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Abstract. In this study, the effect of in-plane deformations on the dynamic behavior of laminated plates
is investigated. For this purpose, the displacement-time and strain-time histories obtained from the large
deflection analysis of laminated plates are compared for the cases with and without including in-plane
deformations. For the first one, in-plane stiffness and inertia effects are considered when formulating the
dynamic response of the laminated composite plate subjected to the blast loading. Then, the problem is
solved without considering the in-plane deformations. The geometric nonlinearity effects are taken into
account by using the von Kármán large deflection theory of thin plates and transverse shear stresses are
ignored for both cases. The equations of motion for the plate are derived by the use of the virtual work
principle. Approximate solution functions are assumed for the space domain and substituted into the
equations of motion. Then, the Galerkin method is used to obtain the nonlinear algebraic differential
equations in the time domain. The effects of the magnitude of the blast load, the thickness of the plate
and boundary conditions on the in-plane deformations are investigated.
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1. Introduction

Laminated composite plates are widely used in several engineering fields such as space station

structures, aircrafts, automobiles, ships, and submarines due to their high stiffness-to-weight and

strength-to-weight ratios, long fatigue life, resistance to electrochemical corrosion. These structures

are often subjected to large deformations because of their small thicknesses and geometrically

nonlinear analyses are needed for more accurate solutions.

There are several studies on the static and dynamic large deflection analysis of plate and shell

structures. In many of them, the in-plane effects are taken into account in the formulation of the

problem. The static large deflection analysis of Reissner plate is achieved using the boundary

element method including the in-plane effects (Dirgantara and Mohammadi 2006). In another study,

the boundary element method is used to solve the large deflection of shell structures (Wen et al.

2005). In the mentioned study, the in-plane effects are also taken into account. The problem of large

deflection including the transverse shear deformation effect is solved for the plates subjected to a
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uniform lateral pressure (Liu et al. 1997). The large deflection analysis of laminated composite

plates is performed using the layerwise displacement model (Cetkovic and Vuksanovic 2011). In the

mentioned study, the nonlinear response of isotropic, orthotropic and anisotropic plates is calculated

for different boundary and load conditions. The geometrically nonlinear free vibration problem of

simply-supported thin circular plates is investigated considering the in-plane effects (Haterbouch and

Benamar 2005). In another study, the geometrically nonlinear free vibration of fully clamped

rectangular plates is investigated using a theoretical method based on Hamilton’s principle (Harras

and Benamar 2002). In the mentioned study, in-plane effects are not taken into account. The finite

element method is also used to investigate the large deflection of plates considering the in-plane

effects (Zhang and Kim 2006, Zhang and Yang 2006). In another numerical study, a meshless finite

point method is used to solve the large deflection problem including the in-plane effects (Bitaraf

and Mohammadi 2010).

The response of plates to air blast loading is also investigated by several researchers. The

nonlinear damped vibrations of a laminated composite plate subject to a blast load are studied

theoretically (Kazanc  and Mecito lu 2006). The effect of aspect ratio and damping on the dynamic

response of the plate are examined. It is found that the damping coefficient affects the nonlinear

dynamic response. In another study of same researchers, in-plane stiffness and inertias in the

analytical solution of the laminated composite plate under the blast load are considered (Kazanc  et

al. 2004). For the chosen problem, the displacement response of the plate follows the blast pressure

and in-plane stiffnesses increase the frequency of the laminated plate in the first 20 ms that the blast

pressure is quite high. The analytical-numerical approach on the large deflection analysis of

unsymmetrically laminated composite plates is performed (Tanr över and enocak 2004). The

problem of the dynamic response of sandwich panels exposed to blast loadings is addressed

(Librescu et al. 2004, Kazanc  2011). Some experimental, analytical and numerical studies on the

nonlinear structural response of laminated composites subjected to blast loading are performed

(Turkmen and Mecito lu 1999a, b). The analysis of simply-supported orthotropic plates subject to

the static and dynamic loads was presented (Dobyns 1981). In the study mentioned above, the

response to the pulses of different shapes is analyzed. The response of stiffened and unstiffened

plates subjected to blast loading is analyzed by using a single energy based formulation (Louca and

Pan 1998). The dynamic response of the rectangular plates subjected to radial harmonic excitations

are investigated by including the large deflection effects in the solution (Amabili 2004, 2006). The

results obtained for the plates with different boundary conditions are compared to the experimental

results and an agreement is found. The nonlinear response of elastic plates subjected to blast loading

is investigated for simply-supported and clamped boundary conditions theoretically

(Chandrasekharappa and Srirangarajan 1987). The effect of material damping, orthotropic parameter

and aspect ratio on the dynamic response is investigated. It is found that increase in the material

damping or decrease in the aspect ratio decreases the maximum deflection. The response of simply-

supported anti-symmetrically laminated angle-ply plates to explosive blast loading is obtained using

a closed-form solution (Birman and Bert 1987). They found that the decrease in the thickness

results in the sharp increase of the maximum deflection. A semi-analytical finite strip method for

the analysis of the nonlinear response to dynamic loading of simply-supported rectangular laminated

composite plates is developed (Chen et al. 2000). It is found that the results are in an agreement

with the finite element results. The results for nonlinear dynamic behavior of a laminated composite

plate subjected to blast loading for different boundary conditions are compared (Kazanc  and

Mecito lu 2005). It is shown that the maximum normal strain of clamped plate occurs at a point
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inside the plate after the peak positive pressure, during the vacuum phase. The maximum peak

strain of the simply-supported plate is higher than that of the clamped one as expected. The

nonlinear dynamic response of simply-supported laminated composite plates subjected to the blast

load is investigated (Kazanc  and Mecito lu 2008). The results of approximate numerical analysis

are obtained and compared with the finite element results.

The objective of this study is to better understand the effect of in-plane deformations on the

dynamic response of the laminated plate to the air blast loading. The effects of the load magnitude,

plate thickness and boundary conditions on the dynamic response are also considered when

investigating the effect of in-plane deformations on the plate response. For this purpose, two

different formulations are used. In the first one, in-plane stiffness and inertia effects are considered

when formulating the dynamic response of the laminated composite plate subjected to the blast

loading. In the second one, the in-plane effects are not taken into account. In both of them, the

geometric nonlinearity effects are taken into account by using the von Kármán large deflection

theory of thin plates. Transverse shear stresses are ignored. The equations of motion for the plate

are derived by the use of the virtual work principle. Approximate solution functions are assumed for

the space domain and substituted into the equations of motion. Then, the Galerkin method is used to

obtain the nonlinear algebraic differential equations in the time domain. A FORTRAN program was

written to solve the nonlinear coupled equations of motion. The finite difference method is applied

to solve the system of coupled nonlinear equations including in-plane effects. A Runge-Kutta-Verner

method is used to solve the nonlinear equation without in-plane effects. The clamped and simply-

supported boundary conditions are considered in both cases. A parametric study is also achieved to

see the effect of positive phase duration and fiber orientation angle on the dynamic response of the

laminated plate subjected to the blast load. The free vibration frequencies are calculated for the

laminated plate with both simply-supported and clamped boundary conditions.

2. Equations of motion

In this section, a mathematical model for the laminated composite plate subjected to blast loading

is shown in Fig. 1(a). The rectangular plate with the length a, the width b, and the thickness h, is

considered. The Cartesian axes are used in the derivation. The strain-displacement relations for the

von Kármán plate may be written as (Ventsel and Krauthammer 2001)

(1a)

(1b)

(1c) 

where u0, v0 and w0 are the displacement components in the x, y and z directions. Force and

moment components of the plate can be written as (Gibson 2007)
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(2)

where  and  are the membrane strains and  and  are the curvatures and defined

as

(3a)

(3b)

(3c)

(4a)

Nx

Ny

Nxy

Mx

My

Mxy⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

A11  A12  A16  B11  B12  B16

A12  A22  A26  B12  B22  B26

A16  A26  A66  B16  B26  B66

B11  B12  B16  D11  D12  D16

B12  B22  B26  D12  D22  D26

B16  B26  B66  D16  D26  D66

εx
0

εy
0

εxy
0

κx

κy

κxy⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

εx
0
εy
0, εxy

0
κx κy, κxy

εx
0 ∂u0

∂x
-------- 1

2
---

∂w0

∂x
---------⎝ ⎠
⎛ ⎞

2

+=

εy
0 ∂v0

∂y
------- 1

2
---

∂w0

∂y
---------⎝ ⎠
⎛ ⎞

2

+=

εxy
0 ∂u0

∂y
--------

∂v0

∂x
------- ∂w0

∂x
---------

∂w0

∂y
---------+ +=

κx

∂2
w

0

∂x2
-----------–=

Fig. 1(a) Laminated composite plate subjected to blast load
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(4b)

(4c)

The coefficients in the matrices are 

(5a)

(5b)

(5c)

where Aij, Bij, and Dij are the extensional, coupling and bending stiffness matrices, respectively.

’s are the elastic constants for a laminate where hk is the kth ply thickness. 

Using the strain-displacement relations in the constitutive equations and the virtual work

principles, nonlinear dynamic equations of a laminated composite plate can be obtained in terms of

mid-plane displacements as follows

(6a)

(6b)

(6c)

where Lij and Ni denote linear and nonlinear operators, respectively.  is the mass of unit area of

the mid-plane, qx, qy and qz are the load vectors in the axes directions. The dot denotes the

derivative with respect to time. The explicit expressions of the operators can be found in Kazanc

and Mecito lu (Kazanc  and Mecito lu 2006, 2008). The damping terms are not included in this

study. In a study on the nonlinear damped vibration of a laminated plate, it is found that damping

effects are not observed during the time range of strong blast effect (Kazanc  and Mecito lu 2006).

The damping effects decrease the vibration amplitude in a short time afterwards. Therefore ignoring

the damping effect may cause the over prediction of the vibration amplitude in the time range after

the strong blast effect.

If the blast source is distant enough from the plate, the blast pressure can be described in terms of

the Friedlander exponential decay equation (Gupta et al. 1987) as 

(7)

where the negative phase of the blast is included. In this equation, Pm is the peak blast pressure, tp
is the positive phase duration, and α is the waveform parameter.

The boundary conditions can be given in the following form
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(8)

and initial conditions are

(9)

In addition to the boundary conditions given above, the following boundary conditions apply for a

simply-supported plate

(10)

and, the following boundary conditions apply for a clamped plate

(11)

3. Method of solution 

The equations of motion given by Eq. (6) can be reduced into time domain by choosing some

approximation functions for displacement field and applying the Galerkin method. The coupled-

nonlinear equations in the time domain are solved by using the finite difference method. The

approximation functions are selected so as to satisfy the natural boundary conditions.
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The simplest multi term approximations result in the hundreds of integral terms during the

application of the Galerkin procedure and therefore they are impractical. Therefore, the

approximation functions with single term for the displacement components are used in this study.

As mentioned by Strang (1986), choosing the approximation functions is a crucial point. It should

be most important for the single term solutions.

The approximation function should closely resemble the first mode of the plate. It can be

determined by considering the results of the static large deformation analysis of laminated

composite plate under the uniform pressure load by using ANSYS software as shown in the

following forms (Kazanc  and Mecito lu 2006, Kazanc  2009):

All edges simply-supported

 (13)

All edges clamped

 (14)

Here, U, V, and W denote the first term of the time-dependent parts of the solution functions u0,

v0, and w0, respectively.

3.1 Case I: LDWI (Large deflection with in-plane effects) 

Applying the Galerkin method to the equations of motion given in Eq. (6), the time dependent

nonlinear algebraic differential equations can be obtained
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The coefficients of the equations are given in (Kazanc  and Mecito lu 2006, 2008). The initial

conditions can be expressed as
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Nonlinear-coupled equations of motion are solved by using the finite difference method. We may

arrange Eq. (15) in the matrix format as 

 (16)

where  and  denote the displacement and acceleration vectors,

respectively. In Eq (16),  and  matrices are
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3.2 Case II: LD (Large deflection without in-plane effects) 

In Eq. (15), if the in-plane inertias are ignored, U and V are calculated from the first two

equations as zero and the equations of motion take the following form

  (22)

The simply-supported and clamped boundary conditions are considered. Approximate solution

functions chosen for the simply-supported and clamped boundary conditions are given in Eqs. (13)

and (14), respectively. A code is written in FORTRAN for the approximate theoretical transient

analysis of the laminated plates subjected to air blast loading. The fifth or sixth order Runge-Kutta-

Verner method is used for the solution of nonlinear equation (Eq. (22)). 

3.3 Finite element solution

The finite element model of the laminated plate subjected to the blast load is also created by using

ANSYS finite element software. The plate is discretized using 22 × 22 eight nodded layered shell

elements (Shell281) which have the geometric nonlinearity capability. The individual laminas are

assumed to be perfectly bonded in the finite element model. The number of elements is chosen as

22 × 22 based on the mesh sensitivity analysis. The air blast loading, given in Eq. (7), is applied on

the plate. The transient analyses are performed to obtain the displacement-time histories at the

central point of the plate. The finite element model of the plate is shown in Fig. 1(b).
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Fig. 1(b) Finite element model of the laminated plate
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4. Numerical results

Analyses are performed for three different laminated composites made of glass/epoxy. Ply

material properties and fiber orientation angles used in the analyses are given in Table 1. M1 is the

seven-layered bidirectional glass/epoxy with (0º/90º) fiber orientation angle for one layer. M2 and

M3 are the seven-layered unidirectional glass/epoxy with the fiber orientation angles given in Table 1.

The dimensions of the plate are a = 0.22 m and b = 0.22 m. The analyses are performed for the

uniform blast pressure. The other parameters of the Friedlander’s exponential decay function given

in Eq. (7) are chosen as a = 0.35 and tp = 0.0018 s. A parametric analysis is conducted to see the

effect of peak pressure, boundary condition, thickness, positive phase duration and fiber orientation

angle on the dynamic response of the laminated plate subjected to the blast load. The clamped and

simply-supported boundary conditions are considered. Two different ply thicknesses are taken into

account to see the effect of the thickness on the dynamic response of the plate. The ply thicknesses

which are analyzed in this study are shown in Table 2. The loading conditions are shown in Table 3.

The displacement-time and strain-time histories of the plate center are obtained for three different

pressure magnitudes, two different boundary conditions and plate thicknesses for M1. The central

displacement-time and strain-time histories of the simply-supported plate are shown in Figs. 2-13. In

these figures, one microstrain unit is equal to 10-6 strain. The central displacement – time histories

obtained by LDWI and LD analyses are almost same for the thickness T1 and Load Case I (Fig. 2).

Table 1 Properties of composite materials 

Material
Bidirectional

(M1)
(0/90)7

Unidirectional
(M2)

(0/90/0/90/0/90/0)

Unidirectional
(M3)

(0/30/60/90/60/30/0)

E1 (GPa) 24.14 40 40

E2 (GPa) 24.14 10 10

G12 (GPa) 3.79 4.5 4.5

ν12 0.11 0.27 0.27

ρ (kg/m3) 1800 2000 2000

Table 2 Ply thicknesses (mm) 

Case Ply thickness (mm) Total thickness (mm)

T1 0.56 0.56 × 7 = 3.92

T2 0.28 0.28 × 7 = 1.96

Table 3 Loading conditions.

Parameters Load Case I Load Case II Load Case III

Pm (N/m2) 2890.6 28906 57812

α 0.35 0.35 0.35

tp (s) 0.0018 0.0018 0.0018

Pressure distribution uniform uniform uniform
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The predicted central displacements over the time are very close to each other for LDWI and LD

cases for the simply-supported plate (Figs. 3-7). A slight difference occurs when the pressure is

increased and the thickness is decreased because the effect of geometric nonlinearity increases. The

displacement amplitude increases as the load is increased as expected. However, the increase in the

displacement amplitude is not same as the load multiplication factor when the large deflection effect

is pronounced (Figs. 3, 5, 7). The large deflection effect is much more pronounced for thinner plate

(T2) and the highest load (LIII); the large deflection effect is less pronounced for thicker plate (T1)

and the lowest load (LI). The plate behaves in the nonlinear manner when the large deflection effect

Fig. 2 Displacement time-history of simply-supported
plate for thickness T1, Load Case I and M1

Fig. 3 Displacement time-history of simply-supported
plate for thickness T2, Load Case I and M1

Fig. 4 Displacement time-history of simply-supported
plate for thickness T1, Load Case II and M1

Fig. 5 Displacement time-history of simply-supported
plate for thickness T2, Load Case II and M1
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is pronounced. The comparison of the displacement - time histories obtained by closed form

solutions and the finite element method is given in Fig. 5. It is clearly shown that the LDWI and

the finite element results are in an agreement. The strain-time histories give more detailed

information on the effect of in-plane deformation on the response of the plate. A difference is

shown between the predicted strain-time histories by LDWI and LD analyses (Figs. 8-13). This

difference increases when the pressure magnitude is increased and the thickness is decreased. For

the minimum pressure value and maximum plate thickness considered in this study, the plate

behavior is in the linear range (Fig. 2). Therefore, the effect of in-plane deformations does not

Fig. 6 Displacement time-history of simply-supported
plate for thickness T1, Load Case III and M1

Fig. 7 Displacement time-history of simply-supported
plate for thickness T2, Load Case III and M1

Fig. 8 Strain time-history of simply-supported plate
for thickness T1, Load Case I and M1

Fig. 9 Strain time-history of simply-supported plate
for thickness T2, Load Case I and M1
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appear (Fig. 8). The strain calculated by LDWI analysis could be separated in two portions. These

are the strains because of the stretching of the plate (LDI) and bending of the plate (LDW). The

first one is  given in Eq. (3a) and expressed as stretching or membrane strain and the second one

is  given in Eq. (4a) and expressed as bending strain. The variations of these two strain

components over the time are also presented in Figs. 8-13. It is clearly shown that the difference

between LDWI and LD is close but not exactly same as the stretching portion of the strain. The

comparison between the LD and LDW shows a slight difference that is indicating the bending strain

will not be the same as the strain obtained by LD analysis. This is because the bending and

εx
0

zκx–

Fig. 10 Strain time-history of simply-supported plate
for thickness T1, Load Case II and M1

Fig. 11 Strain time-history of simply-supported plate
for thickness T2, Load Case II and M1

Fig. 12 Strain time-history of simply-supported plate
for thickness T1, Load Case III and M1

Fig. 13 Strain time-history of simply-supported plate
for thickness T2, Load Case III and M1
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stretching portions are coupled and this coupling influences the results.

The central displacement-time and strain-time histories of the clamped plate are shown in

Figs. 14-19. The comparison between the LDWI and the finite element methods is given in Fig. 15

for T2 and LII. It is shown that the predicted values of displacements by LDWI analysis are found

to be slightly lower than the FEM results and a shift occurs between two results after the first peak.

This is because of the solution functions chosen for the in-plane and out-of-plane deformations. In

this study, in-plane and out-of-plane deformations are described by using only the first term of the

series solution. The solution function with one term cannot define the in-plane and out-of-plane

Fig. 14 Displacement time-history of clamped plate
for thickness T1, Load Case I and M1

Fig. 15 Displacement time-history of clamped plate
for thickness T2, Load Case II and M1

Fig. 16 Displacement time-history of clamped plate
for thickness T2, Load Case III and M1

Fig. 17 Strain time-history of clamped plate for
thickness T1, Load Case I and M1
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deformations exactly. The central displacement – time histories obtained by LDWI and LD analyses

are almost same for the thickness T1 and Load Case I (Fig. 14). For the maximum plate thickness

considered in this study, the plate behavior is in the linear range (Fig. 14). Therefore, the effect of

in-plane deformations does not appear (Fig. 17). The predicted central displacements over the time

obtained by LDWI analysis are slightly different from those obtained by LD analysis for the

thickness T2 and Load Case III (Fig. 16). Even though the behavior of the plate is in the nonlinear

Fig. 18 Strain time-history of clamped plate for
thickness T2, Load Case II and M1

Fig. 19 Strain time-history of clamped plate for
thickness T2, Load Case III and M1

Fig. 20 The dependence of the displacement time-
history on the positive phase duration for the
simply-supported plate for thickness T2,
Load Case II and M1

Fig. 21 The dependence of the displacement time-
history on the positive phase duration for the
clamped plate for thickness T2, Load Case II
and M1
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range for the thickness T2 and Load Case III (Fig. 16) a very small difference is observed between

the predicted strain-time histories by LDWI and LD analyses (Fig. 19). The strain calculated by

LDWI analysis could be separated in two portions as it is done for the simply-supported plate.

These two strain variations over the time are also presented in Figs. 17-19. In general, LDI could be

neglected for the clamped case. The stretching is higher for the simply-supported plate compared to

the clamped plate. The large deflection effect is much more pronounced for the case of T2 and LIII,

consequently the stretching becomes dominant. Therefore, the resistance of the simply-supported

plate to the blast load increases more than the resistance of the clamped plate as the load is

increased. Therefore, the effect of clamping becomes smaller for T2, LIII.

The analysis is performed for several positive phase durations to understand the effect of the

period of the positive pressure load on the dynamic response of the plate. The higher peak

displacement is obtained as the positive phase duration is increased for both simply-supported and

clamped plates although the peak pressure is same for each case (Figs. 20 and 21). However, it is

found that there is not a linear relation between the period of positive load and the increase in the

peak displacement.

The free vibration frequencies of the laminated plate M1 are calculated for both simply-supported

and clamped plates by using ANSYS finite element software. The vibration frequencies under blast

effect (Figs. 2-7 and Figs. 14-16) are found to be closer to the free vibration frequencies of the first

and second modes. This indicates that the first two modes are dominant for the vibration of the

laminated plate subjected to the blast loading considered in this study. It is also observed that the

vibration frequencies increase as the magnitude of the blast load is increased. 

The displacement-time and strain-time histories of the plate center are obtained for the LIII, T2

and two different boundary conditions for M2 and M3. The central displacement-time and strain-

time histories of the simply-supported plate are shown in Figs. 22-25. A slight difference is shown

between the LDWI and LD cases for the displacements. A difference is shown between the

Fig. 22 Displacement time-history of simply-supported
plate for thickness T2, Load Case III and
M2

Fig. 23 Displacement time-history of simply-supported
plate for thickness T2, Load Case III and
M3
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predicted strain-time histories by LDWI and LD analyses. Both the displacement amplitude and

strain amplitude are found to be slightly higher for the M2 compared to those of M3. This indicates

that the fiber orientation angles have an effect on the dynamic response of the plate and they could

be chosen so that the maximum resistance to the blast load is obtained.

The central displacement-time and strain-time histories of the clamped plate are shown in

Figs. 26-29. A slight difference is shown between the LDWI and LD cases for the displacements. A

difference is shown between the predicted strain-time histories by LDWI and LD analyses. Similar

to the simply-supported plate, both the displacement amplitude and strain amplitude are found to be

Fig. 24 Strain time-history of simply-supported plate
for thickness T2, Load Case III and M2

Fig. 25 Strain time-history of simply-supported plate
for thickness T2, Load Case III and M3

Fig. 26 Displacement time-history of clamped plate
for thickness T2, Load Case III and M2

Fig. 27 Displacement time-history of clamped plate
for thickness T2, Load Case III and M3
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slightly higher for the M2 compared to those of M3. This indicates that the fiber orientation angles

have an effect on the dynamic response of the plate and they could be chosen so that the maximum

resistance to the blast load is obtained.

5. Conclusions

The predicted values of displacements are found to be slightly lower than the FEM results. This is

the result of solution functions chosen for the in-plane and out-of-plane deformations. In this study,

in-plane and out-of-plane deformations are described by using only the first term of the series

solution. The solution function with one term cannot define the in-plane and out-of-plane

deformations exactly. This can be a reason for the difference between two methods.

It is clearly shown that the stretching portion of the strain is higher for the simply-supported

plates. This is because the edges of the simply-supported plate rotate during deformation. This

Fig. 28 Strain time-history of clamped plate for
thickness T2, Load Case III and M2

Fig. 29 Strain time-history of clamped plate for
thickness T2, Load Case III and M3 

Table 4 Free vibration frequencies of the laminated plate (M1) 

Mode
Simply-supported

(T1)
Simply-supported

(T2)
Clamped
(T1)

Clamped
(T2)

1 113.33 224.67 228.76 449.83

2 303.24 597.62 468.30 907.77

3 303.24 597.62 468.30 907.77

4 451.41 884.21 654.38 1259.7

5 633.74 1233.3 852.72 1619.8
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rotation causes the stretching of the plate an important amount in addition to the bending. This

stretching increases as the load is increased. The increase in the load increases the nonlinearity.

Therefore, it is important to consider the effect of in-plane deformations when the plate is simply-

supported. However, in the case of clamped plate, the edges of the plate do not rotate; hence the

stretching will be very small even the deformation is large. Therefore, the strain-time histories

obtained from LD and LDWI analyses slightly differ. The displacement-time histories obtained from

LD and LDWI analyses are close to each other for both simply-supported and clamped boundary

conditions. 

Another important result is that the bending portion of the strain is not exactly same as the strain

obtained from LD analysis because of the coupling effect between stretching and bending during the

solution. The parametric study on the effect of positive phase duration on the dynamic response

indicates that there is not a linear relation between the increase in the peak displacement and the

period of positive load. The free vibration frequencies of the laminated plate M1 are also calculated

for both simply-supported and clamped plates by using ANSYS finite element software. It is

observed that the first two modes are dominant for the vibration of the laminated plate subjected to

the blast loading considered in this study.
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