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Abstract. Variable-node finite element families, termed (4 + k + l + m + n)-node elements with an
arbitrary number of nodes (k, l, m, and n) on each of their edges, are developed based on the generic
point interpolation with special bases having slope discontinuities in two-dimensional domains. They
retain the linear interpolation between any two neighboring nodes, and passes the standard patch test
when subdomain-wise 2 × 2 Gauss integration is employed. Their shape functions are automatically
generated on the master domain of elements although a certain number of nodes are inserted on their
edges. The elements can provide a flexibility to resolve nonmatching mesh problems like mesh connection
and adaptive mesh refinement. In the case of adaptive mesh refinement problem, so-called “1-irregular
node rule” working as a constraint in performing mesh adaptation is relaxed by adopting the variable-node
elements. Through several examples, we show the performance of the variable-node finite elements in
terms of accuracy and efficiency.

Keywords: variable-node finite elements; transition elements; nonmatching meshes; adaptive mesh
refinement; 1-irregular node rule; mesh connection

1. Introduction

For several decades, finite element method has facilitated straightforward analysis of solids and

structures. However, the compatibility requirement imposes some restrictions on the nodal

configuration of finite elements, and this is particularly critical when it comes to nonmatching mesh

problems. It is far from being trivial to meet the element connectivity in some circumstances,

particularly in the case of complex geometries. This class of problems occurs in the interconnection

of meshes of substructures comprising an entire structure, in mesh gradation, in adaptive mesh

refinement, and so forth.
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Suppose we construct a large scale finite element mesh composed of numerous substructures,

mesh designers create their own parts or substructures independently and then assemble them to

create the entire structure. In this circumstance, it is a challenge to treat nonmatching nodes between

the interfaces of two neighboring substructures. If this nonmatching problem is not properly treated,

the nonmatching nodes may lead to undesirable behaviors because the compatibility of shape

functions along the nonmatching interface is not maintained. That is, they may cause solutions not

to be converged well.

To resolve the aforementioned issue, various techniques have been proposed, such as two and

three layer approaches with Lagrange multipliers (Aminpour et al. 1995, Park et al. 2002), mortar

method (Flemisch et al. 2005, Puso 2004), interface element method (Kim 2002, 2008) and

improved interface element method or moving least square (MLS)-based variable-node elements

(Cho et al. 2005, Cho and Im 2006a, b). The two and three layer approaches insert additional

conditions on the weak form of governing equations to fulfill the compatibility conditions by

introducing Lagrange multipliers. However, it still requires a special treatment such as smoothing or

modification of the constraints on the curved interface for optimal convergence (Flemisch et al.

2005). The aforementioned approaches (Cho et al. 2005, Cho and Im 2006a, b, Kim 2002, 2008)

provide a seamless transition between the independent mesh structures, because those shape

functions meet the requirement of Kronecker delta condition at nodes, , by controlling

the domain of influence properly. Despite this outstanding feature, rational type shape functions

from MLS approximation cause an impediment to application for various problems due to

difficulties in numerical integration. Even a high order Gauss integration such as 6 × 6 involves an

error as large as one percent in the patch test. In order to enhance the performance of numerical

integration, Lim and Im (2007), Lim et al. (2007a, b), Kim et al. (2008) devised modified MLS-

based variable-node elements in two- and three-dimensional frameworks. Their shape functions are

generated from MLS approximation, and they reduce to a polynomial type by making a special

choice of the bases and by controlling the domain of influence of each node. Applications for

various nonmatching mesh problems were successful even with a lower order Gauss integration,

such as 2 × 2 per subdomain for bilinear polynomial bases. However, they are allowed to have extra

nodes only either along the ξ-direction or along the η-direction on the parental domain. For a

remedy, special integration schemes like smoothed nodal integrations (Lim et al. 2010, Liu et al.

2007, Nguyen-Thoi et al. 2011, Sohn et al. 2012) are needed.

The objective of the paper is to report on variable-node element families, termed (4 + k + l +m + n)-

node elements, which allow an arbitrary number of nodes (k, l, m, and n) along each of the two

coordinate directions ξ and η using the point interpolation. For numerical integration, they only

require a 2 × 2 Gauss integration per subdomain comprising one element, which have advantages

over aforementioned approaches (Cho et al. 2005, Cho and Im 2006a, b) in terms of computation

time and accuracy. In addition, they have a generality with respect to the number of side nodes (k, l,

m, and n) and require a lower order Gauss integration in contrast to other approaches (Kim et al.

2008, Lim and Im 2007, Lim et al. 2007a, b). The conceptual idea of the (4 + k + l + m + n)-node

elements using the point interpolation is briefly discussed by Lim et al. (2010) for the purpose of

comparison with variable-node finite elements combined with smoothed nodal integration. However,

their theoretical background and the characteristics of shape functions have never been explained in

any literature in detail.

The other goal of the paper is to investigate its performance and show applications with the

emphasis on the relaxing the 1-irregular node rule, a bothersome hurdle, in adaptive mesh

φI xJ( ) δIJ=
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refinement (Choi and Lee 1993, 1996, Choi et al. 2004, Choi and Park 1992, Lo et al. 2006, 2010,

Wu et al. 2008, Zienkiewicz and Zhu 1987).

The remainder of this paper is organized as follows: We first explain a scheme of mesh

connection and adaptive mesh refinement with the aid of variable-node finite element families in

Section 2. This is followed by the formulation of the variable-node finite element families

employing the point interpolation and a detail investigation on the characteristics of shape functions

in Section 3. In addition, we provide some numerical examples to demonstrate the effectiveness of

this methodology through examples of patch test, mesh connection, and adaptive mesh refinement.

Finally, we close with some concluding remarks.

2. Mesh connection and adaptive mesh refinement using variable-node finite ele-

ment families

For two nonmatching meshes as shown in Fig. 1, suppose two mesh designers construct

independent meshes of the two substructures on Ω1 and Ω2, respectively. This, in general, results in

nonmatching meshes along the mesh interface region Ω1 ∩Ω2, in which the compatibility of shape

functions is not assured. To circumvent this situation, additional nodes are inserted on the

neighboring elements whenever nonmatching nodes appear, and then replace the elements having

more than four nodes with the variable-node elements along the interface, as seen in Fig. 1. Finally,

fully continuous mesh interface can be achieved by our suggested approach. We may further extend

this concept to any problems associated with nonmatching mesh situations such as contact (Kim et

al. 2008), multi-level analysis of crack propagation (Sohn et al. 2011), mesh gradation (Lim and Im

2007) and so forth.

In the case of adaptive mesh refinement (Zienkiewicz and Zhu 1987), there are several ways to

Fig. 1 Transformation from nonmatching meshes to matching meshes with the aid of the variable-node finite
elements
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treat nonmatching nodes or irregular nodes, as seen in Figs. 2(a)-(c). In Fig. 2(a), one irregular node

is connected by splitting its neighboring elements into three triangle elements. In Fig. 2(b), the

refinement is achieved by generating distorted three quadrilateral elements. However, this kind of

refinement is not recommended because they not only require an additional remeshing procedure

but also lose the mesh quality. Without remeshing, we may connect two different meshes by

imposing approximate constraints such as a penalty parameter whereby the displacement of a mid-

node or an irregular node is equal to a weighted average value of the displacements at the two

neighboring vertex nodes, as depicted in Fig. 2(c). However, this approximation is tolerable only for

one irregular node because of the worsening accuracy in the case of more than one irregular node.

This requirement is called the 1-irregular node rule (Choi and Lee 1993, 1996, Choi et al. 2004,

Choi and Park 1992, Lo et al. 2006, 2010, Wu et al. 2008, Zienkiewicz and Zhu 1987). In order to

increase the accuracy of mesh connection, transition elements have been used in adaptive mesh

refinement (Choi and Lee 1993, 1996, Choi et al. 2004, Choi and Park 1992), and their

enhancement combined with hybrid stress theory was also reported (Lo et al. 2006, 2010, Wu et al.

2008). However, they were still governed by the 1-irregular node rule because their transition

elements can accommodate only 1-irregular nodes. When the element is refined once more as

shown in Fig. 2(d), two or more irregular nodes are generated on an element-edge. To follow the 1-

irregular node rule in this case, we should split the adjacent elements A and B in Fig. 2(d), as

shown in Fig. 2(e). In this circumstance, it is worthwhile to apply the variable-node element

families for coupling of nonmatching meshes in adaptive mesh refinement. By replacing the

elements A and B in Fig. 2(d) with the variable-node elements which contain two irregular nodes

on an element-edge, the mesh connection is straightforwardly achieved without the additional

refinement in Fig. 2(e).

Fig. 2 Various ways of connecting nonmatching meshes and irregular nodes: (a) three-node element-based
mesh refinement; (b) four-node element-based mesh refinement; (c) one irregular node; (d) two
irregular nodes; (e) two irregular nodes handling by splitting the neighboring elements A and B
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3. Variable-node finite element families using the point interpolation

In this section, we explain how to derive the shape functions of variable-node finite element

families from the point interpolation, using a set of bases having the slope discontinuity. As a first

step toward this, we first briefly review a four-node bilinear finite element and other variable-node

elements, which were introduced by Gupta (1978) and Hughes (1989), based on the point

interpolation.

Let u(ξ) be a two-dimensional vector field, and uα (α = 1, 2) its two components interchangeably

denoted by (u, v). The independent variable ξ indicates the master coordinate (ξ1, ξ2),

interchangeably indicated by (ξ, η) for convenience. Considering the approximated displacement

uh(ξ) for u(ξ) by the point interpolation with base-polynomials of which the number is NB, u
h(ξ) is

then given as follows 

(1)

(2)

(3)

where aT is a 2 × NB matrix of the unknown coefficients and p(ξ) is a NB × 1 column vector of the

polynomial basis. Furthermore,  is a shape function associated with node I, and ϕI (ξ) is a

2 × 2 shape function matrix and uI is a nodal variable of 2 × 1 column vector. Let NP indicate the

number of sampling points in the point interpolation. In the framework of the point interpolation, NP

is identical to NB. The polynomial basis can be given as

(4)

Every shape function from the point interpolation is associated with its own node, being equal to

1 at its associated node and to 0 at all the remaining nodes. Thus, the Kronecker delta property is

fulfilled in the point interpolation. From the point interpolation, it follows that

(5)
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For the four-node bilinear interpolation, we only consider the bilinear basis, p(ξ) = [1, ξ, η, ξη]T,

and the nodes at the master domain as seen in Fig. 3(a). The shape functions are then given as

follows 

(6)

Similarly, we can also obtain two well-known kinds of five-node transition elements reported by

Gupta (1978) and Hughes (1989). When the fifth node is inserted at the middle of the upper side of

a four-node element, an extra special basis should be added to meet the point interpolation. As to

what basis is chosen for the interpolation, it depends upon the type of interpolation required on the

element-edges. For example, if a quadratic interpolation along the top side is desired while a linear

interpolation is needed along the bottom side, ξ 2(η + 1) is chosen as an additional special basis (see

U
T u1  u2  u3  … uN
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Fig. 3 Master domains of quadrilateral elements: (a) a four-node bilinear element, (b) a five-node element
with a quadratic interpolation at the upper edge, (c) a five-node element with a linear interpolation at
the upper edge
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Fig. 3(b)). This basis reduces to ξ 2 at η  = 1 while it disappears at η  =−1. The shape functions are
then derived in a straightforward manner, as described in Eq. (5), and yield the following result,

which was reported by Gupta (1978).

(7)

For numerical integration, the 3 × 2 Gauss integration is sufficient at the master domain, as

depicted in Fig. 3(b). In the same way, we derive a bilinear five-node element in Fig. 3(c). We use a

special basis of |ξ|(η + 1) having the slope discontinuity instead of ξ 2(η + 1) for linear interpolation

on the upper side, and easily obtain the shape functions below 

(8)

From Eq. (8), we confirm that the interpolation along the upper side in Fig. 3(c) is comprised of

two linear-interpolations between nodes 4 and 5, and between nodes 5 and 3, and all element

boundaries retain a linear interpolation between neighboring two nodes. However, it is necessary to
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Fig. 4 The master element of (4 + k + l + m + n)-node finite elements
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modify the numerical integration due to the slope discontinuity of the special basis |ξ |(η + 1). To

overcome the slope discontinuity in the numerical integration, the 2 × 2 Gauss integration per

subdomain is used because the shape functions still show bilinear interpolation within a subdomain

despite the slope discontinuity at the element level.

The slope discontinuous basis at node 5 along the upper side and the vanishing of the basis along

the lower boundary are extremely useful in constructing new variable-node finite elements. With

this concept, a linear variable-node element, termed the (4 + k + l + m + n)-node element, could be

generalized to accommodate an arbitrary placement of k additional nodes on the bottom edge of a

four-node element, l additional nodes on the right edge, m additional nodes on the top edge, and n

additional node on the left edge, as shown in Fig. 4. Consider a set of special bases given as 

(9)

The first base function retains a slope discontinuity along the bottom side of the element, but this

slope discontinuity disappears on the top side, η= 1. In a similar manner, the second one has the

slope discontinuity along the top side of the element while it disappears on the bottom side. The

third and the fourth base function possess the slope discontinuity along each of the left and the right

side of the element, respectively.

ξ ξi– η 1–( ) ξ ξi– η 1+( ) η ηi– ξ 1–( ) η ηi– ξ 1+( ), , ,

Fig. 5 A (4 + k + l + m + n)-node finite element with linear interpolation on the boundary: k = 1, l = 2, m = 3,
n = 0
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As a simple example, we assume k = 1, l = 2, m = 3, and n = 0, as described in Fig. 5. It has

total ten nodes in the element domain. The special bases adopted for representing the slope

discontinuity are |ξ + 0| (η− 1), |η + 1/3| (ξ + 1), |η − 1/3| (ξ + 1), |ξ− 1/2| (η + 1), |ξ− 0| (η + 1),

and |ξ + 1/2| (η + 1) for node 5, node 6, node 7, node 8, node 9, and node 10, respectively with

equally spacing subdomain. These shape functions are plotted in Fig. 6, which shows that all the

shape functions satisfy the continuity and compatibility at the element boundary.

The desirable properties of finite element shape functions may include the followings: (1) partition

of unity ( ); (2) Kronecker delta condition ( ); (3) linear completeness at

the element domain ( ); (4) at least piecewise linear interpolation between two

neighboring nodes at all element boundaries; (5) non-negativeness: ( ); and (6) sufficient

smoothness in the element interior.

Polygon elements of linear-interpolation type which include Wachspress basis function

(Wachspress 1975) and mean-value coordinates (Floater 2003) meet the aforementioned conditions.

Our variable-node element meets the first four conditions above but do not guarantee the fifth

condition, which has relevance to the discrete maximum principle (Christie and Hall 1984, Varga

1966). As illustrated from Fig. 6, two of the present shape functions at corner nodes, φ2 and φ3,

have negative value at local region. This characteristic of shape function is also noticed in

ΣI 1=

N
P φI ξ( ) 1.0= φI xJ( ) δIJ=

ΣI 1=

N
P φI ξ( )xI x=

0 φI ξ( )≤

Fig. 6 Shape functions of a (4 + k + l + m + n)-node element in the case of k = 1, l = 2, m = 3, n = 0: φ1(ξ)
through φ10(ξ)
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conventional eight- and nine-node quadratic elements. Regarding the sixth condition, the present

variable-node elements retain C1 smoothness in the interior of the element except the inner

boundaries located in the slope discontinuity due to absolute value of the bases in Eq. (9). For the

inner boundaries, C0 smoothness is satisfied. This means no difficulties when the numerical

integration is carried out subdomain-wisely, as indicated in Fig. 5. The 2 × 2 Gauss integration per

subdomain is a sufficient integration order, because the shape functions still show bilinear

interpolation at each subdomain in the same way as the aforementioned transition element (Hughes

1989). Note that the shape functions of the (4 + k + l + m + n)-node elements with an arbitrary

number of k, l, m and n on the master elements can be automatically generated with the slope

discontinuity bases in Eq. (9) without losing the continuity and compatibility at the element

boundary.

4. Numerical examples

To demonstrate the performance of the proposed variable-node finite element families, some

benchmark problems are treated in this section. In the first two examples, we deal with mesh

connection problems including the patch test. Subsequently, in the last two examples, we

demonstrate how to efficiently apply the variable-node elements for adaptive mesh refinement. In all

examples, the conventional isoparametric mapping is used.

4.1 Mesh connection using variable-node element families

4.1.1 Patch test

For the series of patch tests, we prepared a patch as shown in Fig. 7. The patch is constructed by

one highly distorted (4 + k + l + m + n)-node finite element on Ω2 and many 4-node quadrilateral

elements on Ω1. We impose proper boundary conditions to remove rigid body modes and realize a

simple tension state under plane stress condition. We use the same material properties for both of

Fig. 7 Geometry and boundary conditions for the patch test
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Ω1 and Ω2; Young’s modulus and Poisson’s ratio are 1 × 105 Pa and 0.3, respectively. To

demonstrate the generality and robustness of the proposed elements, we consider a set of different

numbers of nodes at every side of the (4 + k + l + m + n)-node element: (k, l, m, n) = (1, 1, 1, 1), (3,

0, 1, 2), (3, 4, 1, 2), and (3, 3, 3, 3). As plotted in Fig. 8, we confirm that all patches reproduce the

constant tension state regardless of the number of inserted nodes. It is noted that the relative error in

energy norm of all mesh configurations are about O(10−15), as summarized in Table 1, which is

equivalent to the machine epsilon of 32 bit personal computer. 

Fig. 8 σ11 contour plots of the patch with a (4 + k + l + m + n)-node element in the case of: (a) (k = 1, l = 1,
m = 1, n = 1); (b) (k = 3, l = 0, m = 1, n = 2); (c) (k = 3, l = 4, m = 1, n = 2); (d) (k = 3, l = 3, m = 3,
n = 3)

Table 1 Relative error in energy norm of patch tests with various irregular nodes

Test case Relative Error in Energy norm

(a) k = 1, l = 1, m = 1, n = 1 1.39 × 10−15

(b) k = 3, l = 0, m = 1, n = 2 4.47 × 10−15

(c) k = 3, l = 4, m = 1, n = 2 2.63 × 10−15

(d) k = 3, l = 3, m = 3, n = 3 4.04 × 10−15
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4.1.2 An infinite plane-strain block with a hole under tension

For the second example, we choose an infinite two-dimensional body including a hole. We only

use one quarter of the model by imposing proper boundary conditions, as depicted in Fig. 9. The

block has the dimension of 1 m × 1 m, and has a hole with radius of 0.3 m. To capture stress

concentration, we take subdivision on Ω2 and replace those elements of Ω1 that are neighboring Ω2

along the interface by the (4 + k + l + m + n)-node elements (see Figs. 9 and 10(b), (d), (f)). The

block is under plane strain condition and is subjected to uniform tension of σ0 = 1 Pa in the

horizontal direction. The Young’s modulus and Poisson ratio are 106 Pa and 0.3, respectively. To

realize the infinite body state in a finite body, we calculate exact nodal forces by integrating exact

stress distributions for the infinite body, given by Eq. (10), with the 12th order Gauss integration

along the boundary, and impose these forces on the outer boundary (Timoshenko and Goodier

1970).

(10)

The stress contours of σ11 are described in Fig. 10, wherein conventional meshes without any

irregular nodes (Figs. 10(a), (c), (e)) and locally refined meshes with the irregular nodes

accommodated in the variable-node elements (Figs. 10(b), (d), (f)) are shown for the comparison of

their performances. Fig. 11 shows the relative error in energy norm on Ω2 and the maximum tensile

stress σ11 at the Gauss point nearest to the left lower vertex “A” (see Fig. 9) with respect to the
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Fig. 9 Geometry and boundary conditions of an infinite block including a hole
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Fig. 10 σ11 contour plots of the infinite block including a hole composed of: (a) conventional mesh (64
nodes); (b) mesh with irregular nodes (61 nodes); (c) conventional mesh (132 nodes); (d) mesh with
irregular nodes (97 nodes); (e) mesh with conventional elements (462 nodes); (f) mesh with irregular
nodes (229 nodes)
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total number of nodes, comparing the results from the locally refined meshes with those from the

conventional meshes. From Fig. 11, we see that the present scheme with the aid of the variable-

node elements yields a more rapidly converging solution compared with the conventional mesh

case. Furthermore, they still maintain the optimal convergence ratio 1.0 according to the mesh size

of Ω2 as shown in Fig. 12. The aforementioned examples show that our proposed approach is

extremely simple as well as accurate, needless to mention that it passes the patch test exactly and

also show the consistency of the numerical results even when a curved boundary wherein many

irregular nodes are generated.

Fig. 11 Comparison of the results from the conventional meshes and from the locally refined meshes using
the variable-node elements with respect to the number of nodes in the infinite block, in terms of: (a)
relative error in energy norm on Ω2; (b) the maximum tensile stress σ11 at the Gauss point nearest to
“A” in Fig. 9

Fig. 12 Comparison of the relative errors in energy norm from the conventional meshes and from the locally
refined meshes using the variable-node elements, with respect to mesh size of Ω2
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4.2 Adaptive mesh refinement using variable-node element families

In this subsection, we treat a square plate with point loads and an L-shaped domain. Since these

two examples are associated with high stress gradients due to point loads and a wedge, we solve

these by using adaptive mesh refinement technique involving many irregular nodes during element

subdivision. The irregular nodes in the process of element subdivision are covered by the proposed

elements. In addition, we also accommodate a higher level subdivision scheme into the conventional

adaptive mesh refinement.

Before considering the last two examples, it will be useful to provide a quick review on adaptive

mesh refinement. In making a subdivision of zones containing appreciable error, we employ an

error estimator and set a minimum allowable error. We choose the error estimator presented by

Zienkiewicz and Zhu (1987) as shown in Eqs. (11) and (12). The error in displacement eu and the

error energy norm ||e||E are represented as follows 

(11)

 

 

(12)

where L is the linear elliptic differential operator, D is the elasticity matrix, and S is the strain

operator. Furthermore u and uh are the exact displacement and the approximate displacement from

finite element calculation, respectively, and σ and σh are the exact and the approximate stress field,

respectively. In most engineering problems, the exact displacements u and stresses σ are not known

a priori before solution. Zienkiewicz and Zhu (1987) proposed the approximation error measure by

using the smoothed stress field σ* instead of σ.

(13)

(14)

(15)

Note that  and  are the approximated strain energy norm in Ω and in the element domain
Ωi, respectively; M is the number of elements. For calculating the stress field σ* based on σh, the

global stress smoothing procedure by the least square method is used (Hinton and Campbell 1974).

Similar to the error norm , we approximate the exact strain energy norm  as below 
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, (16)

Finally, we obtain the relative ratio of the approximated strain energy error norm in the following

equation.

.(17)

In the adaptive mesh refinement, we derive the mesh towards a uniform error distribution for all

existing elements when a uniform permissible error is prescribed for the entire elements, as in the

following equation 

(18)

where eo is the critical error per element in the energy norm, and Ro is the prescribed permissible

relative error percentage. As seen in Fig. 13, in order to obtain adaptive meshes yielding a

converging solution, we perform several iterations until the stopping criterion is activated.
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Fig. 13 A procedure of adaptive mesh refinement
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4.2.1 A square plate with point loads with adaptive mesh refinement

Fig. 14 shows a square plate subjected to point loads, initially consisting of 25 nodes and 16

elements. We impose five point loads at the specific positions of the square plate with appropriate

boundary conditions, as seen in Fig. 14. Young’s modulus and Poisson ratio are 1 × 105 Pa and 0.3,

respectively, and plane stress condition is assumed. For the adaptive mesh refinement, we set the

relative allowable error Ro to 10%. Through adaptation, we obtain a finite element mesh comprised

of 1,775 nodes and 1,426 elements, as seen in Fig. 15. The final mesh configuration is shown in

Fig. 16, which is converged in the present adaptation process. Grey color indicates the variable-node

elements with two irregular nodes on an element-edge. As already discussed in Section 2, in the

Fig. 14 Geometry and boundary conditions of a square plate under point loads

Fig. 15 σ11 contour plots of the square plate: (a) with mesh configuration, (b) without mesh configuration
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conventional adaptive mesh refinement, we have to perform a sequential remeshing on the grey

elements in order to reduce the number of the irregular nodes to 1. However, the present

(4 + k + l + m + n)-node elements makes it possible to avoid any remeshing for the grey elements, as

depicted in Fig. 16, in this adaptation procedure.

4.2.2 L-shaped domain with adaptive mesh refinement

The L-shape domain initially consists of a total of 96 nodes and 75 elements with proper

boundary conditions, as shown in Fig. 17. In this problem, a high stress gradient takes place at the

reentrant corner. Young’s modulus is 1 × 107 Pa with Poisson’s ratio 0.3, and geometry is described

in Fig. 17(a). For adaptive mesh refinement, we set the prescribed allowable error percentage Ro to

0.1%. We solve this problem using two kinds of adaptive mesh refinement techniques: the

conventional methodology which splits one element into four bilinear elements, and the higher level

subdivision which splits the element into sixteen bilinear elements. We refer to the first technique as

subdivision-1 adaptation, and the second as subdivision-2 adaptation for convenience.

We summarize the numerical results according to the adaptation techniques as shown in Fig. 18

and listed in Table 2. It is observed that σ11 contour in Fig. 18(a) is in good agreement with that in

Fig. 18(b). However, the convergence behaviors are quite different, as listed in Table 2. The

Fig. 16 Converged mesh configuration of the square plate via adaptive mesh refinement with
(4 + k + l + m + n)-node elements



Variable-node element families for mesh connection and adaptive mesh computation 367

Fig. 17 Schematic view of an L-shaped domain: (a) geometry and boundary conditions, (b) initial mesh
configuration

Fig. 18 σ11 contour plots of the L-shaped domain with and without mesh configuration using: (a)
subdivision-1 adaptation, (b) subdivision-2 adaptation
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subdivision-1 adaptation takes 9 iterations and ends up with 1,331 nodes, On the other hand, the

subdivision-2 adaptation needs 5 iterations and leads 2,766 nodes. The use of a proper combination

of subdivision-1 adaptation with subdivision-2 adaptation might be the optimal approach for every

class of problems. We leave this, however, as future work. It is noted that 1-irregular node rule-free

adaptive mesh computation can be successfully achieved with the aid of the variable-node elements.

5. Conclusions

In this paper, we have reported the variable-node finite element families using the point

interpolation, termed the (4 + k + l + m + n)-node elements, which accommodate an arbitrary number

of nodes (k, l, m, and n) on each element-edge. For the construction of their shape functions, we

employ the point interpolation and a set of special polynomial bases containing the slope

discontinuities. These elements only require the 2 × 2 Gauss integration per element subdomain,

because their shape functions retain the bilinear interpolation property within each subdomain.

Although they have many irregular nodes or side nodes, their shape functions are integrated

properly by subdomain-wise Gauss integration, as verified by several benchmark problems. Their

generality and strong potential in resolving nonmatching mesh problems have been illustrated

through several examples, which appear in adaptive mesh refinement problems by relaxing the 1-

irregular node rule with the aid of variable-node element families. The extension to three

dimensional solid elements and shell elements with the variable number of nodes, and to nonlinear

problems are currently ongoing, and will be reported when completed.
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Table 2 Iteration count and number of nodes by subdivision-1 and subdivision-2 adaptation

Iteration count
Number of nodes

Subdivision-1 adaptation Subdivision-2 adaptation

1 96 96

2 338 1,266

3 853 2,400

4 1,092 2,673

5 1,207 2,766 (converged)

6 1,266

7 1,305

8 1,326

9 1,331 (converged)
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