
Structural Engineering and Mechanics, Vol. 42, No. 6 (2012) 849-866 849

Assessment of non-prismatic beams having symmetrical 
parabolic haunches with constant haunch length 

ratio of 0.5 

S. Bahadir Yuksel*

Department of Civil Engineering, Selcuk University, Konya 42075, Turkey 

(Received January 6, 2011, Revised May 1, 2012, Accepted May 8, 2012)

Abstract. Single span historic bridges often contain non-prismatic members identified with a varying
depth along their span lengths. Commonly, the symmetric parabolic height variations having the constant
haunch length ratio of 0.5 have been selected to lower the stresses at the high bending moment points and
to maintain the deflections within the acceptable limits. Due to their non-prismatic geometrical
configuration, their assessment, particularly the computation of fixed-end horizontal forces (FEFs) and
fixed-end moments (FEMs) becomes a complex problem. Therefore, this study aimed to investigate the
behavior of non-prismatic beams with symmetrical parabolic haunches (NBSPH) having the constant
haunch length ratio of 0.5 using finite element analyses (FEA). FEFs and FEMs due to vertical loadings
as well as the stiffness coefficients and the carry-over factors were computed through a comprehensive
parametric study using FEA. It was demonstrated that the conventional methods using frame elements can
lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures.
Despite the robustness of FEA, the generation of FEFs and FEMs using the nodal outputs of the detailed
finite element mesh still remains an intricate task. Therefore, this study advances to propose effective
formulas and dimensionless estimation coefficients to predict the FEFs, FEMs, stiffness coefficients and
carry-over factors with reasonable accuracy for the analysis and re-evaluation of the NBSPH. Using the
proposed approach, the fixed-end reactions due to vertical loads, and also the stiffness coefficients and the
carry-over factors of the NBSPH can be determined without necessitating the detailed FEA. 

Keywords: historic bridge; non-prismatic member; finite element analysis; parabolic haunch; stiffness
factor; fixed-end reactions 

1. Introduction

The girders used for the long spans of the bridges and the buildings are designed to be non-
prismatic by means of variable depth along the span length. Variable depth variations are commonly
preferred to lower the stresses at the high bending moment regions and to maintain the deflections
within acceptable limits. The non-prismatic structural members commonly have haunches, which
can be stepped, tapered, or in parabolic shape. As depicted in Fig. 1, in general, the single span
reinforced concrete historic bridges have symmetrical parabolic haunches with the constant haunch
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length ratio (α) of 0.5 but varying haunch depth ratios (R) (see Fig. 2 for detailed description of α
and R).

Due to their non-prismatic geometrical configuration, the analysis and re-evaluation of the
NBSPH, particularly the computation of FEFs and FEMs becomes a difficult task. Different
approaches were proposed for the analysis of non-prismatic members in the literature. In 1958,
Portland Cement Association issued the “Handbook of Frame Constants (PCA 1958) including a
series of tables containing stiffness coefficients, carry-over factors and FEM coefficients for
commonly used non-prismatic members. Despite the crude assumptions embedded in PCA
methodologies, these stiffness coefficients, carry-over factors and FEM coefficients have still been
used in conventional methods since 1958 for the analyses of non-prismatic members (Maugh 1964,
Timoshenko and Young 1965, Tartaglione 1991, Hibbeler 2002) while utilizing the moment
distribution, slope deflection and the matrix displacement methods.

The elastic modeling of the non-prismatic members evolved after the publication of the PCA
handbook of the frame constants (PCA 1958) and caught the attention of a few researchers in the
last four decades (Tena-Colunga 1996). Medwadowski (1984) solved the bending problem of the
non-prismatic shear beams in terms of a displacement function, which is based on the calculus of
variations. Vanderbilt (1978), Funk and Wang (1988) calculated the stiffness matrix and fixed-end
forces by dividing the non-prismatic member into sub-elements. Brown (1984) presented a method
in which the approximate interpolation functions consistent with the beam theory and the virtual
work principle are used to obtain the stiffness matrix for tapered beams. Eisenberger (1985, 1991),
Friedman and Kosmatka (1992a, b) derived stiffness matrices for members having linear and

Fig. 1 Typical single span reinforced concrete historic bridges with symmetrical parabolic haunches having
the constant haunch length ratio of 0.5

Fig. 2 Geometric parameters of the typical non-prismatic beams having symmetric parabolic haunches
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parabolic variations using beam theories. Al-Gahtani (1996) derived the stiffness matrix by using
differential equations and the boundary integral method, and determined fixed-end forces for
distributed and concentrated member loads. Tena-Colunga (1996) derived the stiffness matrix for
linearly tapered members with rectangular, circular, and square cross sections, while accounting for
shear deformations. In all of the references cited above, the analysis is based on the formulas
derived for prismatic members where the centroidal axis is a straight line, while in non-prismatic
members either the axis or its slope is discontinuous. Based on FEA results, El Mezaini et al.

(1991), Balkaya (2001), Yuksel (2009a) proved that the conventional solution techniques of the non-
prismatic structures lead to erroneous results and the deviations reach to unacceptable levels for
these types of structures especially with deep haunches. Because of arching action in non-prismatic
members, the change or discontinuity of the centroidal axis produces axial forces under vertical
loadings when the ends of non-prismatic members are restrained. This creates a coupling between
the bending moments and axial forces. Unless the detailed finite element modeling is utilized, the
conventional methods using frame elements become deficient in computing correct member forces
due to progressive change in centroidal axis associated with the non-prismatic sections.

The objective of this study is to investigate the behavior of the non-prismatic beams with
symmetrical parabolic haunches having constant haunch length ratios of α = 0.5. In this conjunction,
the present study carried out many FEA for various NBSPH. To produce benchmark results for the
FEA, four-node isoparametric plane-stress finite elements with two translational degrees of freedom
and one rotational degree of freedom per node were utilized for modeling various non-prismatic
beams. FEFs and FEMs due to vertical loadings as well as stiffness coefficients and carry-over
factors were computed by varying the depths of the haunches. Alternatively, the design formulas
and the dimensionless estimation coefficients were proposed based on the comprehensive parametric
study using two-dimensional plane-stress FEA. Using the proposed approach, the evaluation of
NBSPH can be achieved without necessitating detailed FEA. Additionally, the robust results of FEA
allowed examining the sources and magnitudes of the errors in the conventional frame analysis.

2. Assumptions for the development of the analytical model and the parametric

study

The non-prismatic beams having symmetric parabolic variable depths with haunch length ratios of
α = 0.5 were generated as the model structures of the analysis. The geometric parameters of the
typical NBSPH are presented in Fig. 2; where, L is the span length, b is the width, h is the mid-
span depth or the smallest depth, α is the haunch length ratio (haunch length divided by the total
length of the member) and R is the haunch depth ratio. In all of the analyses, the beam lengths (L =
10 m), the beam widths (b = 0.5 m) and the mid-span depths (h = 1 m) of the non-prismatic
elements were taken as constant while the other values were changed to achieve the parameter
values. The non-prismatic beam members of rectangular cross section (b × h) and length L were
assumed to be made up of homogeneous, isotropic and linearly elastic material. The modulus of
elasticity (E) and the Poisson’s ratio (ν) were taken as 3 × 107 kN/m2 and 0.2, respectively. The
single span reinforced concrete historic bridges were commonly constructed with the haunch length
ratio of α = 0.5 with rectangular cross-section, but they have different haunch depth ratios. For that
reason, to be able to simulate the behavior of the single span reinforced concrete historic bridges,
the parametric studies were performed considering a constant haunch length ratio of α = 0.5 with
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varying R in the range of 0.0 to 4.0 with 0.1 increments. The combination of all these values
resulted in 40 NBSPH different from each other in geometry. In all of the cases, the effects of shear
deformations were considered, and the fixed-end conditions were assumed at the supports. The
NBSPH having deep haunches undergo significant shear deformations. Thus, the effect of shear
deformation in the NBSPH having deep haunches is of greater importance than in conventional
prismatic beams. Consequently, the effect of shear deformations was taken into account in deriving
the fixed-end reactions, stiffness coefficients and carry-over factors of the NBSPH.

The NBSPH are submitted to static-elastic analysis. The applied vertical loads at the top surface
occur as the uniformly distributed vertical load (w = 1 kN/m2) and the point load (P = 10 kN) at the
mid-span of the NBSPH. The point load (P = 10 kN) is also applied at 0.3 × L and 0.1 × L from the
left end of the NBSPH. In addition to the applied point loads at the top surface, the self weights of
the NBSPH were also applied. Fig. 3 illustrates the FEFs and FEMs at the centroids of the end-
sections of the NBSPH due to vertical loadings. The FEFs and FEMs of the NBSPH were obtained
with the aid of FEA. The results were next used in developing the design equations and the
dimensionless estimation coefficients. In addition, FEA are performed to determine the bending
stiffness coefficients and the carry-over factors of the NBSPHs. In all the analyses, the effect of
shear deformations is also considered.

3. Finite element modeling of the NBSPH

The behavior of the NBSPH was investigated by developing two dimensional finite element
models using SAP2000 (CSI 2007). A typical finite element model for the NBSPH with
geometrical parameters of α = 0.5 and R = 3 can be seen in Fig. 4. To produce benchmark results
for the FEA, four-node isoparametric plane stress finite elements with two translational degrees of
freedom and one rotational degree of freedom per node were utilized for the modeling of various
NBSPH. In order to satisfy the adequate accuracy for the results of the FEA, each NBSPH model
was sub-divided into 8000 finite elements as shown in Fig. 4. Especially, the modeling of the non-
prismatic members with parabolic haunches is complicated by the fact that the bottom face of these
members has parabolic shape variations. Most commonly used commercial software (CSI 2007)
does not have automated parabolic mesh generation feature. For that reason, a preprocessor was
prepared to be able to generate the finite element meshes of the NBSPH. 

The results obtained by the FEA can be accepted as the real elastic values. Discontinuity of the

Fig. 3 Fixed-end reactions at the ends of the non-prismatic beams having symmetric parabolic haunches
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centroidal axis, local stress concentrations, nonlinear stress distributions and existence of null areas
that reduces the member stiffness are taken into consideration in finite element models. Since the
stress concentrations, non-uniform stress distributions, the coupling between axial forces and
moments can not be considered in the classical beam theory, the approximate results obtained from
the beam theory deviated from the real elastic values. Fig. 5 shows the axial stress contours of a
NBSPH (R = 3) due to the uniformly distributed vertical loading of w = 1 kN/m in which the
maximum stress reaches up to 0.70 kN/m at the mid-span. The stress distributions occurred so
complex in the NBSPH subjected to vertical loadings, which require special attention.

The FEFs and FEMs due to vertical loadings as well as the stiffness coefficients and the carry-
over factors of the NBSPH were obtained using the FEA. The computation of the stress values or
the nodal forces is not sufficient for the calculation of the fixed-end reactions. Despite the
robustness of the finite element modeling, the generation of FEFs and FEMs from the nodal outputs
of the detailed mesh still remains as an intricate task. The FEFs and FEMs were calculated using
the nodal force outputs of the FEA proposed by Bathe (1996) and applied as in the previous finite
element studies (Horrowitz 1997, Yuksel 2008, 2009b, c, Yuksel and Arikan 2009). A postprocessor

Fig. 4 Typical finite element mesh of the NBSPH having the haunch depth ratio of R = 3

Fig. 5 Axial stress contours obtained by FEA due to the uniformly distributed vertical load of w = 1 kN/m
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was developed to sum the element nodal forces at the predetermined sections in order to be able to
calculate the fixed-end reactions.

4. End-actions for the restrained non-prismatic members subjected to vertical

loadings 

A restrained member is the one whose ends are restrained against the translational and rotational
displacements, as in the case of a fixed-end beam. Many classical books on structural analysis
(Maugh 1964, Timoshenko and Young 1965, Tartaglione 1991, Hibbeler 2002, Weaver and Gere
1990) have given the fixed-end moments reactions for the prismatic and non-prismatic members
under vertical loadings. If a prismatic member is subjected to vertical loads, only the FEMs will
occur at the ends. However, the FEFs are developed in addition to the FEMs at the ends of the non-
prismatic members under vertical loading conditions. The continuous change in the centroidal axis
(see Fig. 2) associated with the non-prismatic sections causes a strong coupling between the
bending moments and the axial forces.

As shown in Fig. 3, the end reactions for the restrained non-prismatic members subjected to
vertical loadings are the reactive actions (FEFs and FEMs) developed at the ends.

The following symbols are used in this paper to be able to distinguish the different types of fixed-
end reactions:

FEF = Fixed-end horizontal forces at the centroids of the end sections of the NBSPH due
to vertical loadings;

FEM = Fixed-end moments at the centroids of the end sections of the NBSPH due to
vertical loadings;

FEFW = Fixed-end horizontal forces at the centroids of the end sections of the NBSPH due
to uniformly distributed vertical loads;

FEMW = Fixed-end moments at the centroids of the end sections of the NBSPH due to
uniformly distributed vertical load;

FEF0.5L-P = Fixed-end horizontal forces at the centroids of the end sections of the NBSPH due
to the point loads at the mid-span;

FEM0.5L-P = Fixed-end moments at the centroids of the end sections of the NBSPH due to the
point loads at the mid-span;

FEF0.3L-P = Fixed-end horizontal forces at the centroids of the end sections of the NBSPH due
to the point load at 0.3 × L from the left end;

FEM0.3L-P-L = Fixed-end moment at the centroid of the left end of the NBSPH due to the point
load at 0.3 × L from the left end;

FEM0.3L-P-R = Fixed-end moment at the centroid of the right end of the NBSPH due to the point
load at 0.3 × L from the left end;

FEF0.1L-P = Fixed-end horizontal forces at the centroids of the end sections of the NBSPH due
to the point load at 0.1 × L from the left end;

FEM0.1L-P-L = Fixed-end moment at the centroid of the left end of the NBSPH due to the point
load at 0.1 × L from the left end;

FEM0.1L-P-R = Fixed-end moment at the centroid of the right end of the NBSPH due to the point
load at 0.1 × L from the left end;

FEFOWN = Fixed-end horizontal forces at the centroids of the end sections of the NBSPH due
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to its own weight;
FEMOWN = Fixed-end moments at the centroids of the end sections of the NBSPH due to its

own weight.

5. Evaluation of the FEA results and comparison with the frame element analyses

results

The fixed-end forces (FEFW, FEF0.5L-P, FEF0.3L-P, FEF0.1L-P, FEFOWN), fixed-end moments (FEMW,
FEM0.5L-P, FEM0.3L-P-L, FEM0.3L-P-R, FEM0.1L-P-L, FEM0.1L-P-R, FEMOWN), stiffness coefficients and
carry-over factors of the NBSPH were obtained using the FEA. The plots were presented for the
variations in the FEFs, FEMs, stiffness coefficients and carry-over factors as the functions of the
haunch depth ratios varying in the range of 0.0 to 4.0 with 0.1 intervals (R = 0.0, 0.1, 0.2, ..., 4.0).

The results of the FEA performed to investigate the values of FEFW, FEF0.5L-P, FEF0.3L-P, FEF0.1L-P

and FEFOWN were presented in Fig. 6(a), Fig. 7(a), Fig. 8(a), Fig. 8(b) and Fig. 11(a), respectively.
The relationships between the FEFs values and the haunch depth ratios are non-linear. The
magnitudes of FEFW, FEF0.5L-P, FEF0.3L-P, FEF0.1L-P and FEFOWN increase rapidly with the haunch
depth ratios up to a certain limit, and then they start to decrease slightly. It is proven from FEA
results that significant amount of horizontal compressive forces occur at the centroids of the end
sections of the NBSPH due to vertical loadings. Because of the arching action, the continuous
change of the centroidal axis orientation produces FEFs in addition to FEMs under vertical loading
conditions, when the ends of the NBSPH are completely restrained. It is obvious that the continuous
change of the centroidal axis of the NBSPH cause strong coupling between bending moments and
axial forces. 

The analytical approaches and the traditional beam theories often need to introduce assumptions to
simplify the problem and yield an erroneous solution. Unless a detailed finite element modeling was
applied, the conventional methods using frame elements will be deficient in computing these FEFs
due to the progressive changes in the centroidal axis of the non-prismatic sections. Since the FEFs
values are not available in the literature, the FEFs values obtained from the FEA could not be
compared.

NBSPH with small haunch depth ratios, the built-in arch is very shallow so that with a slight axial

Fig. 6 (a) Variation of FEFW obtained from FEA, (b) comparison of FEMW values obtained by the FEA with
those of PCA (1958)
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deformation it will get flat producing a small amount of axial force. NBSPH continues to deform
under vertical loadings at the top surface as prismatic beams. As the haunch depth ratio increases,
the arch depth increases requiring more axial deformation to get flat, hence, more axial trust is
produced. When the arch deep is enough so that it cannot be completed flattened with axial
deformations, the horizontal thrust starts to decrease as arch height increases similar to regular
arches (El Mezaini et al. 1991, Balkaya 2001, Yuksel 2009b, c).

Fig. 6(b) and Fig. 7(b) compare the FEMW and FEM0.5L-P values obtained from FEA and those
obtained from PCA (1958). The results of the finite element analyses and the frame element
analysis were denoted as FEA and PCA (1958), respectively. Note that the values in PCA (1958)
are available up to R = 2, hence the PCA values end at R = 2. The FEMW and FEM0.5L-P increase in
a parabolic fashion as haunch depths are increased as the classical Bernoulli-Euler beam theory
modeling (PCA 1958) is considered; in contrast, the FEMW and FEM0.5L-P increase only for the
depth ratio of R = 0.7 in FEA, and then start to decrease for higher depth ratios. The values of
FEMW and FEM0.5L-P of the frame element modeling were determined much higher than the FEMW

and FEM0.5L-P calculated by the FEA for a given haunch depth ratio of R. The deviation in the FEM
values increases as the relative haunch depth ratios increase. 

FEM0.3L-P-L, FEM0.3L-P-R, FEM0.1L-P-L and FEM0.1L-P-R values obtained from the FEA are compared
with the results of the PCA (1958) in Fig. 9(a), Fig. 9(b), Fig. 10(a) and Fig. 10(b), respectively.

Fig. 7 (a) Variation of FEF0.5L-P values obtained from FEA, (b) comparison of the FEM0.5L-P values obtained
from FEA with those of PCA (1958)

Fig. 8 Variation of (a) FEF0.1L-P, (b) FEF0.3L-P values obtained from FEA
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From Fig. 9 and Fig. 10, it can be seen that there are large discrepancies between the results of the
two methods of analyses (FEA and PCA 1958). The FEMs of the frame element modeling were
determined much higher than the FEMs calculated by the FEA for a given haunch depth ratio. The
arching action becomes more important as the haunch depth is increased. Fig. 11(b) shows the

Fig. 9 (a) Comparison of the FEM0.3L-P-L values obtained from FEA with those of PCA (1958), (b)
comparison of the FEM0.3L-P-R values obtained from FEA with those of PCA (1958)

Fig. 10 (a) Comparison of the FEM0.1L-P-L values obtained from FEA with those of PCA (1958), (b)
comparison of the FEM0.1L-P-R values obtained from FEA with those of PCA (1958)

Fig. 11 Variation of (a) FEFOWN, (b) FEMOWN values obtained from FEA
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variation of the FEMOWN values obtained from FEA. FEMOWN values increase in a parabolic fashion
as haunch depth ratios (R) are increased. Since the FEMOWN values are not available in the PCA
(1958), the FEMOWN values obtained from the FEA could not be compared.

The bending stiffness and carry-over factors were obtained from the FEA. By definition, the
bending stiffness of a beam element is the moment required to produce a unit rotation at one end
while all other degrees of freedoms (d.o.f.s) are set to zero. The carry-over factor (C) is the ratio of
the moment developed at the other end to the applied moment. In order to ensure the linear end
rotations, a rigid frame element was attached to one end of the NBSPH as shown in Fig. 12. The
end moments were calculated at the centroids of the end sections of the NBSPH. In FEA, the end
rotations and unit displacements were represented by a set of prescribed nodal displacements. The
deflected shape of 10 m long NBSPH due to unit rotation at the left end is illustrated in Fig. 12. 

The results obtained from the FEA are compared with those of PCA (1958) for different haunch
depth ratios. The comparisons of the plots for the bending stiffness coefficients [K = bending
stiffness / (EI/L)] and the carry-over factors (C) are presented in Fig. 13(a) and Fig. 13(b),

Fig. 12 Deformed shape of the 10 m long NBSPH for bending stiffness analyses

Fig. 13 Comparison of the values of (a) bending stiffness coefficients (K. EI/L), (b) carry-over factors (C)
which were obtained from finite element analyses (FEA) with those of PCA (1958) 
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respectively. The bending stiffness coefficients obtained by FEA were greater than those given in
PCA (1958) for the NBSPH. The arching action increases the bending stiffness and therefore helps
the NBSPH to resist against the rotation near the supports. Most importantly, there was a strong
coupling between the bending moments and the axial forces. The axial forces developed in
restrained NBSPH due to arching action tended to counteract the carried over moment. This factor
causes reduction on the carry-over factor obtained by FEA. This explains the large deviation in
carry-over factors for the NBSPH having deep haunches.

From the above discussion it can be concluded that the fixed-end reactions, the stiffness
coefficients and the carry-over factors given in PCA (1958) publications are in significant error
especially for the members with deep haunches. It is concluded that the deviations reached to
unacceptable levels for non-prismatic beams having deep haunches. The FEMs in PCA (1958) are
generally over-estimated that the stiffness coefficients and the carry-over factors of the beam
theories of PCA (1958) do not satisfy the bending stiffness and the carry-over factors due to
unrestrained axial deformation. The results obtained from the FEA represent the correct ones and
should be used in practice. However, if the member stiffness matrix is to be formed using K and C
factors obtained from FEA, the coupling with axial forces must be considered. 

6. Design formulas and the dimensionless design coefficients 

The design equations and the dimensionless estimation coefficients were developed based on the
results of the extensive parametric FEA with respect to the geometry of the NBSPH. The separate
design equations were proposed for the calculation of the fixed-end reactions due to the uniformly
distributed vertical loads (Eqs. (1) and (2)) the point loads at the mid-span (Eqs. (3) and (4)), the
point loads 0.3 × L from the left end of the NBSPH (Eqs. (5), (6) and (7)), the point loads 0.1 × L

from the left end of the NBSPH (Eqs. (8), (9) and (10)) and the self weights of the NBSPH
(Eqs. (11) and (12)).

Separate design equations were proposed to be able to calculate the FEFs and FEMs of the
NBSPH. The values of dimensionless estimation coefficients in Eqs. (1) to (12) were proposed in
Table 1 and Table 2 for different haunch depth ratios (R). The proposed Eqs. (1) through (12) can
be used to obtain more rigorous estimations for the fixed-end reactions of the NBSPH due to
vertical loadings without necessitating FEA. In this paper, all the estimation coefficients are
dimensionless and were obtained using the FEA. The developed equations for the direct evaluation
of the design forces are as follows.

The fixed-end horizontal forces (FEFW) and the fixed-end moments (FEMW) at the centroids of
the end sections of the NBSPH due to uniformly distributed vertical loadings are given in Eq. (1)
and Eq. (2), respectively

(1)

(2)

where L is the span length and w is the uniformly distributed vertical load. FC(W) and MC(W) are the
estimator coefficients for calculating the FEFW and FEMW, respectively. The values of FC(W) and
MC(W) are given in the second and third columns of Table 1, respectively.

FEFW FC W( ) w× L×=

FEMW MC W( ) w× L
2

×=
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The fixed-end horizontal forces (FEF0.5L-P) and the fixed-end moments (FEM0.5L-P) at the centroids
of the end sections of the NBSPH due to point loads at the mid-span are given in Eq. (3) and
Eq. (4), respectively

FEF0.5L-P = FC(0.5L-P) × P × L (3)

FEM0.5L-P = MC(0.5L-P) × P × L (4)

where P is the vertical point load at the mid-span of the NBSPH. FC(0.5L-P) and MC(0.5L-P) are the
estimator coefficients for calculating the FEF0.5L-P and the FEM0.5L-P, respectively. The values of
FC(0.5L-P) and MC(0.5L-P) are given in the fourth and fifth columns of Table 1, respectively.

The fixed-end horizontal forces (FEF0.3L-P) at the centroids of the end sections, the fixed-end
moments at the centroid of the left end (FEM0.3L-P-L) and the fixed-end moments at the centroid of
the right end (FEM0.3L-P-R) due to the point load at 0.3 × L from the left end of the NBSPH are

Table 1 The values of the estimator coefficients of FC(W), MC(W), FC(0.5L-P), MC(0.5L-P), FC(0.3L-P), MC(0.3L-P-L)

and MC(0.3L-P-R)

R FC(W) MC(W) FC(0.5L-P) MC(0.5L-P) FC(0.3L-P) MC(0.3L-P-L) MC(0.3L-P-R)

0.0 0.0000 0.0836 0.0000 0.1242 0.0000 0.1456 0.0642

0.2 0.1267 0.0887 0.2173 0.1346 0.1520 0.1581 0.0651

0.4 0.1847 0.0913 0.3490 0.1398 0.2343 0.1667 0.0633

0.5 0.2045 0.0920 0.3953 0.1413 0.2608 0.1700 0.0619

0.6 0.2217 0.0924 0.4321 0.1422 0.2804 0.1728 0.0602

0.8 0.2408 0.0927 0.4842 0.1427 0.3047 0.1772 0.0565

1.0 0.2517 0.0923 0.5167 0.1420 0.3160 0.1804 0.0525

1.2 0.2566 0.0917 0.5381 0.1404 0.3195 0.1829 0.0485

1.4 0.2578 0.0908 0.5482 0.1384 0.3183 0.1848 0.0446

1.5 0.2575 0.0903 0.5519 0.1372 0.3165 0.1855 0.0428

1.6 0.2568 0.0897 0.5545 0.1359 0.3142 0.1862 0.0409

1.8 0.2543 0.0886 0.5571 0.1332 0.3088 0.1872 0.0374

2.0 0.2513 0.0874 0.5573 0.1303 0.3025 0.1880 0.0341

2.2 0.2476 0.0862 0.5559 0.1272 0.2958 0.1886 0.0310

2.4 0.2438 0.0850 0.5535 0.1241 0.2890 0.1890 0.0280

2.5 0.2419 0.0844 0.5520 0.1224 0.2856 0.1891 0.0266

2.6 0.2399 0.0838 0.5503 0.1208 0.2822 0.1892 0.0252

2.8 0.2360 0.0825 0.5467 0.1175 0.2757 0.1893 0.0226

3.0 0.2323 0.0813 0.5429 0.1142 0.2694 0.1892 0.0201

3.2 0.2286 0.0800 0.5388 0.1108 0.2634 0.1891 0.0178

3.4 0.2250 0.0788 0.5347 0.1074 0.2576 0.1889 0.0155

3.5 0.2233 0.0782 0.5326 0.1057 0.2549 0.1888 0.0144

3.6 0.2216 0.0776 0.5306 0.1040 0.2522 0.1886 0.0133

3.8 0.2184 0.0763 0.5265 0.1005 0.2470 0.1883 0.0113

4.0 0.2152 0.0751 0.5225 0.0971 0.2421 0.1879 0.0093
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given in Eq. (5), Eq. (6) and Eq. (7), respectively 

FEF0.1L-P = FC(0.1L-P), × P × L (5)

FEM0.3L-P-L = MC(0.3L-P-L) × P × L (6)

FEM0.3L-P-R = MC(0.3L-P-R) × P × L (7)

where P is the vertical point load at 0.3 × L from the left end of the NBSPH. FC(0.3L-P), MC(0.3L-P-L)

and MC(0.3L-P-R) are the estimator coefficients for calculating the FEF0.3L-P, FEM0.3L-P-L and FEM0.3L-P-R,
respectively. The values of FC(0.3L-P), MC(0.3L-P-L), and MC(0.3L-P-R) are given in the sixth, seventh and
eighth columns of Table 1, respectively.

The fixed-end horizontal forces (FEF0.1L-P) at the centroids of the end sections, the fixed-end
moments at the centroid of the left end (FEM0.1L-P-L) and the fixed-end moments at the centroid of
the right end (FEM0.1L-P-R) due to the point load at 0.1 × L from the left end of the NBSPH are

Table 2 The values of the estimator coefficients of FC(0.1L-P), MC(0.1L-P-L), MC(0.1L-P-R), FC(OWN), MC(OWN),
stiffness coefficients (K) and carry-over factors (C)

R FC(0.1L-P) MC(0.1L-P-L) MC(0.1L-P-R) FC(OWN) MC(OWN) K C

0.0 0.0101 0.0795 0.0102 0.0000 0.0834 3.925 0.490

0.2 0.0356 0.0825 0.0094 0.1107 0.0920 5.277 0.524

0.4 0.0475 0.0844 0.0084 0.1804 0.0983 6.893 0.518

0.5 0.0505 0.0851 0.0079 0.2047 0.1009 7.805 0.504

0.6 0.0524 0.0856 0.0074 0.2239 0.1032 8.787 0.485

0.8 0.0538 0.0864 0.0065 0.2510 0.1072 10.967 0.438

1.0 0.0538 0.0868 0.0061 0.2676 0.1106 13.439 0.382

1.2 0.0535 0.0870 0.0057 0.2777 0.1135 16.207 0.324

1.4 0.0522 0.0874 0.0049 0.2835 0.1163 19.273 0.266

1.5 0.0507 0.0877 0.0043 0.2853 0.1176 20.918 0.237

1.6 0.0498 0.0878 0.0040 0.2865 0.1189 22.638 0.208

1.8 0.0489 0.0878 0.0037 0.2878 0.1213 26.304 0.153

2.0 0.0472 0.0880 0.0032 0.2878 0.1237 30.271 0.101

2.2 0.0456 0.0880 0.0027 0.2871 0.1260 34.541 0.051

2.4 0.0439 0.0880 0.0023 0.2859 0.1283 39.114 0.004

2.5 0.0426 0.0880 0.0019 0.2852 0.1294 41.515 -0.019

2.6 0.0419 0.0880 0.0017 0.2845 0.1305 43.993 -0.041

2.8 0.0413 0.0880 0.0016 0.2828 0.1327 49.179 -0.082

3.0 0.0400 0.0879 0.0012 0.2811 0.1349 54.675 -0.121

3.2 0.0388 0.0878 0.0009 0.2793 0.1370 60.482 -0.158

3.4 0.0378 0.0878 0.0007 0.2775 0.1392 66.602 -0.193

3.5 0.0368 0.0877 0.0004 0.2767 0.1402 69.781 -0.210

3.6 0.0364 0.0876 0.0003 0.2758 0.1413 73.038 -0.226

3.8 0.0359 0.0875 0.0001 0.2741 0.1434 79.787 -0.257

4.0 0.0351 0.0874 -0.0001 0.2725 0.1455 86.849 -0.286
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given in Eq. (8), Eq. (9) and Eq. (10), respectively

FEF0.1L-P = FC(0.1L-P) × P × L (8)

FEM0.1L-P-L = MC(0.1L-P-L) × P × L (9)

FEM0.1L-P-R = MC(0.1L-P-R) × P × L (10)

where P is the vertical point load at 0.1 × L from the left end of the NBSPH. FC(0.1L-P), MC(0.1L-P-L)

and MC(0.1L-P-R) are the estimator coefficients for calculating the FEF0.1L-P, FEM0.1L-P-L, and FEM0.1L-P-R,
respectively. The values of FC(0.1L-P), MC(0.1L-P-L), and MC(0.1L-P-R) are given in the second, third and
fourth columns of Table 2, respectively.

The fixed-end horizontal forces (FEFOWN) and the fixed-end moments (FEMOWN) at the centroids
of the end sections of the NBSPH due its self weight of the NBSPH are given in Eq. (11) and
Eq. (12), respectively.

FEFOWN = FC(OWN) × (γ × b × h) × L (11)

FEMOWN = MC(OWN) × (γ × b × h) × L2 (12)

where γ is the unit weight of the material, L is the span length, b is the width, h is the mid-span
depth or minimum depth of NBSPH. FC(OWN) and MC(OWN) are the estimator coefficients for
calculating the FEFOWN and FEMOWN, respectively. The values of FC(OWN) and MC(OWN) are given in
the fifth and sixth columns of Table 2, respectively.

The values of bending stiffness coefficients (K) and the carry-over factors (C) obtained from the
FEA are presented in the seventh and eighth columns of Table 2, respectively. The fixed-end
reactions, stiffness coefficients and carry-over factors are changed depending on the haunch depths.
Since the cross-sectional dimensions affect the behavior of the non-prismatic beams with parabolic
haunches, thus, they are important in the arch formation and affect the location of arch height and,
in turn, affect the axial thrust values, fixed-end reactions, stiffness coefficients and carry-over
factors. The formulations and estimation coefficients presented in this paper take into account the
dimensions of the rectangular cross-section of the NBSPH, the discontinuity of the centroidal axis,
the local stress concentrations, the nonlinear stress distributions and the existence of the null areas
that reduces the member stiffness. 

7. Conclusions

In this paper, the linear elastic behavior of the NBSPH subjected to vertical loading conditions
was investigated using plane stress FEA considering the thrust effects. The parametric studies were
performed for the NBSPH with b = 0.5 m, h = 1.0 m, L = 10 m and having haunch depth ratios (R)
varying in the range of 0.0 to 4.0 with 0.1 intervals and for the haunch length ratio of α = 0.5. An
extensive parametric study was conducted and the fixed-end reactions, stiffness coefficients and
carry-over factors were computed using the realistic theoretical models. Based on the results of
FEA, the design formulas (Eqs. (1)-(12)) and the design coefficients (Tables 1, 2) were proposed to
be able to compute the fixed-end reactions, stiffness coefficients and carry-over factors without
necessitating any additional FEA. The proposed formulas and dimensionless estimation coefficients
were expressed in simplified forms, so that they are directly applicable in analyzing and re-
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evaluation of the NBSPH. The dimensionless estimation coefficients were separately proposed as
the functions of the haunch depth ratios. It should be pointed out that, although the presented results
are valid only for the non-prismatic beams having symmetrical parabolic haunches and the haunch
length ratio of α = 0.5, the approach can easily be expanded to cover the other types of non-
prismatic beams. Also, it should be pointed out that the proposed dimensionless estimation
coefficients are only valid for the NBSPH having fixed-end conditions.

The FEA results obtained from this study were compared with those available in the literature.
The comparison of the fixed-end reactions, stiffness coefficients and carry-over factors of NBSPH
members available in the literature with those computed by FEA revealed large discrepancies. It is
determined that the conventional analysis methods using beam theories for these types of structures
led to erroneous results where the major source of error was the neglection of the continuous
changes of the centroidal axis resulting in neglecting the coupling between the axial forces and the
bending moments. Due to progressive change associated with the non-prismatic section of the
NBSPH, a considerable amount of FEFs initiated in addition to FEMs under vertical loading
condition. The resulting FEFs are significantly important for NBSPH especially having deep
haunches. Since NBSPH behave similar to archs, this behavior becomes more pronounced as the
haunch depth ratios increase. Unless a detailed FEA is utilized, the conventional methods using
frame elements become deficient to compute such FEFs due to the progressive change in the
centroidal axis of the non-prismatic section. The authors recommend using the FEA results
considering the coupling effect completely as well as stress distributions rather than using tables by
PCA (1958) or conventional analysis method with large deviations, as shown in this study.
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Notations

The following symbols are used in this paper:
E = modulus of elasticity of the material;
FEF = fixed-end horizontal forces at the centroids of the end sections of the NBSPH due to verti-

cal loadings;
FEM  = fixed-end moments at the centroids of the end sections of the NBSPH due due to vertical

loadings;
FEFW  = fixed-end horizontal forces at the centroids of the end sections of the NBSPH due to uni-

formly distributed vertical loads;
FEF0.5L-P = fixed-end horizontal forces at the centroids of the end sections of the NBSPH due to point

loads at the mid-span;
FEF0.3L-P = fixed-end horizontal forces at the centroids of the end sections of the NBSPH due to the

point load at 0.3 × L from the left end;
FEF0.1L-P = fixed-end horizontal forces at the centroids of the end sections of the NBSPH due to the

point load at 0.1 × L from the left end;
FEFOWN = fixed-end horizontal forces at the centroids of the end sections of the NBSPH due to its

own weight;
FC(W) = dimensionless coefficients for calculating the FEFW;
FC(0.5L-P) = dimensionless coefficients for calculating the FEF0.5L-P;
FC(0.3L-P) = dimensionless coefficients for calculating the FEF0.3L-P;
FC(0.1L-P) = dimensionless coefficients for calculating the FEF0.1L-P;
FEMW = fixed-end moments at the centroids of the end sections of the NBSPH due to uniformly

distributed vertical load;
FEM0.5L-P = fixed-end moments at the centroids of the end sections of the NBSPH due to the point

loads at the mid-span;
FEM0.3L-P-L = fixed-end moment at the centroid of the left end of the NBSPH due to the point load at 0.3

× L from the left end;
FEM0.3L-P-R = fixed-end moment at the centroid of the right end of the NBSPH due to the point load at

0.3 × L from the left end;
FEM0.1L-P-L = fixed-end moment at the centroid of the left end of the NBSPH due to the point load at 0.1

× L from the left end;
FEM0.1L-P-R = fixed-end moment at the centroid of the right end of the NBSPH due to the point load at

0.1 × L from the left end;
FEMOWN = fixed-end moments at the centroids of the end sections of the NBSPH due to its own

weight;
MC(W) = dimensionless coefficients for calculating the FEMW;
MC(0.3L-P-L) = dimensionless coefficients for calculating the fixed-end moments at the left end due to the

point load at 0.3 × L from the left end;
MC(0.3L-P-R) = dimensionless coefficients for calculating the fixed-end moments at the right end due to the

point load at 0.3 × L from the left end;
MC(0.3L-P- RIGHT)= dimensionless coefficients for calculating the fixed-end moments at the right end at the left

end due to the point load at 0.3 × L from the left end;
MC(0.1L-P-LEFT) = dimensionless coefficients for calculating the fixed-end moments at the left end due to the

point load at 0.1 × L from the left end;
MC(0.3L-P- RIGHT)= dimensionless coefficients for calculating the fixed-end moments at the right end at the

right end due to the point load at 0.1 × L from the left end;
γ = is the unit weight of the material;
h = mid-span depth or smallest depth of the non-prismatic element;
R = the haunch depth ratio;
α = the haunch length ratio (haunch length divided by the total length of the member);
ν = Poisson’s Ratio of the material;
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E = modulus of elasticity of the material; 
b = width of the member;
w = uniformly distributed vertical load at the top face of the NBHSP;
L = span length of the NBHSP;
P = vertical point load at the top surface of the NBHSP;
K = bending stiffness coefficients [Bending stiffness / (EI/L)];
C = carry-over factors




