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Abstract. A fast precise integration method (FPIM) is proposed for solving structural dynamics
problems. It is based on the original precise integration method (PIM) that utilizes the sparse nature of the
system matrices and especially the physical features found in structural dynamics problems. A physical
interpretation of the matrix exponential is given, which leads to an efficient algorithm for both its
evaluation and subsequently the solution of large-scale structural dynamics problems. The proposed
algorithm is accurate, efficient and requires less computer storage than previous techniques.
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1. Introduction

The dynamic responses of structural problems are usually analyzed by means of numerical

integration methods (Bathe and Wilson 1976). In order to achieve stable and accurate solutions with

reasonable computational effort, a careful choice of time step is required, based on the natural

periods of the structures and the variation of the external loading. For linear structural dynamics

problems, the most popular and effective way of computing the dynamic responses are the

Newmark (1959) and Runge-Kutta (Hairer et al. 1993, Hairer and Wanner 1996, Hairer et al. 2006)

methods. Both approaches require the use of small time steps to achieve high precision or good

stability. Alternative ways of establishing the dynamic response are to use the precise integration

method (PIM) (Zhong and Williams 1994, Zhang et al. 2001, Zhong 2004) or the scaling and

squaring method (SSM) (Moler and Loan 1978, 2003). Both of these methods rely on the accurate

computation of the matrix exponential, but PIM only computes the incremental part, with the result
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that stability and accuracy are improved. In general, PIM is very accurate and allows the use of

larger time steps when computing the dynamic response of structural systems.

 Lin et al. (1995) extended PIM to handle more general loading forms. Gu et al. (2001) avoided

the inversion of the system matrix by transforming the governing equations of the original PIM into

a homogeneous form, at the expense of expanding the dimension of the problem. Wang and Au

(2007) avoided the inversion by instead using Crout decomposition.

PIM has been applied to: random response analysis of structural problems (Lin et al. 1997, Leung

2001); to solving time-dependent partial differential equations (Zhong et al. 1996); to computing the

Floquet transition matrix (Cai et al. 2001); to solving dynamic elastic-plastic hardening and

softening problems (Zhang et al. 2003); to solving nonlinear transient heat conduction problems

(Chen et al. 2001); to solving nonlinear partial differential equations (Mei et al. 2005); to

calculating the electromagnetic transients in single-phase non-uniform transmission line (Jia et al.

2008) and; to solving singularly perturbed boundary-value problems (Fu et al. 2010).

Some modified PIMs have been proposed to reduce the computational effort, as follows. Shen et

al. (1995) improved the efficiency of PIM by using a parallel computation method. Fung (1997)

presented a modified PIM which can halve the computational effort by using step-response and

impulsive-response matrices and by considering the symmetry of the matrices. The numerical

stability and the computation accuracy of PIM were discussed in detail by Wang and Au (2006).

The Krylov subspace method has been applied to modify the original PIM in order to improve its

computational efficiency (Fung 2006). A modified precise integration methods based on Lagrange

piecewise interpolation polynomials is proposed to transform the non-homogeneous initial system

into the homogeneous dynamic system without dimensional expansion. This method avoids the

matrix inversion operation and is a general homogenized high-precision direct integration scheme

(Wang and Au 2009). Finally, a precise integration method using the Ritz vectors and a modified

Krylov precise integration method are presented to improve the computational efficiency (Wang

2011). However, for large-scale systems, computing the matrix exponential can still be time

consuming and so there is scope for improving the efficiency of PIM, as follows.

The theory developed herein seeks to reduce the computational effort involved in establishing the

matrix exponential of large structural systems. It is based on PIM and utilizes both the special

nature of the system and the fact that the speed of energy propagation within the system is finite.

Importantly, physical interpretation of the matrix exponential leads to the conclusion that, contrary

to mathematical expectation, it has the form of a sparse matrix. In turn, this leads to an efficient and

accurate algorithm for computing the dynamic response of large structural systems.

2. PIM for structural dynamics problems

Suppose that the stiffness, damping and mass matrices of the structural system are K, C and M,

respectively, then the motion equation can be written as

(1)

in which  is the external force vector. Eq. (1) can then be written in state space form as

(2)
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where

(3)

and  is the momentum. 

The Newmark (Newmark 1959) and Runge-Kutta (Hairer et al. 1993, Hairer and Wanner 1996,

Hairer et al. 2006) methods are the most popular ways to integrate Eq. (1) or (2). However, they

both require small time steps to achieve high precision or good stability. Alternative methods are

PIM (Zhong and Williams 1994, Zhang et al. 2001, Zhong 2004) and SSM (Moler and Loan 1978,

2003), which both require accurate computation of the matrix exponential. However, for large-scale

dynamics systems, matrix exponentiation is very time consuming. In the remainder of this section,

the ideas underpinning the original development of PIM are reviewed, while in Section 3 an

efficient version of PIM is proposed for performing fast matrix exponentiation.

For numerical integration, the time domain is divided into a series of time intervals with equal

time step η, i.e.

 (4)

If the state vector in time tk is represented as

(5)

The solution of Eq. (2) can be given by the following equation

(6)

in which

 (7)

where T defines the exponential of matrix Hη. From Eq. (6), it is clear that T and the time step

integration need to be computed efficiently and accurately. In the latter case, the integration can

often be achieved analytically. For example, if the external force is a polynomial in the time step,

i.e., , Eq. (6) can be written as

(8)

in which

, (9)
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where matrices  and  are the sub-matrices of T, i.e.

(10)

If the external force is harmonic with time, i.e., , Eq. (6) can be written as

(11)

in which .

For the two common cases above, computing T efficiently and accurately is clearly the key issue

when computing dynamic responses. This is most likely to be achieved using either PIM (Zhong

and Williams 1994, Zhang et al. 2001, Zhong 2004) or SSM (Moler and Loan 1978, 2003). Based

on the addition theorem, SSM gives a simple and effective procedure for computing T, but it can be

inaccurate in certain situations. On the other hand, PIM, which is also based on the addition

theorem, further uses the idea of only computing the incremental part of T in order to improve the

computational precision. 

The implementation of PIM for computing the exponential of matrix H and time step η can be

given as follows (Zhong and Williams 1994, Zhang et al. 2001, Zhong 2004). Let

(12)

in which N is a integer. If N is big enough, the norm of H' is very small, and the exponential of

matrix H' can be computed approximately by the Taylor series of order q, i.e.

(13)

Φ is now divided into two parts

(14)

and the addition theorem is applied to the incremental part R to give

(15)

The exponential of matrix Hη can now be obtained by performing Eq. (15) N times and finally

adding the unit matrix to R. 

PIM is an accurate algorithm that is easy to program. However, the computational effort of PIM is

, which can therefore be very time consuming for large systems. In the next section, the

special form of the matrix exponential in dynamics problems is utilized to yield a fast precise

integration method (FPIM) for its computation.
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3. FPIM for large-scale dynamics systems

For large-scale structural dynamics systems, it is well known that the mass, stiffness and damping

matrices, and hence matrix H, are sparse. However, the exponential of a general sparse matrix is not

sparse mathematically. Therefore, the direct application of PIM cannot use the sparse property of

matrix H. In this section, by recognizing the physical nature of the structural dynamics system, it is

demonstrated that the matrix exponential is in fact physically sparse. By using this property, an

FPIM algorithm is proposed to compute the matrix exponential efficiently.

If there are no external forces, Eq. (6) can be written in block form as

(16)

Eq. (16) shows the physical meaning of the matrix exponential, i.e., if the initial displacement of the

j-th DOF is one, the initial displacement of the remaining DOFs are zero and the initial momentums

of all DOFs are zero. Furthermore the displacement and momentum responses of the i-th DOF at

 are  and , respectively. In similar vein, if the initial displacements of all

DOFs are zero, the initial momentum of the j-th DOF is one and the initial momentums of other

DOFs are zero. The displacement and momentum responses of the i-th DOF at  are then

 and , respectively.

It is well known that the propagation speed of the energy in a one-dimensional rod is  and

so is finite. The propagation speed of the energy in a structural dynamics system is similarly finite,

with the result that within a small time step, the excitation of a specific DOF can only affect the

adjoining DOFs of the system. Thus from the physical meaning of the matrix exponential above,

 and  must be sparse matrices and can be stored conveniently as such in coordinate

list (COO) format.

For a given matrix H and time step η, the procedure of the original PIM for computing the matrix

exponential can be given as follows. Initially values are allocated to two integers, N and q, using a

procedure described in detail by Moler and Loan (1978, 2003), Zhang et al. (2001). These values

ensure that the relative error of  is less than a predefined tolerance. Next we let 

and compute R according to Eq. (14). Eq. (15) is then processed N times and the final step is to add

the unit matrix to R, which yields the required matrix exponential.

Despite the fact that matrix H is sparse, matrix R when computed from Eq. (14) will become a

dense matrix. Moreover, following each evaluation of Eq. (15), R becomes more dense. However, if

we observe matrix R carefully, it can be seen that many elements of R are very close to zero.

However, matrix R corresponds to the exponential of a matrix evaluated at small time steps and so

according to the physical meaning of the matrix exponential, it must be a sparse matrix. The small

elements of matrix R must therefore be caused by numerical errors, and hence should be zeros.

Therefore, in the direct application of PIM, many elements that should be zero are involved in the

matrix multiplication, with the resulting waste in computational effort.

The arguments above necessitate a procedure for transforming the dense matrix R to sparse form,

which in turn leads to an algorithm (FPIM) for computing the matrix exponential efficiently.

The detailed procedure for transforming R is as follows. The physical meaning of R enables it to

be divided into the four sub-matrices R11, R12, R21 and R22. Now calculate α11, the maximum

absolute value of all elements comprising R11, and set a tolerance, typically . Then, if the
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absolute value of any element in R11 is less than , set the element to zero. By using this

procedure, R11 is transformed into a sparse matrix and so can be stored in sparse form. The matrices

R12, R21 and R22 can then be transformed in similar fashion.

Therefore, for given matrix H and time step η, the following FPIM can be used to compute the

matrix exponential.

The algorithm of FPIM:

1. Store the matrix H in sparse format;

2. Determine two integers N and q (Moler and Loan 1978, 2003, Zhang et al. 2001);

3. Let ;

4. ;

5. Transform matrix R to sparse format;

6. Perform the following steps

For iter = 1 : N

  R = R * (R + 2 * I);

  Transform matrix R to sparse format;

End

7. Adding matrix R to the unit matrix gives the exponential of matrix Hη.

Comparing the procedure of FPIM and PIM, it can be see that the only difference between them

is the addition of a procedure for transforming matrix R to sparse form. However, this simple

addition can improve significantly the computational efficiency, as shown by the comparisons given

in the numerical examples.

4. Matrices related to external forces

In addition to calculating the matrix exponential, matrices related to the external forces must often

be computed. For example, if the external forces are polynomial, the matrix  defined by Eq. (9)

should be computed. The method is shown below and is easily adapted for other types of external

force. 

As in the case of the matrix exponential, the physical meaning of the matrix  is given first.

From Eq. (9), the  matrix  can be written in block form as

(17)

According to Eq. (8), if the initial displacements and momentums are all zero and the external force

 is applied at the j-th DOF, after one time step, the displacement and momentum

responses of the i-th DOF are  and , respectively.

Adopting a similar approach to that used when considering the matrix exponential and noting that
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the propagation speed of energy is finite, matrices  and  are also sparse matrices. In fact,

for a linear system, the propagation speed of the energy is only related to the structure itself and is

not related to the initial conditions or external forces. Therefore, the structure of the matrix related

to external force is the same as the matrix exponential and can be computed using equivalent

procedures.

5. Numerical examples

Example 1: Consider the mass-spring-damper system shown in Fig. 1. The system consists of

2001 masses and 2002 springs, and the mass and the stiffness are  and k = 10(N/m),

respectively. The mass matrix M and the stiffness matrix K can be formed easily, and the damping

matrix is taken as C = 0.05K. The initial displacement of node 1001 is one; the initial displacement

of all other nodes is zero; the initial momentum of all nodes is zero and there are no external forces.

The interval of integration is from 0 to 1000(s).

The dynamic responses are computed using four methods: the proposed method (FPIM), PIM, the

variable step Runge-Kutta method (R-K) (Hairer et al. 1993, Hairer and Wanner 1996, Hairer et al.

2006) (ODE45 in MATLAB) and the Newmark method (Newmark 1959). A 1(s) time step is used

for both FPIM and PIM, three different time steps of 0.1(s), 0.01(s) and 0.001(s) are used for the

Newmark method.  is used for both the absolute and relative tolerances in ODE45. The

numerical results computed using ODE45 are used as the reference solution. The relative errors of

displacement and momentum are defined, respectively, as

,  (18)

in which yRK and pRK are the displacements and momentums of all DOFs at a given time computed

using ODE45 and y and p are the displacements and momentums of all DOFs at a given time

computed using FPIM, PIM or the Newmark method. 

For this example, the two values of N and q for FPIM are 12 and 8, respectively. The

displacements and momentums of all nodes at 1000(s) computed using FPIM are given in Fig. 2.

The relative errors of displacement and momentum are given in Fig. 3, in which the solids lines

with circle and “x” are the relative errors of FPIM and PIM, respectively, and the solid lines with

right triangle, left triangle and down triangle are the relative errors of the Newmark method with

time step 0.1(s), 0.01(s) and 0.001(s), respectively. Fig. 3 shows that both FPIM and PIM are very

accurate, with the precision of FPIM being very close to that of PIM, which shows the validity of

the proposed method. Fig. 3 also shows that the Newmark method with three smaller time steps

does not achieve the precision of FPIM.

The CPU times for FPIM, R-K, PIM and the Newmark method are given in Table 1. It is clear

Ψk
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Ψk

21

m 1 kg( )=

10
13–

ed

y yRK–
2

yRK 2

----------------------= em

p pRK–
2

pRK 2

----------------------=

Fig. 1 A mass-spring-damper system 
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that FPIM is significantly more efficient than the original PIM, R-K and Newmark methods.

Example 2: The dynamic response of a plane stress problem is now considered. The structure

consists of two different materials with the same density  and Poisson’s ratio

, but different Young’s modulus  and . The

ρ 8 10
3

kg/m
3( )×=

µ 0.2= E1 3 10
11

N/m( )×= E2 2 10
11

N/m( )×=

Fig. 2 Results from the proposed method for the displacement and momentum responses at t = 1000(s)

Fig. 3 The relative errors of the results for the FPIM (circle), PIM (x-mark) and Newmark (right triangle for
time step 0.1, left triangle for time step 0.01 and down triangle for time step 0.001) methods for
Example 1

Table 1 Comparison of CPU times for Example 1

FPIM R-K PIM
Newmark

0.1 0.01 0.001

CPU time (s) 2.6 63.1 153.3 3.8 35.8 353.1
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structure is clamped at the left and right ends, see Fig. 4.

The structure is discretized using FEM and the mesh is shown in Fig. 5. The whole structure has

12800 elements, 12960 DOFs and a lumped mass matrix is used. The initial displacements and

momentums of all DOFs are zero, and constant horizontal and vertical external forces of 

are applied at all nodes.

The interval of integration is from 0 to , and the dynamic responses are computed

using FPIM, R-K and the Newmark method, respectively. Time steps of  and  are

used for FPIM and the Newmark method, respectively, while  is used for both the absolute

and relative tolerances in the R-K method (ODE45).

10
5

N( )

5 10
3–

s( )×
10

6–
s( ) 10

7–
s( )

10
13–

Fig. 4 The plane stress problem 

Fig. 5 The FEM mesh
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For this example, the two values of N and q for FPIM are 28 and 9, respectively. The relative

errors of the displacement and momentum computed using Eq. (18) are given in Fig. 6, in which

the solid lines with circle and square denote FPIM and the Newmark method, respectively. The

Fig. 6 The relative errors of the results for the FPIM (circle) and Newmark (square) methods for Example 2

Table 2 Comparison of CPU times for Example 2

FPIM R-K Newmark

CPU time (s) 955.9 4975.8 4253.8

Fig. 7 The three dimensional hollow cylinder and FEM mesh
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figure shows that FPIM is again very accurate and that the Newmark method, even with a ten times

smaller time step, does not achieve the precision of FPIM.

The CPU times for FPIM, R-K and the Newmark method are given in Table 2, which shows that

the proposed method is much more efficient than the R-K and Newmark methods. 

Example 3: The three dimensional dynamic response of the hollow cylinder shown in Fig. 7(a) is

now considered. The density, Poisson’s ratio and Young’s modulus are given by

This structure is discretized using FEM and the mesh is shown in Fig. 7(b). All DOFs

corresponding to the nodes at the base are fixed. The whole structure has 34068 DOFs and a

lumped mass matrix is used. The initial displacements and momentums of all DOFs are zero and

external forces of  are applied at all nodes in the three directions.

The interval of integration is from 0 to 0.04(s), and the dynamic responses are computed once

more using FPIM, R-K and the Newmark method, respectively. As before, time steps of 

and  are used for FPIM and the Newmark method, respectively, while  is used for

both the absolute and relative tolerances in the R-K method (ODE45).

For this example, the two values of N and q for FPIM are 23 and 8, respectively. The relative

errors of displacement and momentum computed using Eq. (18) are given in Fig. 8, in which the

solid lines with circle and triangle denote FPIM and the Newmark method, respectively. The figure

also clearly demonstrates the effect of variable external forces and the unrivalled precision of FPIM,

ρ 2 10
3

kg/m
3( ),  µ× 0.2,  E 2 10

10
N/m( )×= = =

10
6

cos 20t( ) sin 20t( )+[ ] N( )

10
6–

s( )
10

7–
s( ) 10

13–

Fig. 8 The relative errors of the results for the FPIM (circle) and Newmark (triangle) methods for Example 3 

Table 3 Comparison of CPU times for Example 3

FPIM R-K Newmark

CPU time (s) 12470.3 146360.4 82863.7
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which is more accurate than the Newmark method, even when a smaller time step is used.

The CPU times for FPIM, R-K and the Newmark method are given in Table 3, which again

shows that FPIM is more efficient than both the R-K and Newmark methods.

6. Conclusions

A fast precise integration method (FPIM) for computing the responses in structural dynamics

problems has been proposed. By using the energy propagation feature of the system, it is shown that

there are many zero elements in the resulting matrix exponential. This leads to an efficient and

accurate algorithm for both its evaluation and subsequently the solution of large scale structural

dynamics problems. Importantly, the method avoids computing and sorting many zero elements,

with the result that it is computationally efficient in terms of both time and storage. The numerical

examples illustrate that the proposed method is fast and accurate.
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