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Abstract. In this paper, a new damage detection and quantification method has been presented to
perform detection and quantification of structural damage under ambient vibration loadings. To extract
modal properties of the structural system under ambient excitation, natural excitation technique (NExT)
and eigensystem realization algorithm (ERA) are employed. Sensitivity matrices of the dynamic residual
force vector have been derived and used in the parameter subset selection method to identify multiple
damaged locations. In the sequel, the steady state genetic algorithm (SSGA) is used to determine
quantified levels of the identified damage by minimizing errors in the modal flexibility matrix. In this
study, performance of the proposed damage detection and quantification methodology is evaluated using a
finite element model of a truss structure with considerations of possible experimental errors and noises. A
series of numerical examples with five different damage scenarios including a challengingly small damage
level demonstrates that the proposed methodology can efficaciously detect and quantify damage under
noisy ambient vibrations. 

Keywords: modal identification; Eigensystem Realization Algorithm (ERA); Natural Excitation Tech-
nique (NExT); subset selection; genetic algorithm; damage detection; structural health monitoring

1. Introduction

 

Monitoring of structural integrity during service periods has increasingly become common not

only for securing the safety of infrastructure, but also for minimizing maintenance costs. Recent

developments of vibration-based structural health monitoring (SHM) techniques and current

technological gaps can be found in numerous studies cited in the reference section of this paper

(Beck et al. 1994, Doebling et al. 1998, Stubbs et al. 2000, Sohn et al. 2003, Caicedo et al. 2004,

Lynch et al. 2004, Gao et al. 2006, Nayeri et al. 2007, Nayeri et al. 2008). Rationale of the

vibration-based monitoring techniques is that modal properties (i.e., natural frequencies, mode

shapes and modal damping ratios) are theoretically linked to structural changes. According to

literatures (Friswell et al. 1997), natural frequencies could be insensitive to local and small damages

in the structure. Therefore, substantial efforts have been put in development of robust and accurate

techniques for monitoring and detecting damage.

Compared to the forced vibration test, ambient vibrations such as traffic-, wind- and pedestrian-
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induced vibrations can be measured at any time during operations without operational interference

or the use of special equipment for the excitation. By employing modal identification techniques

such as eigensystem realization algorithm (ERA) technique (Juang et al. 1985), Ibrahim time

domain (ITD) method (Ibrahim et al. 1977) and stochastic subspace iteration (SSI) technique (Van

Overschee et al. 1996), in-situ measurements of the ambient vibration data have been successfully

used for tracking structural changes of real-life buildings, bridges, and historical monuments caused

by deterioration, damage, temperature, and any operational anomalies (Peeters et al. 2001, Wong

2004, Amani et al. 2007, Lee et al. 2007, Nayeri et al. 2007, Bani-Hani et al. 2008, Nayeri et al.

2008); the in-situ measurements have also been successfully used for building baseline finite

element models for structural damage detection, condition assessment, and long-term SHM purposes

(Farrar et al. 1997, Ren et al. 2005, Siringoringo et al. 2006, Duan et al. 2007, Gentile et al. 2008).

In 2001, Bernal developed the damage locating vector (DLV) method, which has gained

considerable attentions recently (Bernal 2002, Sim et al. 2008). Salient advantage of the DLV

method is that the DLV vector can be computed strictly from measured data without the need to

refer to any mathematical model. The DLV method is based on the principle of minimum potential

energy and flexibility matrix. Friswell et al. suggested a subset selection method for use in locating

damage; their method uses eigen-sensitivities, measuring the differences in natural frequencies

between the damaged and undamaged states of a structure (Friswell et al. 1997). Yun et al.

suggested a new parameter subset selection method based on sensitivity of dynamic residual force

instead of simple sensitivity of natural frequencies and mode shapes; this method is known to be

more accurate in identifying multiple damage locations than the original method (Yun et al. 2008,

Yun et al. 2008). The subset selection method is fundamentally different from the DLV method in

the fact that the subset selection method exploits a sensitivity matrix of a residual function of modal

properties between simulations and experiments. The new subset selection method has not been

demonstrated for the ambient vibration-based damage diagnosis. 

For damage quantification, optimization problems are often formulated using cost functions in

terms of modal properties. Most of the methods are categorized into two different methods: 1)

heuristic optimization algorithm-based parameter search methods, and 2) gradient based numerical

optimization methods. Genetic algorithms have been known to be robust in searching for global

minimum or maximum values of cost functions; however, they have limitations due to the

enormous computational times when using large-scale identification models. On the contrary, the

gradient based searching methods can have difficulties in finding global minimum or maximum

values when the initial solution is far different from the true solution. In particular, the steady state

genetic algorithm is known to be faster than other standard or simple genetic algorithm methods

without sacrificing its global searching capabilities (Syswerda 1991). There is a broad spectrum of

vibration based damage diagnosis methods that adopt different techniques for damage detection,

quantification, and consideration of uncertainties.

This paper proposes a new methodology for detecting and quantifying structural damage under

ambient vibration, which combines the new parameter subset selection based damage detection with

an evolutionary quantification method. Modal properties are identified by using NExT/ERA method.

The proposed methodology consists of four major steps: 1) measurement of ambient vibration

response; 2) modal identification using a time-domain output-only technique, NExT/ERA; 3)

damage localization using a new parameter subset selection method; 4) damage quantification using

a steady state genetic algorithm. A flowchart for the proposed methodology is illustrated in Fig. 1.

Simulated ambient vibration testing of a truss bridge structure was conducted considering noise
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effects. A series of numerical examples with five different damage scenarios have been conducted

under ambient vibration. Finally, the proposed methodology is proven to be efficacious in damage

diagnosis and can potentially be applied to condition assessment of in-field structures.

2. Modal identification by NExT/ERA technique

2.1 Impulse Response by Natural Excitation Technique (NExT)

 

The theoretical justification of the NExT technique is based on the observation that correlation

functions (auto- and cross-correlation functions) calculated from measured output data (commonly

acceleration measurements) can be expressed in terms of sum of decaying sinusoids, which have the

same damped natural frequency and damping ratio as the impulse response function of the original

structural system. NExT is based on the two assumptions: 1) input excitations are a stationary random

white noise and are uncorrelated with the response, which is also a weakly stationary random process,

and 2) the structural system is excited within the linear elastic regime so that the principle of

superposition is valid. In this section, the theoretical aspects will be revisited (James et al. 1993,

Farrar et al. 1997). However, it is noteworthy that the first assumption is not necessarily satisfied,

since the technique has been well applied to wind-, traffic- and pedestrian-induced ambient vibrations

– which are not a completely random form of white noise. Solutions of the equation of motion

decomposed in modal space are obtained using the Duhamel integral (or convolution integral). The

response at ith degree of freedom (DOF) due to force pk(τ) at kth DOF is expressed as

 Fig. 1 A flow chart of the proposed ambient vibration based damage detection and quantification method
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(1)

where hr(t) = (1/(mrωD
r))exp(−ζrωn

rt)sin(ωD
rt) is the unit impulse response function corresponding to

rth mode; n indicates the number of modes; and  and  are the ith and kth components of the

rth mode shape. ωD
r indicates the damped natural frequency of the rth mode, which is equal to ωn

r

(1 − ζ r2)−1/2. To calculate the impulse response function, pk(t) is assumed to be a Dirac delta

function at τ = 0. The integration is then dropped in Eq. (1), which is expressed as

(2)

The key idea of the NExT technique is the similarity between the cross-correlation function (Eq.

(3)) and the impulse response function in Eq. (2) in terms of damped natural frequency and

damping ratio. Assuming that system response is a stationary random process, the cross-correlation

functions between two outputs at points i and j are defined as (Bendat et al. 2000)

(3)

where E[ ] indicates the expectation operator. By substituting Eq. (1) into Eq. (3) and simplifying

further, based on an assumption that input excitation is a white noise randomprocess, the correlation

functions can be expressed as follows

(4)

Further algebraic manipulation and simplification allows Eq. (4) to be in a form that has the same

modal characteristics as the impulse response of original system, i.e., Eq. (2). Thus, the correlation

function calculated from the displacement response at two points satisfies the homogeneous

equation of motion. By Wiener-Khintchine relations, the cross-correlation functions and the cross-

power spectral density (CPSD) functions form a Fourier transform pair as follows

(5)

where  indicates the CPSD function. Thus, the cross-power spectral density is first

calculated using a built-in MATLAB function (cpsd.m) and then it is transformed to a correlation

function through discrete inverse Fourier transform using a built-in MATLAB function (ifft.m). To

improve signals by reducing non-reproducible noise, ensemble averaging and windowing techniques

are employed. Once the impulse response of the system is obtained, ERA is used for modal

identification, as discussed in the following section.

2.2 Modal Identification by Eigensystem Realization Analysis (ERA)

In this section, the Eigensystem realization analysis (ERA) is briefly introduced. Details on the

derivation can be found in (Juang et al. 1985, Juang 1994). The ERA is originally based on Ho-
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Kalman procedure for realization of the space-state model of linear systems (Ho et al. 1965). A

finite-dimensional linear time-invariant system can be written in a state-space form as follows

(6)

where x, p, and y are the state (n × 1), control or input (r × 1) and output vector (m × 1),

respectively. Ac, Bc, Cc and Dc are constant matrices representing a continuous-time system and A,

B, C and D are for a discrete-time system. Considering the impulse response of the system under

zero-initial condition (ui(0) = 1 for i = 1, 2,…, r and ui(k) = 0 for i = 1, 2,…, r), the system Markov

parameter can be obtained as

(7)

where Yk indicates the system Markov parameter matrix having a dimension (m × r) and A

indicates the system matrix in discrete-time representation. The primary objective of the ERA

analysis is to reconstruct the discrete-time model identified by a triplet [A, B, and C] from the

impulse response. Since D = Y0, only the triplet needs to be reconstructed. ERA starts with the

construction of a Hankel matrix, which consists of pulse response samples.

(8)

where Pα = [C, CA, CA
2, … , CAα+shift-1]T is the observability matrix and Qβ = [B, AB, A

2B, … ,

Aβ
+shift-1B] is the controllability matrix; shift is set to 10 in this paper according to experience. The

last row and column blocks are time-shifted by “shift” times more than normal shifting time to

calculate consistency indicators. If the size of the Hankel matrix is too small, then some of the

physical modes can be missed. On the contrary, if the size of the Hankel matrix is unnecessarily too

large, then the system matrix A can be tainted with a significant number of nonphysical modes.

To realize the underlying state-space model, it is necessary to apply singular value decomposition

(SVD) to the Hankel matrix as follows

(9)

where R and S indicate the left and right eigenvectors of H(0) and Σ is a diagonal matrix that has

singular values along its diagonal terms. The rank of the Hankel matrix is determined by checking

the number of non-zero singular values. The row and column block is replaced with the triplet for

the discrete-time system, which can be identified as follows (Juang et al. 1985)
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where Rn and Sn are formed by eliminating columns of R and S corresponding to relatively small or

negligible singular values. It is noted that the relationships  and  are established.

H(1) is a time-shifted Hankel matrix from H(0).  = [I 0] and  = [I 0] are used for selecting

the system matrices  and  from extended controllability and observability matrices. The

eigenvalues and eigenvector matrix of  can be found by solving the eigenvalue problem, which is

defined as

(11)

where Ψ indicates the eigenvector matrix and Λ = diag(λ1, λ2,…, λn) indicates the diagonal matrix

containing eignevalues. Next, the eigenvalues, modal participation factor, and mode shapes can be

obtained as 

; ; (12)

where B' indicates the modal participation factors and C' indicates the mode shapes. The natural

frequency and the modal damping ratio are obtained after transforming to s-plane; that is, sn =

ln(λn)/∆t, where ∆t is the sampling time step size. Lastly, the modal damping ratio and the damped
natural frequencies in hertz are obtained as follows

; (13)

where n means the nth mode; Re{·} and Im{·} indicates the real and imaginary parts of a complex

variable; fdn indicates damped natural frequency of the nth mode.

However, in practical implementations, ERA analysis can contain a significant number of
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(14)

where zm is the vector consisting of values obtained from measured data and z(θ) consists of the

same quantities as a function of damage parameters, θ. Because the residual function is a nonlinear

function of the damage parameters, it is a combinatorial optimization problem in which θ is sought

by minimizing this function. Dropping higher order terms of Taylor series of zm, a linearized zm
equation is given by 

(15)

where b = zm− z(0) is the difference in the measured values between the measured and predicted

damaged states and . In (Titurus et al. 2003, Song et

al. 2009), zm was defined as stacked fundamental modal quantities such as eigenvalues and

eigenvectors. However, in this paper, zm is defined as a residual force vector. For instance, the ith

residual force vector for an undamaged structure is given by

(16)

where K and M are the stiffness and mass matrices of the structure, respectively. In practical

applications of the proposed method, the effect of the measurement error on its performance is more

pronounced than the modeling errors. 

Taking the derivative of the residual force vector with respect to the jth damage parameter,

sensitivities of the residual force vector can be expressed as

(17)

It should also be noted that the mass matrix is assumed to not change. Thus, the sensitivity of the

eigenvalues and mode shapes are calculated as in (Fox et al. 1968). However, because the mass

matrix is constant, the second term in the sensitivity of the mode shapes will vanish. Therefore, the

sensitivity matrix S in terms of the residual force vectors is

(18)
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where λdi and ϕdi are the measured eigenvalues and mode shapes of the damaged structure,

respectively. Because the residual force vector for an undamaged structure, Rui will be

approximately equal to the zero vector, residual values of the b vector originate from Rdi. The next

problem is finding the subset of parameters that will minimize the residuals within these equations.

Because the number of rows of the S matrix is greater than the number of columns, the problem is

ill-posed in an overdetermined sense. To correct for this, the parameter subset selection method is

employed for purposes of regularization, as described in the following section.

3.2 Regularization through parameter subset selection method

In the identification of damage parameters, sub-optimal problems are often sequentially

formulated using the forward selection approach (Lallement et al. 1990). In each sub-optimal

problem, one damage parameter is selected out of the remaining damage parameters. The difference

of measured data, b, in Eq. (19) can be viewed as a linear combination of a set of column vectors

within the S = [a1 a2 … ap] matrix using 

(20)

where p indicates the number of damage parameters and aj is the jth column of the S matrix.

Overall, the main task of forward selection is to select a column vector in the S matrix that best

represents the residual vector b, that is, yields the minimum value of the resulting residual function 

(21)

where the summation rule with respect to j is not applied here and the least square estimate eθj of

the jth parameter can be obtained by taking a derivative of J =  with respect to θj as 

(22)

Finding the minimum value of the residual function J =  is equivalent to finding a

vector aj that forms the minimum angle with the vector b. This procedure seeks the best basis

vector aj that is closest to the damage residual vector b. If the first basis vector aj1 and its

corresponding damage parameter θj1 are found, Gram-Schmidt orthogonalization is generally

performed on the remaining column vectors to ensure a well-conditioned sub-matrix of S. A vector

orthogonal to the first vector is produced by taking the original second vector and projecting out the

component of the vector that lies along the first vector. This task is accomplished through the

following equations 
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calculated and the minimum value is chosen as follows

and (24)

Equivalently, the minimum angle between orthgonalized column vector aj and residual vector b

can be sought. Therefore, the angle can be described as

(25)

This iterative procedure is continued in order to identify m damage parameters while retaining the

parameters chosen in the previous steps. When a total of m damage parameters are selected in the

subset, the residual sum of squares is defined as 

(26)

where eθj is the least squares estimator for the jth parameter, as found in Eq. (22). Efroymson

suggested a stepwise regression algorithm that provides a basis by which to decide whether a new

parameter should be included in the subset (Efroymson 1960). If [θ1, θ2, …, θm] are already selected

as damage parameters and a new parameter θm+1 is chosen for evaluation, then the F-to-enter

statistic can be expressed as

(27)

where RSS indicates the residual sum of squares and n is the number of total parameters. If the Fa

value is greater than a predetermined value (Fin), the parameter is included in the subset. If the

criterion is not met, the parameter is excluded. 

4. Damage quantification by steady state genetic algorithm

Once damage detection has been achieved by the subset selection method, the extent of damage

can be evaluated; this evaluation of damage extent plays an important role in the subsequent

decision-making process. When dealing with large-scale finite element models in genetic algorithms,

the evaluation of cost functions requires an enormous computational time. In this study, the steady

state genetic algorithm (SSGA) was used to overcome the demand for considerable amounts of

computational time.

4.1 Modal flexibility matrix for cost function

A finite element model containing damage parameters is used for the identification model. The

damage parameters in the model are related to changes in the stiffness matrix and/or mass matrix. It

is assumed that structural damage is described as a reduction in Young’s modulus (E) for each finite
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(28)

where ‘nelem’ is the total number of elements in the analytical model; θi is the damage parameter

associated with the ith element, which equals zero for the healthy state and unity for the complete

damage state; and [K] is the structural stiffness matrix, where [K] is assembled from the elemental

stiffness matrices [k]i as expressed in Eq. (28). The modal flexibility matrix is employed as a cost

function. With its particular sensitivity to structural damage, the modal flexibility methodology is

numerically advantageous to use over the flexibility matrix because it does not require the inverse

of the modal matrix. Therefore, the computation time is significantly less demanding. The modal

flexibility matrix can be derived as 

(29)

where Φ is the mode shape matrix and Λ represents the diagonal matrix containing the square of

the modal frequencies. Underlying assumption in Eq. (29) is that the mode shape matrix should be

mass-normalized. In practical applications, estimating masses of actual structures could be erroneous

resulting in negative effects on the damage quantification. Therefore, precise determination of

masses of the monitored structure is required in order to use the modal flexibility matrix as an

objective function. The difference between the tested model and the analytical model can then be

utilized as an objective function for damage quantification

(30)

where θ is the vector depicting the damage parameters, || ||Fro represents the Frobenius norm for the

residual matrix, Fexp indicates modal flexibility matrix from the identified results, and Fupdated is the

modal flexibility matrix calculated from the analytical model with vector damage parameters.

4.2 Steady State Genetic Algorithm (SSGA)

In conventional GAs, such as the simple genetic algorithm (SGA), the entire population is

replaced in each generation through the GA operators. Therefore, the reproduction process for the

SGA will require an enormous amount of computational time because it has to evaluate the cost

function for the entire population. However, the steady state genetic algorithm (SSGA) based on

non-generational evolution paradigm can achieve equivalent performance as the SGA with elitism

and scaling of fitness values, and it saves a tremendous amount of computational time because it

evaluates only a small percentage of the entire population during each generation. By considering

this advantage of SSGA with the idea of modeling to generate alternatives (MGA), Caicedo et al.

(2008) were able to develop a combined SSGA-MGA algorithm (Caicedo and Yun 2011). 

Unlike the SGA, the SSGA significantly simplifies reproduction process for new offspring. After

initialization of the parent population, all chromosomes are ranked according to their fitness values.

Thus, the cost function must be computed for the entire population at the beginning, which is a one-

time computation. However, after the parent population is evaluated, the two chromosomes with the

highest fitness values are chosen for crossover and therefore produce new offspring. The new
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offspring replace the two chromosomes with the worst fitness values. After that, to ensure diversity,

mutation is applied to the new offspring. Finally, cost functions of only two new mutated offspring

are evaluated in the SSGA algorithm. Computation of the cost function of a chromosome requires

recalculations of elemental stiffness matrices, eigenvalues, mode shapes and modal flexibility matrix

with a new set of element-by-element damage parameters. Considering that other genetic algorithms

require computations of cost function of every chromosome in each generation, this characteristic of

the SSGA is very beneficial, as it can significantly reduce the computational effort. Moreover, the

population evolves steadily toward optimal solutions without endangering the highest fit schemata

that already exists in the population.

5. Illustrative numerical examples and discussions

In this example, the proposed method from modal identification to damage detection has been

verified with numerical examples, which consider environmental effects such as damping level and

sensor noise and error. 

5.1 Example truss structure and numerical modeling

In this example, a 14-bay planar truss is selected to demonstrate the performance of the proposed

SHM methodology for the purpose of damage diagnosis. The truss is modeled using 53 truss

elements with 28 nodes, as shown in Fig. 2. The total length of the structure is 5.56 m (each of the

14 bays is 0.40 m in length) and the height of the truss structure is 0.40 m. The members are steel

bars with a tube cross section having an inner diameter of 3.1 mm and an outer diameter of

17.0 mm. The physical properties are as follows: the elastic modulus of the material is equal to

1.999 × 1011 N/m2; and the mass density is equal to 7,827 kg/m3. The members are connected using

pinned joints. There are two supports at each end of the structure: a pin support at the left end and a

pinned roller support at the right end. The resulting numerical model has 53 DOFs. In this paper,

sensors are assumed to be placed at each node.

The truss structure has been modeled as a linear time-invariant model in state-space form. A

classical damping matrix of the structure is formed using a modal damping ratio applied to all the

modes. For numerical simulations under ambient excitation, a built-in MATLAB function (lsim.m)

is used. 

Fig. 2 2D finite element model (the circled number indicates element number) of a fourteen-bay planar truss 
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5.2 Damage scenarios

Five damage scenarios are assumed herein. The first damage scenario assumes single severe

damage at the element number 32, representing 90% loss of the cross section. The second damage

scenario is intended to be a multiple severe damage (90% loss of cross section) case where the

damaged elements (element numbers 7, 8, and 40) are located nearby. The third damage scenario

assumes a severe multiple damage (90% loss of cross section) case in which the damaged elements

(element numbers 13, 20, and 33) are evenly distributed along the span. The fourth damage scenario

assumes a challenging case in which two elements are lightly damaged (10% loss of cross section;

element numbers 8 and 18). The fifth scenario is also challenging case in which noisy ambient data

will be used for identifying lightly damaged elements (15% loss of cross section; element numbers

8 and 18). The current damage scenarios are summarized in Table 1.

5.3 Damage diagnosis under ambient vibration data

Modal Identification: In this example, modal properties (e.g., natural frequency, mode shapes,

damping ratios and modal participation factors) are identified using the NExT/ERA method under

ambient vibration. The modal identification assumes a constant modal damping ratio of 0.1% for

every mode. Natural frequencies of the numerical model are within a range of 31.93 Hz to

2979.77 Hz. By using the sampling frequency 2028 Hz, the ambient vibration measurements are

purposely set to have the highest identifiable natural frequency that is less than 1024 Hz by which

total 19 modes are identifiable. A Gaussian white noise excitation is applied in a vertical direction

at node 4, which is corresponding to DOF 6. A typical acceleration measurement from the input

excitation is shown in Fig. 3(a). For comparison, the impulse response function is obtained as in

Fig. 3(b) by inverse fast Fourier transform (IFFT) of the frequency response function (FRF).

Fig. 4(a) shows a CPSD function between the response at a reference DOF 6 and the response at

DOF 34. For the calculation of the CPSD, 4,096 points are used for each window and a total of 360

windows are averaged.

Accuracy of the modal identification is assessed using the consistency mode indicator (Pappa et

al. 1993). According to the test, the ERA analyses showed better performances with lightly damped

structures than with highly damped structures. For the current analysis, the size of the Hankel

matrix is fixed to have 1060 × 530. 

Damage Detection and Quantification: Using the identified first 10 modal properties, multiple

locations of damage are identified by the proposed parameter subset selection method prior to

quantification of the damage severity. In the parameter subset selection method, threshold values for

Table 1 Tested damage scenarios

Damage Scenarios Damaged Elements Damage Severity Distribution # of Damaged Element

1 32 90% loss of section - Single

2 7, 8, 40 90% loss of section Grouped Multiple

3 13, 20, 33 90% loss of section Distributed Multiple

4 8, 18 10% loss of section Distributed Multiple

5 8, 18 15% loss of section Distributed Multiple
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the F-to-enter statistic (which is calculated in Eq. (27)) are determined by plotting the F-to-enter

ratios during iterative steps of subset selection as shown in Fig. 5, since they are dependent on the

given problems. Damaged elements are selected for each damage scenario in Fig. 5. If an

undamaged element is selected, the F-to-enter statistic abruptly decreases. In the case of damage

scenario 1, the F-to-enter ratio plot apparently indicates the presence of a single damaged element

as shown in Fig. 5(a). However, for the sake of safe selection, two elements are selected as the

suspicious damaged elements. In the case of damage scenario 2, a total of five elements are chosen

based on the threshold value of 0.35. The parameter subset selection method is shown to be capable

of selecting all of the assumed damage locations.

Since a minimum angle between the orthogonalized column vector of the sensitive matrix and

residual vector in Eq. (25) is sought during iterations of the parameter subset selection, elements

having smaller subspace angles with residual vector are selected as potentially damaged elements.

Fig. 3 (a) A typical ambient vibration measurements in acceleration and (b) a typical original impulse free
response from IFFT of FRFs 

Fig. 4 (a) A typical cross-power-spectral density function between the response of a reference DOF 6 and the
response of DOF 34 and (b) its corresponding reconstructed impulse free response through NExT
technique 
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Figs. 6(a), 6(c), 6(e) and 6(g) show “90o-subspace angle” for all the elements after the selection

process. In terms of the subspace angle, damaged elements were distinguishable from other

undamaged elements. Apparently, it is advantageous that the parameter subset selection method

could efficiently reduce the number of damage parameters before solving the optimization problem

for damage quantifications. Figs. 6(b), 6(d), 6(f) and 6(h) show the extent of the damage determined

by the steady state genetic algorithm for the damage scenarios 1 through 4. It is notable that

although undamaged elements are erroneously selected, the steady state genetic algorithm is capable

of both regulating incorrectly chosen elements and measuring extents of the damage. For example,

elements 6 and 53 were selected as potentially damaged elements by the parameter subset selection

method in the case of damage scenario 2. However, while searching the extent of damage through

the genetic algorithm, they were identified as undamaged elements or elements with minor changes

in structural stiffness. Damage scenario 4 is a lightly damaged case in which a 10% loss of cross

sections of two elements is assumed. As shown in Fig. 6, their damage locations and the severity of

the damage were reasonably identified. The proposed damage diagnosis methodology was shown to

be an excellent tool when combined with the modal identification for structural health monitoring

through the testing under single, multiple, spatially grouped, distributed, severely and lightly

damaged cases.

Fig. 5 F-to-enter ratios showing damaged elements and their order of selection by parameter subset selection
method 
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Fig. 6 Damage locations identified by parameter subset selection method and damage extent determined by
steady state genetic algorithm for damage scenario 1, 2, 3 and 4; First 10 mode shapes were used 
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5.4 Damage diagnosis under noisy ambient vibration 

In this section, the suggested damage diagnosis method has been demonstrated under noisy

ambient measurement data. The modal identification assumes a constant modal damping ratio of

0.1% for every mode in order to study the effect of the sensor noise alone on the accuracy of the

identification results. Before beginning the modal identification, acceleration response data are

contaminated with zero-mean Gaussian broadband noise signals. Three noise levels – in which the

signal-to-noise ratio (SNR) is equal to 20 dB, 10 dB, and 1 dB – and a noise-free case are

considered. The SNR is defined as

(31)SNR 10log10

σS

2

σN

2
------
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

Table 2 Modal identification results for different damage scenario and effects of sensor noise (1st mode)

Damage 
Scenario

Accuracy Noise-Free Data SNR = 20 dB SNR = 10 dB SNR = 1 dB

1 100 × |ftrue − fid|/ftrue 0.1376 0.1449 0.2292 0.0219

MAC(ϕtrue, ϕid) 0.9999 0.9999 0.9998 0.9979

2 100 × |ftrue − fid|/ftrue 0.0194 0.0184 0.0715 0.0475

MAC(ϕtrue, ϕid) 0.9999 0.9999 0.9998 0.9921

3 100 × |ftrue − fid|/ftrue 0.1645 0.1938 0.1508 0.1456

MAC(ϕtrue, ϕid) 0.9999 0.9999 0.9999 0.9996

4 100 × |ftrue − fid|/ftrue 0.0929 0.0717 0.0749 0.1136

MAC(ϕtrue, ϕid) 0.9999 0.9999 0.9999 0.9947

5 100 × |ftrue − fid|/ftrue 0.1388 0.1496 0.1365 0.1668

MAC(ϕtrue, ϕid) 0.9999 0.9999 0.9999 0.9989

Table 3 Modal identification results for different damage scenario and effects of sensor noise (10th mode)

Damage 
Scenario

Accuracy Noise-Free Data SNR = 20 dB SNR = 10 dB SNR = 1 dB

1 100 × |ftrue − fid|/ftrue 0.0083 0.0037 0.0266 0.1538

MAC(ϕtrue, ϕid) 0.9980 0.9994 0.9896 0.7470

2 100 × |ftrue − fid|/ftrue 0.0002 0.0069 0.0016 0.0039

MAC(ϕtrue, ϕid) 0.9999 0.9999 0.9996 0.9995

3 100 × |ftrue − fid|/ftrue 0.0034 0.0081 0.0060 0.0099

MAC(ϕtrue, ϕid) 0.9999 0.9999 0.9971 0.9999

4 100 × |ftrue − fid|/ftrue 0.0107 0.0077 0.0030 0.0047

MAC(ϕtrue, ϕid) 0.9989 0.9991 0.9993 0.9905

5 100 × |ftrue − fid|/ftrue 0.0059 0.0047 0.0038 0.0034

MAC(ϕtrue, ϕid) 0.9997 0.9929 0.9995 0.9986
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where  indicates the variance of the ambient response signal and  indicates the variance of the

zero-mean Gaussian noise added to the acceleration response. In this example, the Hankel matrix

size is set to be 1060 × 530 (row × column) with 212 poles assumed. 

Table 2 and Table 3 summarize the identification results with various levels of sensor noise for 1st

and 10th modes for each damage scenario. According to the results, the results of 1st and 10th

modes obtained from NExT/ERA are found to be insensitive to the sensor noise given. 

For the damage scenario 2, effects of the sensor noise on the identified results are demonstrated in

Fig. 7. Sensor noise is set to increase from 0.1 to 20 dB by 0.5 dB increments. Thus a total of 82

NExT/ERA analyses have been conducted. MAC values less than 0.5 are not indicated. Fig. 7

shows the effect of the sensor noise on the degree of deviations of the identified modal properties

from true values up to 19th mode. According to the results, the first 10 modes are determined to be

used for subsequent damage diagnosis by the proposed method.

In case of a 0.1% damping ratio, three identified modes (1, 4 and 10th modes) by NExT/ERA are

plotted in a complex plane. As shown in Fig. 8, the complex modes are in phase or 180o out of

phase because classical (proportional) damping is assumed. When sensor noise is considered, the

collinearity of the complex modes appears to be violated. Both the sensor noise and identification

accuracy of the NExT/ERA affects the collinearity of the complex modes. 

To investigate effects of the sensor noise added prior to the modal identification on performances

of the proposed damage diagnosis method, two cases – where sensor noise intensities have SNR

that were equal to 1 dB and 0.1 dB – are considered herein. The NExT/ERA techniques identified

σS

2
σN

2

Fig. 7 Effects of sensor noise (SNR = 0.1 dB~20 dB with 0.5 dB increments) on NExT/ERA frequency,
mode shapes and damping factor: damage scenario 2 is assumed 
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Fig. 8 Complex modes (Mode 1, 4 and 10) identified by NExT/ERA analysis and effects of sensor noise
(damage scenario 2) 

Table 4 Identified results by NExT/ERA techniques with sensor noises (NExT = 360 windows averaged = 8
sec data)

Mode
Number

SNR = 1dB SNR = 0.1 dB

MAC(ϕtrue, ϕid) 100 × |ftrue − fid|/ftrue MAC(ϕtrue, ϕid) 100 × |ftrue − fid|/ftrue

1 0.998842 0.346508 0.997222 0.369339

2 0.999946 0.017389 0.996620 0.018071

3 0.999729 0.050285 0.999116 0.021489

4 0.999945 0.013593 0.999777 0.017763

5 0.999637 0.010850 0.994431 0.001465

6 0.999046 0.006852 0.962472 0.013652

7 0.999944 0.004262 0.999426 0.013944

8 0.989088 0.002218 0.942207 0.005337

9 0.927253 0.003344 0.999612 0.000495

10 0.999820 0.012070 0.999256 0.033083
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modal properties as shown in Table 4. The first ten modes were identified with reasonable accuracy.

It is notable that the sensor noise effect on modal properties is very low, as shown in Table 4.

Therefore, the proposed method will be able to identify damage locations and the damage extent

with sufficient accuracy.

However, in in-situ modal testing, it could be difficult to obtain high quality mode shapes more

than 6 modes. Therefore, the first 5 mode shapes were used for damage scenario 5. In the case of

SNR = 1 dB, the parameter subset selection method chose a total of five elements (7, 6, 40, 8, and

53) as potentially damaged elements based on F-to-enter ratio plotted as in Fig. 9(a). However, in

the case of SNR = 0.1 dB, a total of six elements (42, 6, 32, 40, 8, and 7) are selected. Apparently,

the sensor noise causes negative effects in selecting the correct damaged elements because the

identified mode shapes and natural frequencies are used in calculations of the residual vector. Since

the sensor noise can also distort the modal flexibility matrix, the searching process by the steady

state genetic algorithm is shown to be slightly affected by the sensor noise as shown in Figs. 9(b)

and (d). However, the proposed damage diagnosis method was shown to reasonably identify

damage using the identified modal properties. Moreover, considering that the assumed sensor noise

Fig. 9 Selection of damaged elements and quantification of damage extent; sensor noise (SNR = 1 dB and
SNR = 0.1 dB) for damage scenario 2; NExT = 360 windows averaged = 8 sec data; First 10 mode
shapes were used 
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is far more intense than the normal intensity of sensor noise in practical applications (SNR = 1.0 dB

~7.0 dB), the proposed methodology is considered to be a very promising component used in

structural health monitoring systems in conjunction with advanced sensor technologies such as

wireless smart sensors. 

For a challenging case, damage scenario 5 has been tested as shown in Fig. 10. Noise level in this

case is assumed to be SNR = 20 dB. Through the parameter subset selection, 4 elements (8, 27, 18

and 33) were selected as potentially damaged ones. Actual damaged elements were successfully

included in the subset. Through the damage quantification process, actual damage levels of element

8 and 18 could be reasonable estimated as shown in Fig. 10. Element 33 was successfully found to

be under no damage. However, element 27 was erroneously included in the pool of damaged

elements due to noise effects. Overall, the proposed method could identify all damage locations as

well as their severity successfully.

As noted previously, the CPSDs from NExT technique were computed using 4096 points for FFT,

Fig. 10 Selection of damaged elements and quantification of damage extent: sensor noise (SNR = 20.0 dB)
for damage scenario 5; NExT = 360 windows averaged = 8 sec data; First 5 mode shapes are used 

Table 5 Identified results by NExT/ERA techniques with sensor noises (NExT = 45 windows Averaged = 8
sec data)

Mode
Number

SNR = 1 dB SNR = 0.1 dB

MAC(ϕtrue, ϕid) 100 × |ftrue − fid|/ftrue MA(ϕtrue, ϕid) 100 × |ftrue − fid|/ftrue

1 0.973990 0.099433 0.997002 0.241695

2 0.999943 0.003364 0.999870 0.003388

3 0.999934 0.004600 0.999935 0.000367

4 0.999951 0.017042 0.999912 0.008875

5 0.999668 0.016288 0.999319 0.026852

6 0.998988 0.003036 0.999133 0.001151

7 0.999960 0.005437 0.999919 0.002621

8 0.976089 0.017154 0.986495 0.012393

9 0.999965 0.002033 0.999967 0.007010

10 0.999955 0.000354 0.999879 0.000368



Detection and quantification of structural damage under ambient vibration environment 445

which produced 360 windows when averaged using 8-second time signals. To observe the effects of

the averaged number in NExT technique on final damage diagnosis results, we also tested using an

increased number of points: 32,768 points for FFT, which produced 45 windows to be averaged. As

summarized in Table 5, modal identification results are reliable up to 10 modes. It is notable that

the number of average in NExT does not magnify noise effects on the damage diagnosis results. It

is because the longer duration of time signals has effects nothing but increasing the frequency

resolutions eventually resulting in longer impulse response.

6. Conclusions

In this paper, a new damage detection and quantification method has been demonstrated to

perform a damage diagnosis of a truss bridge structure under ambient vibration. In practical aspects

for monitoring civil infrastructure, the importance of using ambient vibration data has been well

Fig. 11 Selection of damaged elements and quantification of damage extent; sensor noise (SNR = 1 dB) for
damage scenario 2; NExT = 45 windows averaged = 8 sec data; First 5 mode shapes were used 

Fig. 12 Selection of damaged elements and quantification of damage extent; sensor noise (SNR = 0.1 dB) for
damage scenario 2; NExT = 45 windows averaged = 8 sec data; First 5 mode shapes were used 
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recognized among researchers. NExT and ERA techniques are employed to identify modal

properties using noisy ambient vibration data. Combining the parameter subset selection method

with the steady state genetic algorithm, multiple damage locations could be located and quantified

even under noisy ambient vibration environments. Highlights of observations and advantages from

using the proposed method are presented as follows:

• The ERA analyses showed better performance with lightly damped structures than with highly
damped structures.

• For five damage scenarios, noise effects on the identified modal properties in higher modes are
more noticeable than those in lower modes.

• Damage effects on the modal properties identified by NExT/ERA appeared to be small.
• The subset selection method based on the sensitivity of the dynamic residual force can
efficaciously detect multiple damage locations.

• The number of averaged windows in NExT technique has little effect on magnification of noise
injected to ambient vibration data.

• The steady state genetic algorithm can further distinguish undamaged elements from damaged
elements quantifying the level of the damage precisely. 

According to the test results, the proposed method is shown to be very promising in structural

health monitoring of real-life structures under ambient vibration. The method can be used either for

damage diagnosis or model-based condition assessment.

In conclusion, the proposed damage diagnosis method has been demonstrated to quantitatively

assess the damage in structures under ambient environments. For future research, the proposed

method should be assessed with physical experiments or in-situ ambient measurements considering

other types of ambient environmental effects such as temperature variations.
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