfaces of the

ω* ω0/ω0–

σxx σxx/q=( ) x a/2=( )

Fig. 5 Non-dimensional axial stress distribution through plate thickness (n = 0)

Fig. 6 Non-dimensional axial stress distribution through plate thickness (n = 0.5)
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plate, and this compressive stress increases gradually by decreasing the plate thickness. 

Fig. 8, shows the non-dimensional shear stress distribution through the plate thickness for grading

parameter n = 2 at the outer edge of the plate (x = 0).

4.3 Transverse shear strain effect

The incoming numerical examples are performed for a cylindrical bending of an infinitely wide

isotropic FG plate of length m and of thickness h. The ratio a/h varies from 1 to 50.

Fig. 9 shows the non-dimensional deflection  versus a/h ratio for both Kirchhoff and

Mindlin plate theories considering and neglecting surface effects. Kirchhoff plate theory shows a

constant deflection for various a/h ratios for classical continuum model, while a nearly constant

a 1 10
8–×=

ω ωh
3
/a

4
=

Fig. 7 Non-dimensional axial stress distribution through plate thickness (n = 2)

Fig. 8 Non-dimensional shear stress distribution through plate thickness at plate outer edge (n = 2)
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deflection is provided for a/h ratios that higher than 30 for incorporating surface effects. The figure

shows that, for Mindlin plate theory the transverse shear effect vanishes for a/h ratios that higher

than 10 for both classical models and incorporating surface effects models. We can conclude that,

for macro/nano scale thicknesses the transverse shear effects are dominant for a/h ratios that less

than 10. Also, the effect of varying a/h ratio on the plate deflection vanishes for ratios higher than

10 for macro-scale thicknesses, while for nano-scale thicknesses the effect vanishes for ratios higher

than 30. 

5. Conclusions

In this paper, the first-order shear deformation theory (FSDT) for continuum incorporating surface

energy is investigated to study the response of ultra-thin functionally graded (FG) plates. By

incorporating the surface energies into the principle of minimum potential energy, a series of

continuum governing differential equations which include intrinsic length scales are derived. The

modifications over the classical continuum model stiffnesses are also obtained. A simply supported

micro/nano scaled films subjected to a transverse mechanical load are investigated. Also, a

parametric study is provided to investigate the effect of surface energy on the FG plate response. In

our analysis the residual surface tension under unstrained conditions and the surface Lame constants

are expected to be the same for, both, the upper and lower surfaces of the FG plate. The numerical

results leads to the following conclusions:

1. For ultra-thin plates, the size-dependent analysis considering the effect of surface energy of

such ultra-thin plates has shown a predictable variation rather than that given by the classical

Fig. 9 Non-dimensional deflections versus length-to-thickness ratio for classical continuum model and
continuum model incorporating surface effects (n = 2) 
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continuum analysis which neglecting surface effects.

2. The size effect becomes significant as the plate thickness decreases and approaches its intrinsic

thickness.

3. The surface energy could stiffen or soften the plate material stiffness depending on surface

material properties.

4. The ultra-thin plate response depends noticeably on the surface energy, which requires a precise

measurement technique or efficient atomistic computational models to predict the material

constants of the surface material.

5. For macro/nano scale thicknesses the transverse shear effects are dominant for length-to-

thickness ratios that less than 10. Also, the effect of varying of length-to-thickness ratio on the

plate deflection vanishes for ratios higher than 10 for macro-scale thicknesses, while for nano-

scale thicknesses the effect vanishes for ratios higher than 30. 

6. Larger plate thicknesses require larger length-to thickness ratios to consider surface effects. But

for smaller thicknesses surface effects become significant for smaller ratios. 
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