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Effects of dead loads on the static analysis of plates
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Abstract. The collapse of structures due to snow loads on roofs occurs frequently for steel structures
and rarely for reinforced concrete structures. Since the most significant difference between these structures
is related to their ability to handle dead loads, dead loads are believed to play an important part in the
collapse of structures by snow loads. As such, the effect of dead loads on displacements and stress
couples produced by live loads is presented for plates with different edge conditions. The governing
equation of plates that takes into account the effect of dead loads is formulated by means of Hamilton’s
principle. The existence and effect of dead loads are proven by numerical calculations based on the
Galerkin method. In addition, a closed-form solution for simply supported plates is proposed by solving,
in approximate terms, the governing equation that includes the effect of dead loads, and this solution is
then examined. The effect of dead loads on static live loads can be explained explicitly by means of this
closed-form solution. A method that reflects the effects of dead loads on live loads is presented as an
example. The present study investigates an additional factor in lightweight roof structural elements, which
should be considered due to their recent development.

Keywords: plates; dead load; initial stress; live load; snow load; Galerkin equation; linear and non lin-
ear; safety; static; roof 

1. Introduction

Plates are frequently used in building structures as main structural members, which are subjected

to large vertical loads. The theory of plates has progressed from the classical theory of the

Kirchhoff-Love and Mindlin-Reissner plates, as shown in Timoshenko (1959) and Volterra and

Zachmanoglou (1965), to more recent advanced theories. Shimpi et al. (2007) proposed two new

displacement-based first-order shear deformation plate theories involving only two unknown

functions. Wu et al. (2007) presented a novel Bessel function by which to obtain the exact

solutions for free-vibration analysis of a rectangular plate with typical edge conditions. Boscolo

and Banerjee (2011) developed a dynamic stiffness method for the accurate and efficient free

vibration analysis of plates. Fang et al. (2007), Lee and Chen (2011) investigated problems

involving circular cutouts. Tanveer and Singh (2009) investigated the linear and nonlinear forced

vibration, including rotary inertia, of laminated composite rectangular and other shaped first-order

shear deformable plates. Rao and Saheb (2008) developed a simple formula by which to
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investigate the large-amplitude free vibration behavior of structural members, such as beams and

plates. Takabatake (1991, 1991, 1996, 1996, 1996, 1996, 1998, 1999) proposed a simplified

analytical method for various plates.

However, the above-mentioned plate theories do not reflect an important characteristic of plates

frequently used in building structures such as roof slabs. In the initial state, such plates are

subjected to only dead loads, which are the empty weight of the actual structures and are always

invariant. External loads, such as live loads, always act on the deformed state caused by the dead

loads. If the dead load is extremely heavy, then the initial stress is very large in the initial dead-

load-only state. The difference between a heavy concrete slab and a steel lightweight slab is obvious

in building structures. Thus, the behavior of plates used in building structures should be different

depending on the invariant dead load present. Compared to lightweight steel structures, heavy

reinforced concrete structures collapse far less frequently due to snow loads on roofs even though,

theoretically, the reinforced concrete structures and steel structures should have the same degree of

safety. Why, then, do lightweight steel structures collapse more frequently? The present author

believes that the dead loads of structures must play an important part in this phenomenon.

 In contrast to live loads, dead loads are characterized by being stationary. Structures are always

subject to dead loads and have conservative initial stresses produced by these dead loads. When

structures are subjected to live loads, the strain energy produced by the initial stresses is considered,

and this strain energy has the effect of decreasing external disturbances such as displacements and

stress couples produced by live loads. However, due to the unknown nature of this phenomenon,

current trends in structural design do not consider the effect of dead loads. If the effect of dead

loads is clarified, it will be possible to estimate the effective value of live loads. As a result, it will

be possible to have the same safety factor for both heavy structures and lightweight structures and

to design truly safe structures. Previous studies for linear and nonlinear plate problems do not take

into consideration the effect of dead loads, which is an essential problem for plates used in

structures.

In a previous study (Takabatake 1990, 1991, 2010), the present author demonstrated the effect of

dead loads on the static and dynamic problems of elastic beams and proposed a closed-form

approximate solution of simply supported beams. This new attention became an important jumping-

off point for extensions of elementary beam theory and was extended to the finite-element method

using a beam element that takes the effect of dead loads into account (Zhos and Zhu 1996). The

existence of an initial bend in a beam due to a dead load has been suggested to increase the natural

frequencies of lateral vibrations (Kelly et al. 1991). The present author (Takabatake 1992) reported

the effect of dead loads on the dynamic response of a uniform elastic rectangular plate and clarified

the physical factors governing this effect. Mostaghel and Yu (1995) revealed that, based on the large

deflection theory for thin plates and the principle of conservation of energy, preforming a thin plate

into any shape has the effect of increasing its natural frequencies. Yu et al. (1994) reported a

phenomenon whereby the natural frequencies increase when the plate is preformed into a shape with

a specific mode of vibration. Zhou (2002) proposed a finite-element formulation for plates that takes

into consideration the stiffening effect of dead loads. Recently, Durmaz and Dalaglon (2006) created

a map to obtain the precise variation of ground snow loads in the Eastern Black Sea region, where

dead loads were recognized to have a great influence on the structural behavior produced by live

loads, such as snow loads.

The goal of the present paper is to clarify the effect of dead loads in static elastic plates. First, the

governing equation of plates, which takes into account the effect of dead loads, from a previous
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study (Takabatake 1992) is presented, where the effect of dead loads is based on strain energy

resulting from conservative initial stresses produced by dead loads. This strain energy supports part

of the potential energy of the live loads. If the dead loads are large, then the initial stresses are

large, and the energy supported by the initial stresses is large. Consequently, the displacements and

stress couples produced by live loads are smaller than for those excluding the effect of dead loads.

Second, from the results of numerical calculations using the Galerkin method, the effect of dead

loads is shown for the case of simply supported and clamped rectangular plates subjected to static

live loads. Third, in order to apply the effect of dead loads to design, the parameters used to express

this effect are shown in general physically explicit expressions without numerical calculations by a

closed-form solution for simply supported plates, which is proposed based on the governing

equation including the effect of dead loads. Finally, a method that reflects the effect of dead loads

on live loads is presented through an example.

2. Governing equations including the effect of dead loads for plates

In Fig. 1, a rectangular plate is shown along with a Cartesian coordinate system. The external

forces are assumed to be transverse loads only, and axial forces are neglected. Deflections  are

produced due to the dead loads  of the plates. This deformed state is considered as the reference

state. As live loads  per unit area act on this reference state, deflections  occur, in which

deflections  are measured from the reference state. Deflections  and  and transverse loads 

and  are considered to be positive when they act toward the positive direction of the z axis.

Assuming the validity of the Kirchhoff-Love plate theory and neglecting the strains in the middle

surface produced by in-plane forces, the nonlinear strain-displacement relations of plates can be

obtained from Washizu (1982) as follows 

(1)

(2)

where  and  are the strains due to live loads  and dead loads , respectively,

and z is the distance from the middle surface. The underlined terms in Eqs. (1) and (2) indicate

nonlinear terms.

Now, assuming the stress-strain relations to be linear, the equilibrium equation and the boundary

conditions of the plates, which include the effect of dead loads, are obtained from a previous study
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(Takabatake 1992) using Hamilton’s principle, as follows 

(3)

w,xxxx 2w,xxyy w,yyyy

p

D
----–+ +

6

h
2

----- 2w̃,xw̃,xxw,x w̃,x( )+
2
w,xx 2w̃,yw̃,yyw,y+ w̃,y( )2w,yy+[ ]–

6ν

h
2

------ 2w̃,yw̃,xyw,x w̃,y( )+
2
w,xx 2w̃,xw̃,xyw,y+ w̃,x( )2w,yy+[ ]–

6 1 ν–( )

h
2

------------------- w̃,xw̃,yw,y( )
,x w̃,xw̃,yw,x( )

,y+[ ]– 0=

Fig. 1 Coordinates and load distribution of a plate 
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(4)

Note that Eqs. (3) and (4) are linear with respect to unknown deflections , because the

deflections  due to the dead loads are previously known. The nonlinear terms in these equations

express the effects of dead loads. Neglecting these terms will provide general equations for plates

subjected to only live loads .

For the reference state, in which only the dead loads  act, the following familiar governing

equation and boundary conditions can be written as 

(5)

(6)

where D is the bending stiffness of the plates ( ), h is the thickness of the plates,

and ν is Poisson’s ratio of the plates.

3. Numerical results

Let us examine, by means of the Galerkin method, the effect of dead loads on a uniform

rectangular plate subjected to static live loads. The Galerkin equation for the current plates may be

obtained as follows 
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(7)

where the notation Q is the equilibrium equation given in Eq. (3), and lx and ly are the dimensions

of the plate in the x and y directions, respectively. Now, the deflection  due to live loads is

expressed by power series expansions as follows 

 (8)

where  are unknown displacement coefficients and fmn are the shape functions satisfying the

boundary conditions of the plates. The following functions represent fmn for simply supported and

clamped plates

(for a simply supported plate) (9)

(for a clamped plate) (10)

Substituting Eq. (8) into Eq. (7), the Galerkin equation can be rewritten as

(11)

Since the governing equation Q contains deflections  due to dead loads , it is necessary to

determine beforehand deflections  from Eqs. (5) and (6), which can be expressed generally as

follows 
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reduces to linear, nonhomogeneous, algebraic equations with respect to unknown displacement

coefficients , as follows

(13)

Qδw x ydd
0

l
y

∫
0

l
x

∫ 0=

w

w x y,( ) wmn fmn

n 1=

∑
m 1=

∑=
m 1 2 3 … ∞, , , ,=

n 1 2 3 … ∞, , , ,=⎝ ⎠
⎛ ⎞

wmn

fmn sin
mπx

lx

----------sin
nπy

ly

---------=

fmn sin
πx

lx

------sin
mπx

lx

----------sin
πy

ly

------sin
nπy

ly

---------=

δwmn:  Qfmn x ydd
0

l
y

∫
0

l
x

∫ 0=
m 1 2 3 … ∞, , , ,=

n 1 2 3 … ∞, , , ,=⎝ ⎠
⎛ ⎞

w̃ p̃

w̃

w̃ x y,( ) w̃mn fmn x y,( )
n 1=

∞

∑
m 1=

∞

∑=

w̃mn w̃mn

wmn

 



Effects of dead loads on the static analysis of plates 767

Solving Eq. (13) for  and applying the result to Eq. (8), the displacements  due to live

loads are obtained. In addition, stress couples , and  due to live loads are given by the

well-known relations , , and .

Next, the effect of dead loads on simply supported and clamped plates is examined. Two types of

rectangular plates are considered: a reinforced concrete plate and a steel plate. The steel plate is

considered equivalent to a plate obtained from a steel structure. It is assumed that dead loads  and

live loads  are uniformly distributed loads, with the constant live load of  = 5.88 kN/m2 being a

snow depth of 2 m with a snow density of 2.94 kN/m3. The modulus of elasticity E and Poisson’s

ratio ν are E = 21 × 1010 N/m2 and ν = 0.3 for the steel plate and E = 2.1 × 109 N/m2 and ν = 0.17

for the reinforced concrete plate. The standard thicknesses h0 of the plates are 0.07 m and 0.14 m

for simply supported steel and reinforced concrete plates, respectively, and 0.05 m and 0.10 m for

the clamped steel and reinforced concrete plates, respectively. In addition, the standard length of the

plate, lx, in the x direction is 5 m. The length of the plate, ly, in the y direction and the thickness h

are given by

(14)

where the span ratio  and the thickness ratio  are parameters having values of 1 and 2.

Numerical calculations are obtained by varying the dead load  and parameters  and  under a

constant live load .
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Fig. 3 Relationship among  and  for a clamped platewmax/w0max, Mmax/M0max p/p̃

Fig. 4 Relationship among  and  for a simply supported platewmax/w0max, Mmax/M0max p/p̃
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Figs. 2 and 3 show the results for rectangular plates with the variation of the thickness h and dead

loads  under a constant live load . In addition, Figs. 4 and 5 show the results for the plates with

the variation of the span length ly and dead loads  under a constant live load . These figures

reveal that each maximum value of deflection and stress couple for a plate with live-load-to-dead-

load ratio, / , is reduced to the value indicated by the ratios  and /  by

considering the effect of dead loads. If the effect of dead loads does not exist, the values of these

ratios are always equal to 1. Since dead loads  are large in comparison with the constant live

loads , i.e., /  < 1, the ratios  and /  are smaller than 1. Here,  and

 indicate the respective maximum values of deflections  and stress couples  due to the

live load  in each plate, respectively, and are obtained from the governing equation that includes

the effect of dead loads. On the other hand,  and  are the maximum values

corresponding to  and , respectively, and are obtained from the governing equation that

excludes the effect of dead loads. These values agree with values obtained from the general plate

theory. There is little difference between the ratios /  and /  in the numerical

results, but this difference can be neglected in practice. This fact is also explained in the subsequent

approximate solution. The scale of transverse axis in Fig. 4 differs from Figs. 2, 3, and 5, because

the simply supported plate is greatly affected by the dimensions of the plate. Now, calculating the

reductions from the ratios /  and /  given in Figs. 2 through 4, the effect of

dead loads on simply supported plates is obtained as shown in Fig. 6.

 These results indicate that an increase in dead load under a constant live load decreases the

deflections and stress couples due to the live load and that this effect is large for a thin plate or a
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plate with a large span length. Thus, the effect of dead loads is evident in these plates.

The above results indicate that the effect of dead loads is large for a plate designed to have the

lowest sectional efficiency. A plate designed to have the lowest thickness essentially has a lower

load-carrying capacity than a thick plate, and in this case, the dead load is reduced as much as

possible. Since this reduction in dead loads results in a reduction in the effect of dead loads, the

plate becomes weaker for live loads. Present trends in structural design are based on a system in

which structures are designed in terms of the sum of dead loads and live loads. Since live loads

acting on structures are generally stipulated in the structural design code and are unchangeable in

structural design, structural engineers are concerned about reducing the dead load. As a result,

almost all new structures are being designed as light structures. Although the same degree of safety

is desired for all structures, lightweight structures are deficient in terms of safety because the effect

of dead loads in lightweight structures is smaller than that in heavy structures. In order to reflect

this effect in structural design, it is necessary to reflect the reduction effect due to the existence of

the dead loads on the live load, because the magnitude of live load is predetermined based on the

intended used of the structure and independents of the existing dead loads. The present paper does

not suggest increasing the dead load of structures. Rather, in order to avoid the collapse of the plate

due to live loads, the safety factor for lightweight structures should be increase to coincide with the

safety factor for heavy structures.

Fig. 6 Relationship between reduction ratio due to a dead load and  for a simply supported plate p̃ p⁄
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4. Approximate solution

The effect of dead loads on static live loads has been demonstrated numerically using the

Galerkin method. The use of this effect in design requires a general parametric expression in terms

of parameters that do not require numerical calculation. Therefore, it is necessary to solve

analytically the governing equation that includes the effect of dead loads for static problems.

However, because of the difficulty in solving this equation analytically, a closed-form solution is

proposed by making some assumptions. Simply supported rectangular uniform plates are considered,

because based on the preceding numerical results, the effect of dead loads is remarkable in simply

supported plates.

From Eq. (3), the current governing equation, which includes the effect of dead loads, can be

rewritten as follows

(15)

where R denotes the effect of dead loads and is a function of  and , as defined by

(16)

On the other hand, the general governing equation excluding the effect of dead loads can be

written as follows

(17)

where the displacements  due to live loads exclude the effect of dead loads. Here, the

displacements  for a simply supported plate are obtained using Navier’s solution as follows
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where fmn is given in Eq. (9) and  is obtained as follows
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where the coefficients  of the double Fourier expansion of live loads  are determined from

Table 1.5.1 in Szilard (1974).

The above numerical results indicate that, for practical load ratios / , dead loads have a

reduction ratio  of between 1.0 and 0.85. Hence, it is assumed that the unknown

displacements  in R given by Eq. (16) are related to the displacements  excluding the effect of

dead loads as follows
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(20)

where  is a coefficient indicating the effect of dead loads and is a function of x and y. Here,

 always takes a value of less than 1. The accuracy of the approximate solution proposed here

depends on . Then, based on the preceding numerical results and the trial-and-error results

for the proposed solution, the coefficient  for uniform live loads is assumed to be

(21)

where β0 is the effect of dead loads on the displacements  at the midpoint (  and

) of the plate and is assumed to be approximately 1.

Using the above approximation, , which is a function of both unknown displacements 

and known displacement , is changed to , which is a function of all known displacements

 and . Consequently, R reduces to a function composed of all known displacements. Therefore it

means that Eq. (15) changes from the nonlinear equation to the linear one. Eq. (15) is reduced to an

analytically solvable form. Then, let us give the right-hand side of Eq. (15) as
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uniform live loads , because only uniformly distributed loads are considered in the current

problem. Substituting the span ratio αl(= ly /lx) and the expression

(29)

in Eq. (19), the coefficients  can be expressed in a non-dimensional form as follows
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and 

(39)

(40)

Here,  is defined as

(41)

The non-dimensional parameter  depends on only the span ratio  and can be evaluated

beforehand.

Similarly, the stress couples , and  due to live loads can be given as

(42)

(43)

(44)

where

, , (45)

and

(46)

(46)
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Similarly, the transverse shear forces  and  due to live loads can be obtained as

(47)

(48)

where

, (49)

and 

(50)

In the plate theory, the deflection , stress couples , and , and transverse shear

forces  and , which exclude the reduction effect of dead loads, are related as follows

(51)

Thus, applying Eq. (51) to Eqs. (36), (42) through (44), (47), and (48), the reduction ratios due to

the dead loads  on the action of live loads  are expressed as follows 

(52)

(53)

(54)
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(55)

(56)

(57)

Thus, considering of the effect of dead loads, it is clarified that the reductions in the

displacements, stress couples, and transverse shear forces produced by live loads always depend on

k in the second terms of the right-hand sides of the above equations. Then, since the non-

dimensional coefficients αw,  αMx , αMy, αMxy, αqx, and αqy depend only on the span ratio αl (= ly /lx),

they can be given as shown in Tables 1 and 2 for ν = 0.3 and 0.17, respectively. The effect of dead

loads is obtained from the product of k and the values given in Tables 1 and 2. The product is

small, as is the effect itself. Consequently, the slight variation in the values shown in Tables 1 and 2

may be disregarded in practical use. This explains the phenomenon whereby there is little difference

between the displacements and stress couples due to the effect of dead loads, as indicated by the

preceding numerical results.

Subsequently, in order to examine the exactness of the approximate solution proposed here, the

results of the proposed solution were compared with the above-described numerical results obtained

by the Galerkin method, in which the coefficient β0 is assumed to be 1. All of the results showed

excellent agreement, except in the case of αl = 2.0 in Fig. 4, for simply supported plates. However,

this difference is negligible for practical use and shows error toward the side of safety. The

exactness of the proposed solution has been proven. Thus, the effect of dead loads is governed by

the value of k given in Eq. (37). Namely, the effect is proportional to the eighth power of the span

Mxy

Mxy0

---------- 1 kαMxy–=

qx

qx0

------- 1 kαqx–=

qy

qy0

------- 1 kαqy–=

Table 1 Values of αw, αMx, αMy, αMxy, αqx, and αqy (ν = 0.3)

αl = ly /lx αw αMx αMy αMxy αqx αqy

1.0 0.280 × 10-4 0.295 × 10-4 0.295 × 10-4 0.263 × 10-4 0.538 × 10-4 0.538 × 10-4

1.1 0.403 × 10-4 0.445 × 10-4 0.422 × 10-4 0.376 × 10-4 0.846 × 10-4 0.703 × 10-4

1.2 0.547 × 10-4 0.624 × 10-4 0.618 × 10-4 0.499 × 10-4 0.123 × 10-3 0.864 × 10-4

1.3 0.708 × 10-4 0.829 × 10-4 0.861 × 10-4 0.624 × 10-4 0.170 × 10-3 0.101 × 10-3

1.4 0.881 × 10-4 0.105 × 10-3 0.115 × 10-3 0.742 × 10-4 0.222 × 10-3 0.114 × 10-3

1.5 0.106 × 10-3 0.130 × 10-3 0.148 × 10-3 0.867 × 10-4 0.280 × 10-3 0.125 × 10-3

1.6 0.125 × 10-3 0.155 × 10-3 0.185 × 10-3 0.105 × 10-3 0.341 × 10-3 0.155 × 10-3

1.7 0.144 × 10-3 0.180 × 10-3 0.226 × 10-3 0.124 × 10-3 0.405 × 10-3 0.188 × 10-3

1.8 0.163 × 10-3 0.206 × 10-3 0.270 × 10-3 0.144 × 10-3 0.471 × 10-3 0.221 × 10-3

1.9 0.183 × 10-3 0.232 × 10-3 0.315 × 10-3 0.165 × 10-3 0.537 × 10-3 0.255 × 10-3

2.0 0.202 × 10-3 0.258 × 10-3 0.363 × 10-3 0.186 × 10-3 0.602 × 10-3 0.289 × 10-3

3.0 0.379 × 10-3 0.475 × 10-3 0.763 × 10-3 0.436 × 10-3 0.114 × 10-2 0.570 × 10-3

4.0 0.541 × 10-3 0.626 × 10-3 0.988 × 10-3 0.669 × 10-3 0.145 × 10-2 0.724 × 10-3

5.0 0.690 × 10-3 0.736 × 10-3 0.110 × 10-2 0.834 × 10-3 0.163 × 10-2 0.799 × 10-3
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length lx and the second power of the dead load  and inversely proportional to the second power

of the thickness h and of the bending rigidity of the plate, D.

Then, the factor R obtained by substituting Eq. (33) into Eq. (25) decreases live loads , as

estimated from the right-hand side of Eq. (15). Consequently, this reduction can be explained by the

effects of dead loads for the displacements, stress couples, and transverse shear forces caused by live

loads. Since heavy plates have a larger value of R than lightweight plates, the effect of dead loads is

greater for heavy plates than for lightweight plates. As such, in order to achieve parity in safety, the

safety factor for lightweight plates must be increased by considering the effect of dead loads.

Next, the reduction effect due to the dead loads on the total maximum deflections of simply

supported plates is accounted for in the relation . Considering the relation

 (= α) and of Eq. (36), we have

(58)

Hence, the reduction effect of dead loads on the total maximum deflections of the plate subjected

to the dead load  and live load  is governed by the factors α (= / ) and k. Similar

relationships for the stress couples , and , and the transverse shear forces  and  can

be obtained by replacing αw  with αMx , αMy, αMxy, αqx, and αqy , respectively.

5. Example

 

Here, let us describe how to apply the effect of dead loads to the modification of live loads. We

consider an equivalent steel plate with simply supported ends to have span lengths lx and ly of 6 m,

a thickness h of 0.05 m, a Young’s modulus E of 21 × 1010 N/m2, and a Poisson’s ratio ν of 0.3.

The bending rigidity D is 236 × 104 N·m.

p̃

p

w w̃+( )max/ w0 w̃+( )max

w0/w̃ p/p̃=

w w̃+( )max

w0 w̃+( )max

-------------------------- 1
αkαw

1 α+
-------------–=

p̃ p p p̃

Mx My, Mxy qx qy

Table 2 Values of αw, αMx, αMy, αMxy, αqx, and αqy (ν = 0.17)

αl = ly /lx αw αMx αMy αMxy αqx αqy

1.0 0.280 × 10-4 0.299 × 10-4 0.299 × 10-4 0.263 × 10-4 0.538 × 10-4 0.538 × 10-4

1.1 0.403 × 10-4 0.448 × 10-4 0.418 × 10-4 0.376 × 10-4 0.846 × 10-4 0.703 × 10-4

1.2 0.547 × 10-4 0.625 × 10-4 0.617 × 10-4 0.499 × 10-4 0.123 × 10-3 0.864 × 10-4

1.3 0.708 × 10-4 0.826 × 10-4 0.868 × 10-4 0.624 × 10-4 0.170 × 10-3 0.101 × 10-3

1.4 0.881 × 10-4 0.104 × 10-3 0.117 × 10-3 0.742 × 10-4 0.222 × 10-3 0.114 × 10-3

1.5 0.106 × 10-3 0.128 × 10-3 0.153 × 10-3 0.867 × 10-4 0.280 × 10-3 0.125 × 10-3

1.6 0.125 × 10-3 0.152 × 10-3 0.195 × 10-3 0.105 × 10-3 0.341 × 10-3 0.155 × 10-3

1.7 0.144 × 10-3 0.177 × 10-3 0.243 × 10-3 0.124 × 10-3 0.405 × 10-3 0.188 × 10-3

1.8 0.163 × 10-3 0.201 × 10-3 0.298 × 10-3 0.144 × 10-3 0.471 × 10-3 0.221 × 10-3

1.9 0.183 × 10-3 0.226 × 10-3 0.349 × 10-3 0.165 × 10-3 0.537 × 10-3 0.255 × 10-3

2.0 0.202 × 10-3 0.251 × 10-3 0.397 × 10-3 0.186 × 10-3 0.602 × 10-3 0.289 × 10-3

3.0 0.379 × 10-3 0.458 × 10-3 0.845 × 10-3 0.436 × 10-3 0.114 × 10-2 0.570 × 10-3

4.0 0.541 × 10-3 0.606 × 10-3 0.114 × 10-2 0.669 × 10-3 0.145 × 10-2 0.724 × 10-3

5.0 0.690 × 10-3 0.717 × 10-3 0.130 × 10-2 0.834 × 10-3 0.163 × 10-2 0.799 × 10-3



778 Hideo Takabatake

STEP 1. Evaluate the value of k from Eq. (37), in which β0 is assumed to be 1, to obtain

(59)

where  (N/m2) is a uniform dead load in the current plate. Also, from Table 1, since αl = ly /lx =

1, the value of αw is 0.280 × 10−4.

STEP 2. From Eq. (52), the reduction ratio of the maximum deflections produced by live loads,

which are determined by considering the effect of dead loads, takes the following value 

(60)

STEP 3. Since this reduction effect influences the magnitude of dead loads , the action of live

loads is reduced on heavy plates to a greater degree than on lightweight plates. For the current plate,

it is assumed that preventive measures have been taken previously with respect to the live load

problem. These measures will be obtained from the investigation of structures that have collapsed as

a result of live loads or from experiments. The dead loads of safe plates are denoted by . The

reduction ratios of the maximum deflections produced by live loads for safe plates are given by

(61)

STEP 4. The magnitude of live loads acting on a plate with dead loads  must increase

corresponding to the reduction ratio. The reduction effect due to dead loads also contributes to the

safety of the structure. The incremental ratio for safety is given by 

incremental ratio for safety = (62)

For example, it is assumed that  = 3,922 N/m2 and  = 196 N/m2. Substituting these values

into Eq. (62) reveals that the live loads  acting on the current plate with  = 196 N/m2 must be

increased by 1.053 times.

STEP 5. The effect of dead loads on the total deflection of the current plate subjected to the dead

load and live load can be obtained from Eq. (58) for arbitrary live loads.

Thus, the increase of live loads in order to prevent the collapse of structures due to live loads

(snow loads) depends on the span length, the bending rigidity, the thickness of the plates used, and

the standard value  for dead loads. This standard value of dead loads is determined

experimentally or through the investigation of collapsed structures, as mentioned above. However,

for practical use, it is recommended that dead loads of reinforced concrete plates be considered as

the standard value of dead loads, rather than the dead loads used commonly for plates in steel

structures. This method will have the same effect when used on live loads for steel plates and

reinforced concrete plates, except for different treatment of the redundancy of structural materials

used to ensure safety.

6. Conclusions

The phenomenon whereby the deflection, stress couples, and shear forces produced by static live
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loads decrease due to the existence of the dead loads on elastic and static plates has been confirmed

by means of the governing equation for plates that includes the effect of dead loads. Key factors

dominating the effect of dead loads in simply supported plates have been clearly shown in a closed-

form solution. From Eq. (37), the effect due to dead loads is demonstrated to be proportional to the

eighth power of the span length lx and the second power of the dead load , and inversely

proportional to the second power of the thickness h and bending stiffness D. Finally, a method

reflecting the effect of dead loads on live loads has been proposed for practical use. The effect of

dead loads is demonstrated to be an important consideration with respect to the safety of simply

supported and lightweight plates.
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Appendix 1. – Values of gmn

The notation gmn used in Eq. (33) is defined as follows

(63)

in which  takes the value

(64)

Here Fss and Fsc indicate integrals given by

(65)

(66)

 

 

 

 

 




