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Abstract. In this paper the dynamic behavior of a viscoelastic Timoshenko beam subjected to a
concentrated moving load are studied analytically and numerically. The viscoelastic properties of the beam
obey the linear standard model in shear and incompressible in bulk. The governing equation for
Timoshenko beam theory is obtained in viscoelastic form using the correspondence principle. The
analytical solution is based on the Fourier series and the numerical solution is performed with finite
element method. The effects of the material properties and the load velocity are investigated on the
responses by numerical and analytical methods. In addition, the results are compared with the Euler beam
results. 
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1. Introduction

The moving load on a structure is one of the common problems in engineering. Travelling of a

crane on a beam, moving cars on a bridge, transmitted fluid in a polymeric tube, air flow on a

composite aircraft wing are some of the practical cases. In the most cases, for discussing the

moving load effects, the structure is assumed elastic while the most of the materials are in the

viscoelastic field or they have time depended properties. Huang (1976, 1975, 1978) investigated the

response of infinite viscoelastic cylindrical shells to a moving pressure using the standard linear

model. Fung (1996) investigated the dynamic stability of a viscoelastic beam subjected to harmonic

and parametric excitations simultaneously. They extracted the governing equations in both linear

and nonlinear forms. Also they used the dimensionless parameters for simplifying the governing

equations and results. González et al. (2004) analyzed a two-dimensional viscoelastic solid

subjected to a moving load along the boundaries without considering the inertia effects. They used

the correspondence principle and the results were compared with the boundary element method.

Kocatürk et al. (2006) and im ek et al. (2009) studied the behaviour of Timoshenko and Euler-

Bernoulli beams under harmonic moving load. They used the energy method for extracting the
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governing equations, the Kelvin-Voigt model as a material property and numerical method for

solution. Mofid et al. (2010) studied the behaviour of a Kelvin-Voigt beam under a moving mass by

using the discrete element technique. Fryba (1972) solved many problems in the elastic form

subjected to the moving load. Andersen et al. (2001) analyzed an infinite Euler beam under moving

load using the finite elements (FE) and analytical method. Zhang et al. (2001) investigated the

effects of the initial tension and fluid velocity on the natural frequency of a Timoshenko tube

conveying fluid with the FE method by considering the Prony series for material behaviour. Tehrani

et al. (2012) studied the vibrations of a viscoelastic Euler beam subjected to a distributed moving

load analytically. 

In the most published articles the Kelvin-Voigt model, numerical solution and Euler beam theory

has been used for dynamic analysis of viscoelastic beams under moving load. In this paper an

analytical solution is presented for analysis of a Timoshenko viscoelastic beam which obeys the

linear standard model. Then parametric studies are performed and the effects of the load velocity

and the viscoelastic properties are investigated on the response of the beam. The results are

compared with the FE method and the results obtained by the Euler theory (Tehrani et al. 2012).

Also the ability of the each theory on the prediction of the response of a viscoelastic beam has been

discussed. 

2. Governing equation

The differential constitutive law for a linear viscoelastic material can write as

(1)

Where σ = stress, γ = strain and IP, IQ = differential operators which are defined as

 (2)

(3)

qr and pr are independent of time in linear form. The dilatational and deviatoric forms of the

constitutive law are

(4)

(5)

The subscript de and dil designate the deviatoric and dilatational parts and P1, P2, Q1, Q2 =

differential operators similar to Eqs. (2) and (3). By using Lame’s coefficients, the tensile modulus

of elasticity and the Poisson’s ratio are 
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(7)

(8)

For a material which behaves incompressible in bulk and viscoelastic in shear, P2 equals to zero

and Eqs. (7) and (8) reforms as 

(9)

(10)

The transverse shear force and the bending moment for a Timoshenko beam can be expressed as

(11)

(12)

Where w(x, t) = lateral deflection, V = transverse shear force, M = bending moment, A = cross

section area, I = Area moment of inertia, ρ = density, λ = shear correction factor which equals to 5/6

for rectangular cross section, ψ = angular deformation, and f(x, t) = force per unit length. By

considering the Newton’s second law for an element results

(13)

(14)

By using the correspondence principle, Eqs. (11) and (12) reforms as 

(15)

(16)

From Eqs. (13) and (14), one can results

(17)

By applying the operators PG and PE in to Eqs. (13) and (17) and by using Eqs. (15) and (16)
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And by combining Eqs. (18) and (19), the equation of motion obtains as the following 

(20)

The lateral deflection for a simply supported beam with the boundary conditions w(0, t) =

 is assumed as

 (21)

(22)

For a concentrated moving load, the Fourier series can be written as

(23)

Where u = load velocity, f0 = magnitude of the load and L = length of the beam.

A linear standard viscoelastic model, as shown in Fig. 1, is considered for the material property.

The constitutive equation is in the following form 

(24)

From Eqs. (24) and (4), Q1 and P1 are extracted as

(25)

From Eqs. (6), (9), (10), (21), (22), (23) and (25), the time part of Eq. (20), has to satisfy the

following differential equation
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Fig. 1 Linear standard model
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(26)

We use the following dimensionless parameters for discussion of results

(27)

Where

 

Eq. (26) is a linear differential equation. For solving this equation analytically, one can transform

the equation to Laplace domain. This resultant algebraic equation is solved in Laplace domain and

by calculating the inverse Laplace, it is possible to find the solution in time domain. The authors

have prepared a code in Maple 12 package to perform these calculations. The Euler beam results

have presented in Tehrani and Eipakchi (2012).

3. FE model

For FE analysis, Ansys 11 Package is used. This software supports Maxwell viscoelastic model

and for the other models, one has to use the Prony series for simulation. The Prony series for

relaxation function is defined as

(28)

Where  = shearing modulus,  = relaxation time for each member of the series. The

parameters of Eq. (28) can set by comparing the response of a linear standard model to a step strain

function as the following

(29)

For modelling the viscoelastic beam element, Beam188 element was selected. This element which

is formulated by using Timoshenko beam theory, contains two nodes in the global coordinate

system. The Shear deformation effects are included. For each node, six degrees-of-freedom is
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defined, translations in x, y, and z directions and rotations about these axis. It is suitable for

analyzing slender to moderately thick beam structures. Also it is well-suited for linear, large

rotation, and large strain nonlinear applications. Ansys does not support any wizard for modelling

the moving load and one should use the Ansys Parametric Design Language (APDL), which is a

programming environment for fast and efficient modelling of moving load. An APDL code was

prepared for FE analysis.

4. Comparison of analytical and numerical results

4.1 Velocity effects

Before starting analysis we set some of the parameters as the following:

A = 0.01 m2, ρ = 3000 kg/m3 

All the response graphs have two parts. The first part relates to the existence of the load on the

beam (forced vibrations) i.e., until t = L/u where u is the loads velocity and the second part stands

Fig. 2 Deflection of mid-span in terms of time for L = 0.25[m], u = 1.590 [m/s], G1 = 75e3 [MPa], G2 =
22.5e5 [MPa], η = 3752.804 [MPa.s] and K = 1, E1 = 0.75, β = 25, α = 0.1

Fig. 3 Deflection of mid-span in terms of time for L = 0.25 [m], u = 7.952 [m/s], G1 = 75e3 [MPa], G2 =
22.5e5 [MPa], η = 3752.804 [MPa.s], and K = 1, E1 = 0.75, β = 25, α = 0.5
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for the free vibration or departure of the load from the beam i.e., t > L/u. Figs. 2-5 show the effect

of the velocity on the dynamic displacement of the mid-span of the beam with the analytical

(Timoshenko and Euler) and FE methods. By increasing the velocity, the differences between the

analytical results increase or Euler theory is not suitable for prediction of the amplitude and

frequency of response at high velocities. 

4.2 Material properties effects

Figs. 6-8 show the effects of the parameter η on the results. For heavy dampers, the difference

between the numerical and analytical results increases. In addition, the damping behaviour in

Timoshenko theory is more or Timoshenko theory is more sensitive to damping parameter η. 

From Figs. 8-9, when  or  the difference between Timoshenko case and two other

cases increases (Fig. 8). Also for K = 1 (Fig. 4) the response has the maximum damping.When K

increases the responses of Timoshenko and FE are very close but the Euler case does not have a

good match and the behavior of the beam response approaches to the elastic response (Fig. 9).

K 0→ η ∞→

Fig. 4 Deflection of mid-span in terms of time for L = 0.25 [m], u = 15.903 [m/s], G1 = 75e3 [MPa], G2 =
22.5e5 [MPa], η = 3752.804 [MPa.s], and K = 1, E1 = 0.75, β = 25, α = 1

Fig. 5 Deflection of mid-span in terms of time for L = 0.25 [m], u = 31.806 [m/s], G1 = 75e3 [MPa], G2 =
22.5e5 [MPa], η = 3752.804 [MPa.s], and K = 1, E1 = 0.75, β = 25, α = 2
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Fig. 6 Deflection of mid-span in terms of time for L = 0.25 [m], u = 31.806 [m/s], G1 = 75e3 [MPa], G2 =
22.5e5 [MPa], η = 1876.402 [MPa.s], and K = 2, E1 = 0.75, β = 25, α = 2

Fig. 7 Deflection of mid-span in terms of time for L = 0.25[m], u = 31.806 [m/s], G1 = 75e3 [MPa], G2 =
22.5e5 [MPa], η = 750.561 [MPa.s], and K = 5, E1 = 0.75, β = 25, α = 2

Fig. 8 Deflection of mid-span in terms of time for L = 0.25[m], u = 15.903 [m/s], G1= 75e3 [MPa],
G2= 22.5e5 [MPa], η = 7505.606 [MPa.s], and K = 0.5, E1 = 0.75, β = 25, α = 1
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Fig. 9 Deflection of mid-span in terms of time for L = 0.25 [m], u = 15.903 [m/s], G1= 75e3 [MPa],
G2= 22.5e5 [MPa], η = 125.092 [MPa.s], and K = 30, E1 = 0.75, β = 25, α = 1

Fig. 10 Deflection of mid-span in terms of time for L = 0.25 [m], u = 15.903 [m/s], G1 = 1500000 [MPa], G2

= 1500000 [MPa], η = 7505.606 [MPa.s], and K = 1, E1 = 0.5, β = 25, α = 1

Fig. 11 Deflection of mid-span in terms of time for L = 0.25 [m], u = 15.903 [m/s], G1 = 150000 [MPa], G2

= 2850000 [MPa], η = 750.561 [MPa.s], and K= 1, E1= 0.95, β = 25, α = 1
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In Figs. 10-11 the effects of parameter E1 has been investigated. Approximately when E1 > 0.5

Timoshenko case is closer than Euler case with the FE response but when E1< 0.5 the Euler case is

nearer to the FE response. When E1 approaches to one the elastic behaviour is more significant

(Fig. 11). 

4.3 Effects of parameter β

From Figs. 4, 12, 13, by increasing the parameter β (or the length) the responses of Timoshenko,

Euler and FE cases approach to each other. In addition, since with increasing the parameter β the

parameter K increases too, and as a result the behaviour of the beam approaches to elastic

behaviour.

4.4 Comparison of viscoelastic and elastic responses 

For comparison of the elastic and viscoelastic responses, it is sufficient to survey the response

when  or  and  or . From Eq. (26)η 0→ K ∞→ E1 1→ G0 G2→

Fig. 12 Deflection of mid-span in terms of time for L = 0.353 [m], u = 12.366 [m/s], G1= 75e3 [MPa],
G2= 22.5e5 [MPa], η = 3752.804 [MPa.s], and K = 1.819, E1= 0.75, β = 50, α = 1

Fig. 13 Deflection of mid-span in terms of time for L = 1.116 [m], u = 4.376 [m/s], G1 = 75e3 [MPa], G2 =
22.5e5 [MPa], η = 3752.804 [MPa.s], and K = 16.248, E1= 0.75, β = 50, α = 1
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(30)

In Fig. 14 a comparison between the elastic and viscoelastic cases have been performed. The

amplitude of the viscoelastic case is smaller than of the elastic cases. The first peak for the

viscoelastic case (Timoshenko) is about 40% its elastic case approximately. The viscoelastic case

shows a damping behaviour as expected and its damped oscillation period is longer than the elastic

cases studies. 

5. Convergence

Fig. 15 shows the response for different time steps where fr1 is the first natural frequency. This

Fig changes for different values of time step sizes. In Fig. 16, the effect of number of element on
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Fig. 14 Deflection of mid-span in terms of time for u = 15.903 [m/s] and G2 = 3000000 [MPa] for Elastic
cases G1 = 750000 [MPa], G2 = 2250000 [MPa], η = 3752.804 [MPa.s], and K = 1, E1 = 0.75,
β = 25, α = 1 

Fig. 15 Response for different time step. L = 0.25 [m], u = 31.806 [m/s], G1 = 750000[MPa], G2 =
2250000 [MPa], η = 750.561 [MPa.s], number of element = 30
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the response is shown and Fig. 17 shows the effect of number of terms in Fourier series on

response. In the presented results, we set the time step equal to 1/200fr1 for α > 1, 1/100fr1 for

α < 1, 30 elements and three terms of series.

6. Conclusions

• By increasing the velocity, the difference between the analytical and numerical response
increases too.

• For Euler or Timoshenko theory the maximum damping corresponds to K = 1.
•When the parameter K increases the behavior of the beam response approaches to the elastic

form.

• Approximately when E1 > 0.5 Timoshenko formulation is closer to the FE response but for

E1< 0.5 the Euler case is nearer to the FE graph.

• The effect of parameter η in Timoshenko case is more significant than Euler case. Also

analytical Timoshenko response for high damping is unsatisfactory.

•When  this represents an elastic behaviour and when it approaches to zero the viscose

behaviour is dominant.

E1 1→

Fig. 16 Effect of number of elements on response. L = 0.25 [m], u = 31.806 [m/s], G1 = 750000 [MPa],
G2 = 2250000 [MPa], η = 750.561 [MPa.s], the time step size = 1/100fr1

Fig. 17 Effect of numbers of terms in Fourier series on response. L = 0.25 [m], u = 31.806 [m/s], G1 =
750000 [MPa], G2 = 2250000 [MPa], η = 750.561 [MPa.s], the time step size = 1/100fr1 
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• For large values of β the responses of Timoshenko, Euler and FE are similar to each others.
• Due to shearing effects, the Timoshenko theory shows more damping effects than the Euler
theory. 
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