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Abstract. This paper deals with large deformation post-buckling of a linear-elastic and hygrothermal
beam with axially nonmovable pinned-pinned ends and subjected to a significant increase in swelling by
an alternative method. Analytical approximate solutions for the geometrically nonlinear problem are
presented. The solution for the limiting case of a string is also obtained. By coupling of the well-known
Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation
with sinusoidal nonlinearity can be reduced to form a cubic-nonlinear equation, and supplementary
condition with cosinoidal nonlinearity can also be simplified to be a polynomial integral equation.
Analytical approximations to the resulting boundary condition problem are established by combining the
Newton’s method with the method of harmonic balance. Two approximate formulae for load along axis,
potential strain for free hygrothermal expansion and periodic solution are established for small as well as
large angle of rotation at the end of the beam. Illustrative examples are selected and compared to
“reference” solution obtained by the shooting method to substantiate the accuracy and correctness of the
approximate analytical approach.
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1. Introduction

Mechanical buckling has been identified to be a primary mode of failure for beams subjected to

in-plane compressive loads. Beams may also experience thermal buckling due to change in

temperature, and hygroscopic buckling due to change in moisture concentrations. The hygrothermal

buckling of a constrained beam is due to axial hygrothermal expansion (Li et al. 2009, Anandrao et

al. 2010, Kocaturk and Akbas 2011, 2012). Understanding the buckling and post-buckling behavior

of an elastic and hygrothermal beam is important for the designers of railroad tracks, optical fibers,

satellite tethers, subsea and buried pipelines. Such a buckling differs substantially from that of the

common buckling of beams subjected to mechanical compressive loads. For this problem, the

extensibility of the beam must be considered and the compressive normal stress is due to an

increase in either temperature or moisture content.

Many post-buckling studies, based on classical theory, of elastic beams subjected to mechanical or

thermal loading are available in the literature, see, for example, based on only the highest-order
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nonlinearity in the expression for axial strain, the first-order approximation to the post-buckling

response was derived by Nowinski (1978), Ziegler et al. (1989), Boley et al. (1997). Their

derivations indicate that the axial force after initial buckling remains the same as the compressive

load at critical buckling temperature change. By using the framework of the general branching

theory of discrete systems, El Naschie (1976) also investigated the thermal buckling problem and

treated the initial post-buckling response. He predicted that the axial load would increase in the

initial post-buckling response. It has been pointed out later by Coffin et al. (1999) that the

conclusion of El Naschie (1976) was not valid because of his incorrect independent assumption of

the axial strain and the angle of rotation. Coffin and Bloom (1999) developed an elliptic integral

solution for the post-buckling response of a linearly elastic and hygrothermal beam with axially

nonmovable pinned-pinned ends, by considering a relation between these two quantities, and further

assuming that the strain of free expansion was linearly related to changes in temperature and

moisture. A set of differential equations for the undeformed configuration was derived which

resulted in the requirement to simultaneously solve two coupled integral elliptic equations.

The thermal post-buckling of a beam made of physically nonlinear thermoelastic material was

examined by Jekot (1996), but he did not consider the geometric nonlinearity of the central axis

curvature and only used simplified form of nonlinear axial strain. His solution also predicted a

constant axial load after buckling. Li et al. (2000) proposed a computational analysis for the thermal

post-buckling behavior of beams with axially nonmovable pinned-pinned ends as well as fixed-fixed

ends, using a shooting method. Focusing on the bifurcations of the resulting equilibrium equations

under both traction and displacement boundary conditions, Cisternas et al. (2002) considered

thermal expansion effects in the extensible rod theory. They determined the subcritical and

supercritical pitchfork bifurcations. Vaz et al. (2003) investigated the post-buckling response of an

initially straight slender beam made of linear elastic material with a nonlinear strain-temperature

relationship. Uniform temperature gradient along the beam was assumed and expansion is prevented

by double-hinged nonmovable ends. By using uncoupled elliptic integrals, they obtained the

solution of this problem, which are derived from the governing equations in the deformed

configuration, hence completely defining the shape of the beam (elastica).

In recent years, with fiber-reinforced composite laminated shell structures being widely used in

the aerospace, marine, automobile and other engineering industries, many post-buckling studies,

based on classical shell theory, of composite laminated thin cylindrical panels subjected to thermal

loading are available in the literature. Among these studies, Dafedar et al. (2002) presented a novel,

analytical mixed theory based on the potential energy principle to investigate buckling response of

laminated composite plates subjected to mechanical and hygrothermal loads. It was shown that

solutions from the models were in excellent agreement with the available three-dimensional

elasticity solutions. Taking into account a non-uniform temperature distribution through the

thickness, Liu et al. (2006) investigated the response of composite columns under axial compressive

loading. Due to effect of the non-uniform temperature, the structure behaves like an imperfect

column and responds by bending, the neutral axis moves away from the centroid of the cross-

section. The results are obtained by solving linearized equation. By applying energy method, Wang

et al. (2007) studied hygrothermal effects on local buckling for different delaminated shapes near

the surface of cylindrical laminated shells, and then obtained the relationships between critical strain

value and the geometrical and physical parameters of cylindrical laminated shells and sub-laminated

shells. Aoki et al. (2008) investigated the combined effects of water absorption and thermal

environment on compression after impact (CAI) characteristics of CFRP laminates. Kundu et al.
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(2009) used finite element method Nonlinear buckling analysis of hygrothermoelastic composite

shell panels, and the result shows that large deformation due to the bending of shell panels under

hygrothermal environmental condition may cause structural instability. It is different from above that

Lal et al. (2011) investigated the effect of random system properties on the post buckling load of

geometrically nonlinear laminated composite cylindrical shell panel subjected to hygrothermomechanical

loading, and by comparing the present results with those available in the literature and independent

Monte Carlo simulation they showed that the performance of outlined stochastic approach had been

validated.

In this paper, an alternative approach is presented and discussed to solve large deformation post-

buckling of an elastic and hygrothermal beam with axially nonmovable pinned–pinned ends and

subjected to a significant increase in swelling. Geometrically large nonlinear strain is considered in

the analysis, but any form of material nonlinearity is not included. The solution is based on the

governing equations derived by Coffin et al. (1999). The proposed approach forms a significant

extension of constructing analytical approximate solutions to (i) non-linear oscillations (Wu et al.

2006a, b); and (ii) large deformation post-buckling of elastic rings under uniform hydrostatic

pressure (Wu et al. 2007). We establish analytical approximate solutions to large deformation post-

buckling of a linear-elastic and hygrothermal pinned beam in terms of the angle of rotation at the

end of the beam, by using linearization of the governing equation and the method of harmonic

balance. Unlike the classical method of harmonic balance, the linearization is performed prior to

harmonic balancing and thus a set of linear algebraic equations instead of one of non-linear

algebraic equations is derived. We are hence able to establish analytical approximate solutions.

These analytical approximate solutions show excellent agreement with the “reference” solution

obtained by the shooting method for small as well as large angle of rotation at the end of the beam.

2. Formulation

As shown in Fig. 1, the beam is assumed to exhibit pure elastic response, dimensional changes in

the cross-section are regarded as negligible, and there is no transverse shear deformation. The axial

stress is assumed to be proportional to the difference between the stretch and the hygrothermal

extension of the beam. For the case of extensible elastica, the total strain is not a linear

superposition of the stain along the neutral axis and the curvature of the neutral axis, which brings

the extra nonlinear. The presented analysis of large post-buckling behavior of the beam needs to

consider the nonlinear due to extensibility.

The governing equation of an elastic and hygrothermal beam which is fully restrained against

axial expansion and is subjected to an increase in either temperature or moisture content can be

written in the form (Coffin et al. 1999) 

(1)

where N is the force component along the horizontal x-axis, A is the cross-sectional area of beam, E

is Young’s modulus, θ is the angle formed by the x-axis and the tangent to neutral axis, 

is the original lengthwise coordinate system of the beam, εht is the potential strain for free

hygrothermal expansion and is defined as

d
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θ

S
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S L– L,[ ]∈
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(2)

Here, the terms ∆T and ∆H are the change in temperature and moisture, respectively, and η and ξ
are the coefficients of thermal expansion and hygroexpansion, respectively. 

Let the angle of rotation at S = −L be a, we seek a deformed state that is symmetric about S = 0,
such that the angle at S = L is −a. At the pinned ends of the beam, the bending moments must
vanish, we have the boundary conditions

(3)

In addition, the beam is fully restrained against end displacement, thus, we have the

supplementary condition (Coffin et al. 1999)

(4)

Once  and  are obtained from differential and integration formulation in Eqs. (1), (3)

and (4), the axial deflection  and lateral deflection  of the beam, at any point S along the

beam can then be calculated from the following relations

(5)

(6)

For details of derivation in this section, we refer the readers to Coffin et al. (1999).

εht η T∆⋅ ξ H∆⋅+=

θd

Sd
------ L–( ) θd

Sd
------ L( ) 0= =

2L
N

EA
-------cosθ 1 εht+ +⎝ ⎠
⎛ ⎞cosθ Sd
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L

∫=

θ S( ) N, εht
x S( ) w S( )

x S( ) N

EA
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⎛ ⎞cosθ ζ( ) ζd
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EA
-------cosθ ζ( ) 1 εht+ +⎝ ⎠
⎛ ⎞sinθ ζ( ) ζd

L–

S

∫=

Fig. 1 Sketch of a simply supported beam subjected to hygrothermal loads 
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3. Solution methodology

A new independent variable  is introduced. Then, Eqs. (1), (3) and (4) can be

rewritten in the following dimensionless forms

(7)

(8)

(9)

where

, (10)

are dimensionless parameters and

(11)

are the angles of rotation at the ends of the beam. 

3.1 Maclaurin series expansion and Chebyshev polynomials

Along with the Maclaurin series expansion and the Chebyshev polynomials (Denman 1969,

Jonckheere 1971, Li et al. 2008, Beléndez 2009), we arrive at a new nonlinear equation with no

circular functions. Introducing a variable  (Denman 1969, Jonckheere 1971, Li et al. 2008,

Beléndez 2009) to Eqs. (7)-(9) and applying the Maclaurin series representation (Abramowitz 1965)

for the functions , and  by taking the first five terms

yield a series of equations. Expressing the powers of u in the resulting equations in the form of

Chebyshev polynomials as , and then neglecting all terms associated with those

Chebyshev polynomials for  yield

(12)

(13)

(14)

The expressions for  are presented in the Appendix.

3.2 Solution procedure

We will establish the analytical approximate solution to Eqs. (12)-(14) in terms of the initial value

. A reasonable and simple initial approximation satisfying conditions in Eq. (12) can be

taken as
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, (15)

Here,  is a periodic function of τ, of period 2π. 

Substituting Eq. (15) into Eq. (12) and setting the resulting coefficient of term cosτ equal zero,

give

(16)

Substituting Eq. (15) into Eq. (14), and simplifying yield

(17)

From Eqs. (16) and (17), the first analytical approximations for Λ and µ can be solved and
expressed as functions of a, as

(18)

(19)

where

and the corresponding analytical approximate solution is given by Eq. (15). Applying Eq. (10), we

can obtain the first analytical approximations for λ, and  as

, (20)

And the first analytical approximate periodic solution can be expressed as

, (21)

Next, we express the solution  of Eqs. (12)-(14) as

, , (22)

Here,  is the principal part and  is the correction part.

Substituting Eq. (22) into Eqs. (12)-(14) and linearizing with respect to  lead to
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where , a periodic function of period  and  are unknown quantities. The second

approximate solution can be obtained by solving via the method of harmonic balance the resulting

linear Eqs. (23)-(25) in ,  and .

In view of the expression in Eq. (15),  in Eqs. (23)-(25) is taken of the form

(26)

which satisfies the initial condition in Eq. (24) at the outset. Substituting Eqs. (15) and (26) into

Eq. (23), expanding the expression into a trigonometric series and setting the resulting coefficients

of the items  and  to zeros, respectively, and similarly, substituting Eqs. (15) and (26)

into Eq. (25), and simplifying it yield

(27)

Solving Eq. (27) gives z0,  and 

(28)

where  are given in Appendix.

Then we get the second analytical approximation to the post-buckling deformation as

, (29a)

, (29b)

Applying Eq. (10), we obtain the second analytical approximate λ, and  as

, (30)

and get the second analytical approximate periodic solution  as

(31)

It should be clear how the procedure works for constructing further analytical approximate

solutions. It will be shown in the next section that Eqs. (30)-(31) provide excellent analytical

approximations with respect to the “reference” solution obtained by the shooting method for small

as well as large a.
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4. Results and discussion

In this section, the accuracy of the proposed analytical approximations will be illustrated by

comparing with the “reference” solutions obtained by the shooting method (Ascher et al. 1988).

The “reference” solutions  and  can be obtained by first transforming

Eqs. (7)-(9) into the following first-order system

(32a)

with boundary conditions

(32b)

and then applying the shooting method. It should be noted that the “reference” solutions are the

same as the elliptic integral solutions derived by Coffin et al. (1999) where λ, and  are solved

for a given value of . Therefore  and  also represent the solutions

given by Coffin et al. (1999).

For an illustration of the results from the preceding analysis, consider a hygrothermal beam with

width b = 40 mm and total length 2L = 200 mm, the corresponding elastic modulus of the beam is

E = 70 GPa. The dimensionless parameter ρ changes with respect to the thickness h, such as h = 0

corresponds to the situation of ρ = 0, and h = 35 mm corresponds to ρ = 0.1.

For comparison, the variations of the “reference” and approximate values of λ, and  with the

angle a of rotation are shown in Figs. 2 and 3, (a) for ρ = 0 and (b) for ρ = 0.1.

Figs. 2 and 3 indicate that Eq. (30) is able to provide excellent approximate values of λ and εht
for both small and large a, while Eq. (20) may give acceptable results for small a. By the way, the

dimensionless buckling parameter, λ, is fairly insensitive to the slenderness ratio of the beam, and

θr τ a,( ) λr a( ), εhtr a( )

θd

τd
------ ϕ;

ϕd

τd
------

2λ
4
ρ
2

π
2

--------------sin2θ
4λ

2
1 εht+( )

π
2

---------------------------sinθ–= =

χd

τd
------ 1 εht λ

2
ρ
2
cosθ–+( )cosθ 1–=

θ 0( ) a; ϕ 0( ) 0; ϕ π( ) 0; χ 0( ) 0; χ π( ) 0= = = = =

εht
K sin a/2( )= θr τ a,( ) λr a( ), εhtr a( )

εht

Fig. 2 The variations of the “reference” and approximate values of λ with the angle of rotation a, (a) for
ρ = 0 and (b) for ρ = 0.1 
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the prediction for this value obtained for the limiting string case could give a excellent estimate for

slender beams.

The “reference” solution θr, approximate solutions θ0 and θ1 given in Eqs. (21), (31), respectively,

are plotted in Fig. 4. These graphs correspond to ρ = 0.1, a = 1.0 and ρ = 0, a = 1.7, respectively.

Fig. 4 demonstrates that Eq. (31) provides the best approximations with respect to the “reference”

solution for both small and large a despite significant increases in nonlinear effects. Note that the

angle of rotation at the end of the beam is a. For a = 1.7, the angle of rotation exceeds  and it is

quite a large post-buckling deformation.

By using Eqs. (5), (6) and the “reference”solution θr, approximate solutions θ0 and θ1 given in

Eqs. (21) and (31), respectively, the “reference” and approximate dimensionless axial and lateral

deflection components  and  of the beam can be determined. Fig. 5 presents the

“reference” and approximate post-buckling geometric configurations for ρ = 0.1, a = 1.0 and ρ = 0,

π/2

x S( )/L w S( )/L

Fig. 3 The variations of the “reference” and approximate values of εht with the angle of rotation a, (a) for
ρ = 0 and (b) for ρ = 0.1 

Fig. 4 Comparison of the “reference” and approximate solutions 
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a = 1.7, respectively. The post-buckling geometric configurations obtained by Eq. (31) provide the

best approximations to the “reference” configurations for both small and large a.

As noticed, since it is assumed that there is no transverse shear deformation, the mechanical

model of the beam is valid for slender beam, but not very thick beam.

5. Conclusions

In this paper, we present an alternative, accurate approach to solve large post-buckling

deformation of an elastic and hygrothermal beam fully restrained against end displacement and

subjected to a significant increase in swelling. The solution for the limiting case of a string has also

been obtained. 

The new approach combines linearization of governing equation and the method of harmonic

balance to establish excellent analytical approximate solutions to large post-buckling deformation of

the beam in terms of angle of rotation at the end of the beam. At the same time, it is an alternative

approach for solving the large post-buckling response problem of a hygrothermal beam without

using the Bessel functions. Furthermore, the present analysis demonstrates excellent results as

compared to the “reference” solutions for small as well as large angle of rotation at the end of the

beam.

The “reference” solutions are less advantageous to the understanding of the physics of nonlinear

response because only numerical solutions can be obtained. The alternative method presented here

offers analytical approximate solutions which help in understanding of the roles of specific physical

parameters in the nonlinear system.
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Notations

The following symbols are used in the paper:

2L : length of the beam
A : cross-sectional area of beam
I : Moment of inertia
θ : angle formed by the x-axis and the tangent to neutral axis
u : θ/a
N : force component along the x-axis
E : Young’s modulus
S : original lengthwise coordinate system of the beam
εht : potential strain for free hygrothermal expansion
η : coefficient of thermal expansion
ξ : coefficient of hygroexpansion
∆T : change in temperature
∆H : change in moisture
λ : dimensionless loading parameter
Λ : λ2

a : angle of rotation at the end S = −L of the beam
µ : εht + 1
ρ : dimensionless density parameter of the beam
τ :  a new independent variable
x, w : the axial and lateral deflection components of a point on the beam
hn : coefficient of the Fourier series expansion of θ

: the  analytical approximation to  respectively
: correction to , respectively

z0 : coefficient to be determined in the method of harmonic balance
: “reference” value of , respectively

πS/ 2L( ) π/2+

ui Λi µi, , i 1+( )th u Λ µ, ,
∆ui ∆Λi ∆µi, , ui Λi µi, ,

ur Λr µr, , u Λ µ, ,
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Appendix. Expressions of coefficients in Eqs. (12)-(14) and (27)

 




