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Abstract. Existing plane stress solutions for thin plates and disks have shown several qualitative
features which are difficult to handle with the use of commercial numerical codes (non-existence of
solutions, singular solutions, rapid growth of the plastic zone with a loading parameter). In order to
understand the effect of temperature and pressure-dependency of the yield criterion on some of such
features as well as on the distribution of residual stresses and strains, a semi-analytic solution for a thin
hollow disk fixed to a rigid container and subject to thermal loading and subsequent unloading is derived.
The material model is elastic-perfectly/plastic. The Drucker-Prager pressure-dependent yield criterion and
the equation of incompressibity for plastic strains are adopted. The distribution of residual stresses and
strains is illustrated for a wide range of the parameter which controls pressure-dependency of the yield
criterion.

Keywords: thin disk; plane stress conditions; pressure-dependent yield criterion; thermal loading; residual
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1. Introduction

Thin plates and disks with holes and embedded inclusions have many structural applications. A

significant amount of analytical and numerical research for various material models has been carried

out in the area of stress and strain analysis of such structures (Hsu and Forman 1975, Guven 1992,

Gamer 1992, Lippmann 1992, Mack and Bengeri 1994, Ball 1995, Poussard et al. 1995, Debski and

Zyczkowski 2002, Alexandrova and Alexandrov 2004a,b, Gupta et al. 2005, You et al. 2007, Jang

and Kim 2008, Deepak et al. 2009, Alexandrov et al. 2010, Chakherlou and Yaghoobi 2010, Masri

et al. 2010, Alexandrov et al. 2011a among others). An excellent review of previous works devoted

to the problem of enlargement of a circular hole in thin plates has been given in Masri et al. (2010).

Solutions at large strains for isotropic and anisotropic plates with a hole subject to mechanical
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loading have been provided in Durban and Birman (1982), Cohen et al. (2009). In these works,

deformation theories of plasticity have been adopted. The assumptions made regarding yield

criterion, strain hardening and unloading have a significant effect on the predicted response and

residual stress and strain fields (Ball 1995). Knowledge of the distribution of residual stresses

around holes is necessary for accurate fatigue life prediction. Residual stresses determined by

numerical simulations must be verified by experimental measurements or analytical solutions (Dutta

and Rasty 2010). Therefore, even though closed form solutions involve more assumptions than

numerical solutions, the former are necessary for studying qualitative effects and verifying

numerical codes. Typical qualitative effects under plane stress conditions are the singularity of the

velocity field and non-existence of the solution under certain conditions (Debski and Zyczkowski

2002, Alexandrova and Alexandrov 2004a,b, Alexandrova et al. 2004, Alexandrov et al. 2010,

Alexandrov et al. 2011a). These features of boundary value problems can cause difficulties with

their treatment by means of standard commercial numerical codes. In particular, some specific

difficulties with numerical solution for plane stress problems have been mentioned in Kleiber and

Kowalczyk (1996). 

In the present paper, the effect of temperature and pressure-dependency of the yield criterion on

the elastic/plastic solution for thin hollow disks loaded by thermal expansion assuming plane stress

conditions is investigated including the stage of unloading. Various aspects of thermal loading of

such disks have been considered in Lippmann (1992), Mack (1993), Bengeri and Mack (1994),

Mack and Bengeri (1994), Alexandrov and Alexandrova (2001). In particular, an efficient analytic

method has been developed and applied in Alexandrov and Alexandrova (2001). It has been shown

that the size of the plastic zone is very sensitive to the increase in temperature. This method of

solution has been extended to rotating disks in Alexandrova and Alexandrov (2004a), Alexandrova

et al. (2004). As in the case of thermal loading, it has been shown that the size of the plastic zone is

very sensitive to the angular velocity of the disk. Moreover, it has been demonstrated that no plane

stress solution may exist under certain conditions. Plastic yielding of many metallic materials

reveals dependency on the hydrostatic stress, though the equation of incompressibity is valid with a

high accuracy (Yoshida et al. 1971, Spitzig et al. 1976, Spitzig 1979, Kao et al. 1990). It is

therefore of interest to study the effect of this material property on the development of plastic zones

and the distribution of residual stresses and strains in thin plates. Previous results on this subject

include analytic solutions for a hollow disk subject to pressure over its inner radius (Alexandrov et

al. 2011a) and a rotating hollow disk (Alexandrov et al. 2010). In these papers, the Drucker-Prager

yield criterion (Drucker and Prager 1952) has been adopted. This criterion is confirmed by

experimental data for several materials (Wilson 2002, Liu 2006). Therefore, the Drucker-Prager

yield criterion is also used in the present paper. Strain hardening is neglected and the assumption of

plastic incompressibility is accepted (i.e., the associated flow rule is not satisfied). A detailed

description of the Drucker-Prager model including hardening and the associated flow rule is

provided in Wilson (2002). This model has been used in Durban and Fleck (1997) to describe

spherical cavity expansion at large strains. It is assumed that the disk is fixed to a rigid container

such that its outer radius is motionless during the process of loading and unloading. At the initial

instant the disk has no stress. Thermal expansion caused by a rise of temperature leads to an elastic

strain distribution in the disk. Once the temperature has attained a certain magnitude, a plastic zone

begins to develop. Subsequent unloading is assumed to be pure elastic. This assumption is verified

for the specific set of parameters considered in the numerical example.
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2. Statement of the problem and elastic solution

Consider a thin disk of radius b with a central circular hole of radius a fixed to a rigid container

of radius b as shown in Fig. 1. The disk has no stress at the initial temperature. Thermal expansion

caused by a rise of temperature and the constraints imposed on the disk affect the zero-stress state.

Strains are supposed to be small. The state of stress is two-dimensional  in a cylindrical

coordinate system rθz with its z-axis coinciding with the axis of symmetry of the disk. At the stage

of loading, the rise of temperature above the reference state, T, is a monotonically increasing

function of the time, t. At the stage of unloading the magnitude of T drops to its initial value. The

boundary conditions are

  (1)

and

  (2)

where u is the radial displacement and σr is the radial stress (σθ will stand for the circumferential

stress). 

Elastic strains are related to stresses and temperature by the classical Duhamel-Neumann law. The

yield criterion is taken in the form proposed in Drucker and Prager (1952)

 (3)

where σ is the first invariant of the stress tensor (hydrostatic stress), σeq is the second invariant of

the stress tensor (equivalent stress), α and σ0 are material constants. The stress invariants are

defined by

,   (4)

where σ1, σ2 and σ3 are the principal stresses. Also,  and .

Obviously, the yield criterion given by Eq. (3) reduces to the von Mises yield criterion for .
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Fig. 1 Illustration of the boundary value problem 
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In this case σ0 is the yield stress in tension. The plastic potential is taken in the form of .

Then, the flow rule gives

, ,  (5)

where  and  are the plastic portions of the principal strain rates and λ is a non-negative

multiplier. Thus the material is plastically incompressible even though the yield criterion is pressure-

dependent. This assumption is in agreement with experiment for some metallic materials (Spitzig et

al. 1976, Spitzig 1979, Kao et al. 1990). Finally, the total strain tensor is the sum of its elastic and

plastic portions. In terms of the principal strains

 (6)

For axisymmetric deformation under plane stress conditions, the equations of linear

thermoelasticity have the general solution in the form

  (7)

  (8)

where E is the Young’s modulus, ν is the Poisson’s ratio, γ is the thermal coefficient of linear

expansion, and A and B are arbitrary functions of T. 

At the beginning of the process the entire disk is elastic. Therefore, the boundary conditions given

by Eqs. (1) and (2) lead to

and   (9)

Combining Eqs. (7), (8) and (9) results in

,

,

,

 (10)

This solution is valid up to the value of τ at which the plastic zone begins to develop. This value

of τ may be determined from Eq. (10) and the yield criterion (3).
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3. Elastic/plastic solution for stress at loading

With no loss of generality, it is possible to assume that  and . The last

equation leads to . Then, taking into account the identity  the value of sθ can

be expressed as . Substituting these values of sz and sθ into Eq. (4) results in

. Using this expression for  the yield criterion (3) can be rewritten in the

form

 (11)

Substituting the stress solution given by Eqs. (10) into Eq. (11) shows that the plastic zone starts

to develop at r = a. The corresponding value of τ will be denoted by τe. It is determined from the

following quadratic equation

 (12)

The dependence of τe on a/b and α at ν = 0.3 is illustrated in Fig. 2. Curve 1 in this figure

corresponds to α  = 0, curve 2 to α  = 0.1 curve 3 to α  = 0.2, and curve 4 to α  = 0.4.

It has been shown in Alexandrov et al. (2011a) that the yield criterion given by Eq. (11) is

satisfied by the following substitution

and  (13)

where ψ is a new unknown function and

, ,  (14)

Using Eq. (13) and the condition  it is possible to find that 

and (15)
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Since the plastic zone starts to develop from the edge r = a, the boundary condition (2) should be

reformulated in terms of ψ for the elastic/plastic stage of the process of loading. In particular, using

the expression for  in Eq. (15) this boundary condition can be rewritten in the form

 (16)

where ψa is the value of ψ at r = a. The constraints imposed on the disk suggest that . Then,

it immediately follows from Eq. (15) that sinψ > 0. This inequality allows one to find the unique

solution to Eq. (16). Note that ψa is independent on τ because  and  are constants, as

follows from Eq. (14). The only non-trivial equilibrium equation has the form

 (17)

Substituting Eq. (15) into Eq. (17) leads to

 (18)

This equation can be immediately integrated with the use of the boundary condition  at

r = a to give

 (19)

Assume that  at the elastic/plastic boundary r = c. Then, Eq. (19) gives

 (20)
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distribution given by Eq. (15) is vaild in the range  (or ). The general stress
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 (24)

The corresponding value of τ which will be denoted by τb is obtained from Eq. (23) where ψc

should be replaced with ψb. The variation of the parameter  with a/b and α at

ν = 0.3 is illustrated in Fig. 3. The radius of the elastic/plastic boundary as a function of τ is

determined from Eqs. (20) and (23) in parametric form. The variation of this radius with τ for

several values of α at ν = 0.3 is depicted in Figs. 4-6 (a/b = 1/2 in Fig. 4, a/b = 1/5 in Fig. 5, and

a/b = 1/10 in Fig. 6). The right ends of all the curves correspond to . In Figs. 3-6, curve 1

corresponds to α = 0, curve 2 to α = 0.1 curve 3 to α = 0.2, and curve 4 to α = 0.4. The radial

distribution of the stresses in the plastic zone is immediately obtained from Eqs. (15) and (19) in

parametric form. In order to find the radial distribution of the stresses in the elastic zone, it is

sufficient to eliminate A and B in Eq. (7) by means of Eqs. (21) and (22).
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Fig. 3 Variation of ∆τ with a/b at ν = 0.3 Fig. 4 Variation of the radius of the elastic/plastic
boundary with τ at a/b = 1/2 and ν = 0.3

Fig. 5 Variation of the radius of the elastic/plastic
boundary with τ at a/b = 1/5 and ν = 0.3

Fig. 6 Variation of the radius of the elastic/plastic
boundary with τ at a/b = 1/10 and ν = 0.3
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4. Elastic/plastic solution for strains at loading

Since , the elastic portions of the principal strains,  and , are related to the stress

components and temperature by the Duhamel-Neumann law as

, ,  (25)

In the case under consideration, the compatibility condition for the total strain components is

 (26)

The corresponding condition for the total principal strain rate components  and  is

 (27)

The third total principal strain rate component will be denoted by . Introduce the quantities

 (28)

where  are the elastic portions of the total principal strain rates in the plastic
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,  (29)

Also, Eq. (27) becomes
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Since  is independent of τ, it follows from Eq. (19) that . Then, differentiating

Eq. (31) with respect to τ gives with the use of Eq. (28)

 (32)

Differentiating Eq. (6) with respect to τ gives with the use of Eqs. (28) and (32)

 (33)

Using Eqs. (13) and (15) it is possible to find that 
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Then, it follows from Eqs. (13) and (29) that
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Substituting Eq. (33) into Eq. (30) results in
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It follows from the definition for  and  given in Eq. (28) that

, ,  (42)

where  is the value of τ at which the plastic strains appear at the point where the strain

components are calculated. It is obvious that the value of  depends on the position of the point

(i.e., on ψ) and is determined by the condition ψ = ψc. Therefore, it is convenient to rewrite

Eq. (42) in the following form

, ,  (43)
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Therefore, substituting Eqs.(38) and (41) into Eq. (42) and taking into account Eq. (43) give
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4.3 Complete solution

Since  is proportional to the radial velocity, this quantity must be continuous across the elastic/

plastic boundary where  and r = c. Therefore, it follows from Eqs. (33), (39) and (46) that 

 (47)

Differentiating Eq. (23) with respect to  results in

 (48)

Eliminating the derivative  by means of Eq.(48) and the ratio c/b by means of Eq. (20) in

Eq.(47) gives  as a function of . Then, Eq.(40) determines  as a function of . Having

this function and Eq. (48) integration in Eq. (44) can be performed numerically to find the

distribution of the plastic strains in the plastic zone. Since the elastic strains in this zone are given

in Eq. (31), the total strains can be found with no difficulty. The solution obtained is written in

terms of  and  (in the plastic zone). In order to rewrite it in terms of τ and r, it is sufficient to

replace  with τ by means of Eq.(23), and  with r by means of Eq. (19).

5. Residual stresses and strains

Assume that the temperature drops down from its current magnitude to T = 0. Then, if unloading

is pure elastic, the solution given in Eq. (10) where τ  should be replaced with −τ  is valid for the

increments of stresses and strains. Thus

 (49)

Denote the solution at the end of the loading stage in the range  by , and .

Then, the residual stresses and strains are given by

 (50)

The validity of this solution is restricted by the yield criterion (3). Using Eq. (11) this restriction

can be written in the form
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,  (51)

Having the solution at the end of the loading stage found in the previous section and the solution

given in Eq. (49) the distribution of the residual stresses and strains can be found from Eq. (50)

with no difficulty.

6. Numerical example

The integrals involved in Eq. (44) have been evaluated numerically. The accuracy of the

numerical solution has been controlled by substituting the strain components found into Eq. (26). In

all calculations ν = 0.3,  and a/b = 1/2. The solution at the end of the loading stage has

been illustrated in Alexandrov et al. (2011b). In order to reveal the effect of pressure-dependency of

the yield criterion on the distribution of residual stresses and strains, the maximum temperature for

the stage of loading has been taken independently of the value of α as  where the

values of  and  correspond to α = 0 (pressure-independent plasticity). Under these conditions,

the solution is illustrated in Figs. 7 to 11. The dashed curves correspond to α = 0, curves 1 to

α = 0.1, curves 2 to α = 0.2, and curves 3 to α = 0.3. The inequality (51) has been verified

numerically for all cases considered. The distribution of the residual radial and circumferential

stresses along the radius at several values of α is depicted in Figs. 7 and 8, respectively. The effect

of α-value on the distribution of these stresses is rather significant and is obvious from these

diagrams. The effect on the radial stress is more pronounced in the elastic zone. It is explained by

the fact that the value of this stress at r = a is fixed by the boundary condition (2). On the other

hand, the effect on the circumferential stress is negligible in the elastic zone but is significant in the

plastic zone. Note that the residual radial stress is positive at r = b. Therefore, the solution obtained

is not valid for the disk just inserted into but not fixed to the container. For the disk inserted into

3 sr
res( )

2

3 α
2

–( ) σ
res( )

2

3σ
res
sr
res

– 2ασ0 σ0

2
+ + + 0≤

σ
res

σr
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+( )/3= sr
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Fig. 7 Distribution of the residual radial stress along
the radius

Fig. 8 Distribution of the residual circumferential
stress along the radius
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the container, the description of the process of unloading should be divided into two steps. At the

beginning of the process, the solution given in (49) is in general valid but τ should be replaced with

some value  which is determined by the condition that  at r = b. The solution for the

increment of stresses for the second step follows from Eq. (7) where A and B are determined from

the boundary conditions  at r = a and r = b. 

The variation of the residual principal strains with the radius is shown in Figs. 9 to 11. The effect

of α-value on the distribution of these strains is significant except for the circumferential strain in

the vicinity of the outer radius of the disk where the value of this strain is fixed by the boundary

condition (1). Moreover, it is necessary to mention that the magnitude of this strain is much smaller

than that of  and .

7. Conclusions

A new semi-analytic solution for a thin hollow disk made of plastically pressure-dependent

τ1 σr

res
0=

σr∆ 0=

εr

res
εz

res

Fig. 9 Distribution of the residual radial strain along
the radius

Fig. 10 Distribution of the residual circumferential
strain along the radius

Fig. 11 Distribution of the residual axial strain along the radius
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material subject to thermal loading and subsequent unloading has been found. A numerical

treatment is only necessary to evaluate ordinary integrals. 

The significant influence of α-value and the ratio a/b on the relative increase in temperature from

its magnitude corresponding to the initiation of plastic deformation to the value at which the entire

disk becomes plastic has been revealed (Fig. 3). It is interesting to mention that the dependence of

∆τ on a/b  at a given value of α is not monotonic and this function attains a maximum at some

value of a/b. Another important qualitative effect following from the solution is a sharp increase in

the radius of the elastic/plastic boundary for sufficiently large values of τ and small values of a/b

(Fig. 6). The effect of pressure-dependency of the yield criterion on the distribution of residual

stresses and strains is in general significant as can be seen from Figs. 7 to 11. For this reason and

since some metallic materials reveal pressure-dependency of the yield criterion (Yoshida et al. 1971,

Spitzig et al. 1976, Spitzig 1979, Kao et al. 1990) it is of importance to take into account this

material property in fatigue life predictions. 
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