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Abstract. Based on the first-order shear deformation theory (FSDT), and the virtual work principle, an
elastic analysis for axisymmetric clamped-clamped Pressurized thick truncated conical shells made of
functionally graded materials have been performed. The governing equations are a system of
nonhomogeneous ordinary differential equations with variable coefficients. Using the matched asymptotic
method (MAM) of the perturbation theory, these equations could be converted into a system of algebraic
equations with variable coefficients and two systems of differential equations with constant coefficients.
For different FGM conical angles, displacements and stresses along the radius and length have been
calculated and plotted.

Keywords: truncated conical shells; thick-walled; functionally graded material (FGM); analytical
solution; perturbation technique 

1. Introduction

As truncated conical shells have widely been applied in many fields such as space fight, rocket,

aviation, and submarine technology, and the like, their stress analysis is inevitable in engineering.

The literature that addresses the stresses of thick conical shells is quite limited. Most of the existing

literature deals with the stress or vibration analysis of thin conical shells and it is based upon a thin

shell or membrane shell theory, whereas very little attention has been paid to the analytical solution

of thick conical shells, which is due to the limitations of the classic theories of thick wall shells.

Functionally graded materials (FGMs) are a new type of composite materials with continuously

varied microstructure, which lead to the continuous variation of physical and mechanical properties

through the thickness. The graded changes in the composition of FGMs can reduce or even

eliminate the specific interfaces between constituent materials, and avoid the initiation of cracks.

FGMs are applicable to many engineering fields. Such as aerospace, nuclear energy, chemical plant,

electronics, biomaterials and so on.
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Perturbation technique can be used for solving the nonhomogeneous ordinary and partial

differential equations (ODE and PDE) with variable coefficients. These equations normally do not

have exact solutions. In fact, this technique converts the equation or set equations into solvable

equations. This method is applicable in different branches of sciences and engineering. In solid

mechanics, for the purpose of analysis in different structures including beams (Ozturk and Coskun

2011, Pan et al. 2011) and shells, this method utilized.

Considering the cross shear effect, Naghdi and Cooper (1956), formulated the theory of shear

deformation. Using the FSDT, Mirsky and Hermann (1958), obtained the solution of thick

cylindrical shells of homogenous and isotropic materials. Assuming the cone is to be long and the

angle of the lateral side with a horizontal plane is great, Hausenbauer and Lee (1966) obtained the

radial, tangential and axial wall stresses in a thick-walled cone under internal and/or external

pressure. McDonald and Chang (1973) applied the asymptotic method to Donnell’s equations for

analysis of conical shells. Using the shear deformation theory and Frobenius series, Takashaki et al.

(1986), obtained the solution of free vibration of conical shells with variable thickness.

Sundarasivarao and Ganesan (1991) analyzed a conical shell under pressure using the FEM.

Chaudhry et al. (1996) modeled the left ventricle as a thick truncated conical shell, which was

assumed isotropic, elastic with large deformation while three-dimensional equations of elasticity

have been simplified for this special shape. Eipakchi et al. (2003), obtained the solution of the

homogenous and isotropic thick-walled cylindrical shells with variable thickness, using the FSDT

and the perturbation theory. Eipakchi et al. (2008) used the mathematical approach based on the

perturbation theory, for elastic analysis a thick conical shell with varying thickness under

nonuniform internal pressure. Based on the FSDT and the virtual work principle, an elastic solution

for thick truncated conical shells (Ghannad et al. 2009), an elastic solution for clamped-clamped

thick cylindrical shells (Ghannad and Nejad 2010) and an elastic solution for thick cylindrical shells

with variable thickness (Ghannad et al. 2012) are obtained. A complete and consistent three-

dimensional set of field equations has been developed by tensor analysis to characterize the

behavior of FGM thick shells of revolution with arbitrary curvature and variable thickness along the

meridional direction (Nejad et al. 2009). The finite element method (FEM) based on the Rayliegh-

Ritz energy formulation applied to obtain the elastic behavior of the functionally graded thick

truncated cone (Asemi et al. 2010). Using third-order shear deformation theory, an analytical

solution presented for stresses and displacements in a thick conical shell with varying thickness

under nonuniform internal pressure (Eipakchi 2010). Assuming the material composition varying

continuously along its thickness according to the power law distribution, dynamic analysis of a thick

truncated cone made of a combined ceramic-metal material with finite length under axisymmetric

internal impact loading is studied by Asemi et al. (2010). In other study, using the finite element

method based on Rayleigh-Ritz energy formulation, the elastic behavior of the functionally graded

thick truncated cone with finite length, and is subjected to axisymmetric hydrostatic internal

pressure, are investigated (Asemi et al. 2011).

In the present work, an attempt has been made to find the analytical solution of the functionally

graded thick truncated conical shells, by using the FSDT. The governing equations in the

axisymmetric case and elastostatic state, which are a system of ordinary differential equations with

variable coefficients, have been solved analytically, using the MAM of the perturbation theory.
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2. Analysis

In the classical theory of shells, the assumption is that the sections that are straight and

perpendicular to the mid-plane remain in the same position even after deformation. In the FSDT, the

sections that are straight and perpendicular to the mid-plane remain straight but not necessarily

perpendicular after deformation. In this case, shear strain and shear stress are taken into

consideration.

In Fig. 1, the location of a typical point m, (r), within the thick truncated conical shell element

may be determined by R and z, as

(1)

where R represents the distance of middle surface from the x-axes, and z is the distance of typical

point from the middle surface.

In Eq. (1), x and z must be within the following ranges

(2)

where h and L are the thickness and the length of the cone. 

The general axisymmetric displacement field , in the first-order Mirsky-Hermann's theory
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Fig. 1 Cross section of a thick-walled truncated conical shell under internal pressure
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where  and  are the displacement components of the middle surface. Also,  and

 are the functions used to determine the displacement field.

The strain-displacement relations in the cylindrical coordinates system are

(4)

In addition, the stresses on the basis of constitutive equations for homogenous and isotropic

materials are as follows

(5a)

and 

(5b)

where  and  are the stresses and strains in the axial , circumferential , and radial 

directions. υ and  are Poisson’s ratio and modulus of elasticity, respectively.

The normal forces , shear force , bending moments , and the torsional

moment  in terms of stress resultants are
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(8)

(9)

On the basis of the principle of virtual work, the variations of strain energy are equal to the

variations of the external work as follows 

(10)

where U is the total strain energy of the elastic body and W is the total external work due to

internal pressure. The strain energy is

(11)

and the external work is

(12)

where

(13)

Here Px and Pz are components of internal pressure P along axial and radial directions,

respectively.

The variation of the strain energy is

(14)

The resulting of Eq. (14) is
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and the variation of the external work is
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The resulting Eq. (16) will be

 (17)

Substituting Eqs. (4) and (5) into Eqs. (15) and (17), and by considering the virtual work principle

(Eq. 10), we will have 

(18)

And the boundary conditions are

(19)

Eq. (19) states the boundary conditions which must exist at the two ends of the cone.

3. Modeling of FGM thick-walled truncated cone

Nonhomogenous and isotropic FG materials have the same material properties in directions.

However, their properties are different in terms of points. In such materials, changes of properties

are generally considered in radial or longitudinal directions.

The modulus of elasticity in FG thick truncated conical shell in terms of two radial  and

longitudinal  variables is assumed as follows

(20)

In this equation, Ei refers to the modulus of elasticity of that point of inner surface in which x = L

and n is the inhomogeneity constants determined empirically.

Based on Eq. (20), the modulus of elasticity in all the points which have equal distance to

symmetrical axis is the same. This means manufacturing FG conical shells by fitting numerous

homogenous cylinders of variable length.

4. Analytical solution for n = +1

The modulus of elasticity is:

 

 

 

z( )
x( )

E x z,( )
E
i

b
n

----- a a b–( )x

L
---–

h

2
--- z+ +=

n



Elastic analysis of pressurized thick truncated conical shells 111

(21)

By substituting Eqs. (4) and (21) into Eqs. (5), and then using Eqs. (6) to (9), forces and moments

are obtained as follows

(22a)

(22b)

(22c)

(23a)

(23b)

(23c)

(24)

(25)

where K is the shear correction factor that is embedded in the shear stress term. It is assumed that

in the static state, for conical shells  (Vlachoutsis 1992).

In order to solve the set of differential Eq. (18), forces and moments need to be expressed in

terms of the components of displacement field. Substituting Eqs. (22) to (25) into Eqs. (18), set of

differential Eq. (18) may be rewritten as follows

(26)

where the coefficients matrices , and the force vector {F'} are as follows
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(27a)
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(28)

[B4] do not have inverse and its reverse is needed in the next calculations. In order to make

, the first equation in the set of Eqs. (18) is integrated. 

(29)

Taking du/dx as v,

(30)

Thus, set of differential Eq. (26) could be derived as follows

(31)

where the coefficients matrices , and the force vector {F} are as follows
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(32c)

(32d)

 
(32e)

The Eq. (31) is a set of linear non-homogenous differential equations with variable coefficients.

4.1 Perturbation technique (n = +1)

The set of differential Eq. (31) do not have exact solutions. Perturbation theory provides a suitable

method for the solution of the set of differential equations for which there are no exact solutions.

For the purpose of solving, MAM of the perturbation theory has been used, in which the

convergence of solution is fast. For the solution of the set of differential equations, using the

perturbation theory, first, it must be made dimensionless to obtain the perturbation parameter.

The ratio of  is taken as the small perturbation parameter . The longer the conical shell,

the smaller the perturbation parameter, leading to faster convergence.  is taken as the

 

 

 

h/L ε( )
x* x/L=



Elastic analysis of pressurized thick truncated conical shells 115

dimensionless form of x. The other parameters are made dimensionless based on the thickness .

Solving the equations with variable coefficients gives rise to solving a system of algebraic

equations and two systems of differential equations with constant coefficients. These systems of

equations have the closed forms solutions. To accomplish this, making use of the characteristic

scales, the governing equations are made dimensionless as follows

(33)

Substituting dimensionless parameters into the set of Eqs. (31)

(34)

where

(35)

The coefficients matrices , and the force vector  are obtained as follows
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(36c)

 

(36d)

 

(36e)

where the parameters are as follows

(37)

The set of Eq. (34) is singular. Therefore, its solution must be considered in the area of boundary

layer problems. For the purpose of solving, MAM of the perturbation technique has been used. As

boundary conditions are clamped-clamped, one lies in  and the other one in . So, the

solution of the problem contains an outer solution away from the boundaries and two inner

solutions near the two boundaries at  and  (Nayfeh 1993).

The problem solving is carried out in three areas: 1- Area away from the boundaries (Outer

solution), 2- Boundary area  (inner solution at ), 3- Boundary area  (inner

solution at ). Final solution is obtained by combining the solutions above.
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5. Results and discussion

The analytical solution described in the preceding section for a nonhomogeneous and isotropic

clamped-clamped thick truncated conical shell with a = 40 mm, b = 30 mm, h = 20 mm and L = 200

mm will be considered for n = +1, n = 0 (Ghannad et al. 2009), and n = −1. The Young’s Modulus

in inner surface and Poisson’s ratio, respectively, have values of  GPa and υ = 0.3. The

applied internal pressure is 80 MPa. 

Fig. 2 shows the distribution of axial displacement at different layers. At points away from the

boundaries, axial displacement does not show significant differences in different layers, while at

points near the boundaries, the reverse holds true.

The distribution of radial displacement at different layers is plotted in Figs. 3. The radial

displacement at points away from the boundaries depends on radius and length. According to

Figs. 2 and 3, the change in axial and radial displacements in the lower boundary is greater than

that of the upper boundary and the greatest axial and radial displacement occurs in the inner surface

.

E
i

200=

z h/2–=( )

Fig. 2 Axial displacement distribution in different layers (n = +1)

Fig. 3 Radial displacement distribution in different layers (n = −1)
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Fig. 4 Circumferential stress distribution in different layers (n = +1)

Fig. 5 Axial displacement distribution along inner surface with different tapering angles (n = −1)

Fig. 6 Radial displacement distribution along inner surface with different tapering angles (n = +1)
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Distribution of circumferential stress in different layers is shown in Figs. 4 for n = +1. The

circumferential stress at all points depends on radius and length. The greatest circumferential stress

occurs in the inner surface .

In Figs. 5 to 8, the effects of the changes in tapering angles on axial displacement, radial

displacement, circumferential stress, and shear stress for n = +1, −1 will be considered. The

distribution of axial displacement in the inner surface of the cone is shown in Fig. 5. The greater

the tapering angle, the greater the displacement, which is significant. In cones with small tapering

angles, the greatest axial displacement occurs in the lower boundary. The larger the tapering angles,

the greater the axial displacement in the lower boundary and in the inner surface of the cone.

The distribution of radial displacement in the inner surface of the cone is shown in Fig. 6. The

greater the tapering angle, the greater the radial displacement. The greatest radial displacement

occurs in the lower boundary. In cones with small tapering angles, the greatest radial displacement

occurs in the lower boundary. The larger the tapering angles, the greater the radial displacement in

the lower boundary and in the middle surface of the cone.

z h/2–=( )

Fig. 7 Circumferential stress distribution along inner surface with different tapering angles (n = −1)

Fig. 8 Shear stress distribution along inner surface with different tapering angles (n = +1) 
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Fig. 9 Axial displacement distribution along inner surface (n = −1,0,+1)

Fig. 10 Radial displacement distribution along inner surface (n = −1,0,+1)

Fig. 11 Circumferential stress distribution along inner surface (n = −1,0,+1)
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Fig. 12 Shear stress distribution along inner surface (n = −1,0,+1)

Fig. 13 Radial displacement distribution along inner surface (n = −1)

Fig. 14 Circumferential stress distribution along middle surface (n = −1)
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In a similar manner, the distribution of the circumferential stress in the inner surface is illustrated in

Fig. 7. As this figure suggests, the greater the tapering angle, the greater the circumferential stress.

The distribution of shear stress is shown in Fig. 8. According to this figure, the shear stress at

points away from the boundaries is insignificant, and at boundary layers the changes in tapering

angles do not have a significant bearing on the shear stress. The distribution of axial displacement

for different values of n has been shown in Fig. 9. In the lower boundary, the difference between

homogenous and nonhomogenous materials is significant. As the value of n increases, the axial

displacement decreases.

The distribution of radial displacement for different values of n is shown in Fig. 10. The

homogenous and nonhomogenous materials behave differently along the cone axis. In the lower

boundary, the difference between the homogenous and nonhomogenous materials is significant. As

the value of n increases, the radial displacement decreases.

The distribution of circumferential stress for different values of n is shown in Fig. 11. The

homogenous and nonhomogenous materials behave differently along the cone axis. As the value of

n increases, the circumferential stress decreases.

Fig. 12 shows the distribution of shear stress for different values of n. The shear stress at points

away from the boundaries at different layers is the same and trivial. However, at points near the

boundaries, the stress is significant.

Radial displacement and circumferential stress distributions are obtained using FSDT (analytical

solution) are compared with the solutions of finite element method (FEM) and are presented in the

form of graphs in the Figs. 13 and 14.

7. Conclusions

In the present study, making use of the FSDT, the analytical solution of thick isotropic FGM

conical shells has been presented. The equilibrium equations, the energy principle and the FSDT,

have been derived. The system of ordinary differential equations which are ordinary and have

variable coefficients has been solved analytically, by using the MAM of the perturbation theory.

The axial displacement in thick conical shells at the boundaries depends on both length and radius

whereas at points away from the boundaries, it depends on the length rather than the radius. The

radial displacement at all points in a conical shell depends both on the radius and the length. The

circumferential stress at different layers depends on the radius and the length. The greatest values of

stress and displacement are observed in the inner surface. The shear stress at boundary layers is

significant while at points away from the boundaries it is just the opposite. The axial displacement,

radial displacement, and circumferential stress depend heavily on tapering angles and any change in

the tapering angle leads to a change in them; while this is not the case for shear stress. As the value

of nonhomogenous constant n increases, the axial displacement, the radial displacement and

circumferential stress decrease. For the axial displacement, the homogenous and nonhomogenous

materials behave the same and converge along the cone axis; whereas for the radial displacement

and circumferential stress, these materials behave differently along the cone axis. The difference

between homogenous and nonhomogenous materials is significant in the lower boundary for both

the axial and radial displacements. In addition, for a comparative study, a geometry specimen was

modeled using a commercial finite elements code, ANSYS 12 and good agreement was found

between the analytical solutions (FSDT) and the solutions carried out through the FEM.
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Appendix

Analytical solution for n = −1

In this case, the modulus of elasticity is as follows

(A1)

Forces and moments are obtained as follows

(A2)

 (A3)

 

(A4)

(A5)

where

(A6)

Set of differential equations could be derived as follows

(A7)

where the coefficients matrices , and force vector  are as follows
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 (A8)

 (A9)

 (A10)

 (A11)

 (A12)

Taking du/dx as v, thus, set of differential equations could be derived as follows

 (A13)

where the coefficients matrices , and force vector {F} are as follows
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 (A14)
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