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Abstract. Particle Swarm Optimization (PSO) is a stochastic population based optimization algorithm
which has attracted attentions of many researchers. This method has great potentials to be applied to
many optimization problems. Despite its robustness the standard version of PSO has some drawbacks that
may reduce its performance in optimization of complex structures such as laminated composites. In this
paper by suggesting a new variation scheme for acceleration parameters and inertial weight factors of
PSO a novel optimization algorithm is developed to enhance the basic version’s performance in
optimization of laminated composite structures. To verify the performance of the new proposed method, it
is applied in two multi-objective design optimization problems of laminated cylindrical. The numerical
results from the proposed method are compared with those from two other conventional versions of PSO-
based algorithms. The convergancy of the new algorithms is also compared with the other two versions.
The results reveal that the new modifications inthe basic forms of particle swarm optimization method can
increase its convergence speed and evade it from local optima traps. It is shown that the parameter
variation scheme as presented in this paper is successful and can evenfind more preferable optimum
results in design of laminated composite structures. 
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1. Introduction

Laminated composites are a group of the most popular structural members in mechanical systems.

Their ability of being tailored is a great advantage over the conventional materials. By tailoring the

laminates, structures with totally different properties can be designed with a similar production

costs. Tailoring increases complexities in the design problems. These complexities exist, not only

because of numerous design variables, but also because of having a multimodal and variable-

dimensional optimization problem with unattainable or costly derivatives. Usually the most desired

structure is the one which has the most compatibility with design limitations and has the lowest

production costs. The design domain for laminated composites is quite articulated; therefore,

advanced methods are required to search for the optimal design. One of the most important

objectives in the design of laminated structures is to achieve an optimum layout, which gives the
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desired mechanical properties while keeping low rates of weight and costs. Various optimization

methods have been considered by researchers (Sandhu 1971, Cairo 1970, Lansing et al. 1971,

Lombardi et al. 1992, Callahan and Weeks 1992, Le Riche and Haftka 1995, Ghiasi et al. 2009).

Some primitive studies have used gradient based methods for optimization of laminated composites

(Sandhu 1971). The Steepest Descend method was among the methods which were employed in

later studies (Cairo 1970, Lansing et al. 1971). Next generations of optimization methods benefited

a lot form the computational power of computers. This made the methods like Simulated Annealing

(Lombardi et al. 1992) and Genetic Algorithm (Callahan and Weeks 1992, Le Riche and Haftka

1995) among the most popular methods for optimization of laminated composites. High

computational intensity and premature convergence were stated as the main disadvantages of

Genetic Algorithm (GA) (Ghiasi et al. 2009). This has led some researcher to look for other

optimization algorithms as alternative methods (Zehnder and Ermannim 2006, Jiang et al. 2008,

Luo et al. 2011, NarayanaNaik et al. 2011). In recent few years, other heuristic optimization

methods have attracted lots of attentions to themselves (David 2010). The Particle Swarm

Optimization (PSO) is one of the most successful methods in this category. PSO algorithm is a

stochastic population based optimization procedure. This method was originally introduced by

Kennedy and Eberhart (1995) for optimization of continuous problems. Moreover PSO has particles

driven from natural swarms, with communications based on evolutionary computations. In this

algorithm, a candidate solution is presented as a particle. This method combines self-experiences of

particles with the swarm’s social experiences. A number of advantages with respect to other

algorithms make PSO an ideal candidate for optimization tasks. The algorithm is robust and well

suited for analysis of non-linear and non-convex design spaces with discontinuities. It can also be

applied into continuous, discrete and integer variable types with ease. As compared to other robust

design optimization methods, PSO is more efficient, requires fewer numbers of function evaluations,

and leads to better or the same quality of results (Hu et al. 2003, Hassan et al. 2005). PSO’s

potential power of optimization has been used by multiple researchers. In recent few years this

method has been considered for design optimization of composite structures. Suresh and Sujit have

(2007) used this algorithm in multi-objective design of box beam structures and compared

efficiency of their algorithm with previous solutions obtained by GA. Better performance and

computational efficiency of PSO compared to GA have been reported in their study. Kathiravan

(2007) compared PSO to a gradient-based method for the maximization of the failure strength of a

thin walled composite box-beam. He found that PSO could give results superior or equivalent to the

gradient-based method. In comparison with similar evolutionary algorithms, PSO is a population

based algorithm however, in PSO; data is not destroyed during iterations. Another advantage of

PSO is that the initial assumptions have minor effects on the convergence of algorithm. As a new

random search method, PSO has encountered some problems such as premature convergence, slow

search speed, and too fast decrease of the variety of the particle swarm, resulting a search failure in

some cases (Clerc 2006). Researchers have tried to resolve this problem by introducing new

modified optimization algorithms based on basic PSO algorithm. Kennedy and Eberhart used a

discrete binary version of particle swarm optimization to resolve combinatorial optimization

problems in engineering practice. Zheng (2007) proposed a method of changing velocity rate to

enhance searching speed. Test experiments of domain topology were conducted (Kennedy 2007) in

which the best form of topology were designed based on actual situation. In order to improve the

performance of PSO and maintain the diversities of particles, distancesfrom the global best position

to other positions were calculated to adjust the velocity suitably of each particle (Kennedy 2000).
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Chen (2010) introduced particle swarm optimizer hybridized with extremal optimization.

Extrapolation techniques (Arumugam et al. 2009) have also been employed to create algorithms

similar to particle swarm optimization. Chen (2009) has also introduced a particle swarm

optimization with adaptive population size to improve the basic PSO’s performance. 

In this study, new scheme for variation of the PSO parameters is suggested to enhance the

performance and reduce the chance of entrapping in local optima. This new scheme is experimented

in optimization of laminated composite structures. In the suggested method, the acceleration

coefficients and inertial weights are prescribed to vary with certain schemes. In order to investigate

the performance of the modified PSO, this method is applied to some numerical examples and its

performance is compared with other two conventional versions of PSO, the Basic PSO (BPSO) and

Repulsive PSO (RPSO) algorithms. The Mechanical APDL software is used as FEM solver in these

problems. In order to use the FEM solver, the optimization codes are written in APDL language and

linked to the FEM solver. Numerical results and convergence graphs are presented for a thorough

investigation. 

2. Particle Swarm Optimization algorithms

2.1 Basic Particle Swarm Optimization algorithm (BPSO)

A PSO algorithm contains a swarm of particles, where each particle represents a potential solution

to the optimization problem. Particles move through a multi-dimensional search space and their

positions are adjusted according to its own experience and the experience of the other particles in

the swarm. The particle swarm process is stochastic in nature; the particle’s status in the search

space is characterized by two factors: position and velocity. The position and the velocity of the ith

particle in the d-dimensional search space can be represented as Xi = (xi,1, xi,2,…, xi,d) and Vi = (vi,1,

vi,2,…, vi,d), respectively. Regarding to the ‘‘memory’’ gained by each particle, the velocity vector is

updated, conceptually resembling an autobiographical memory, as well as the knowledge gained by

the swarm as a whole. There are generally two types of memories in PSO: personal best and global

best. Personal best remembers the best result each particle has reported since the beginning of the

solution. This memory is denoted as Pi = (pi,1, pi,2,…, pi,d). Global best memory is the best results

that the swarm has found so far. This parameter is denoted as G. The position of each particle in the

swarm is updated based on the social behavior of the swarm, which adapts to its environment by

returning to the promising regions of the space previously discovered and searching for better

positions over time. The updated velocity of particles in ith iteration is stated in Eq. (1). 

, (1)

In Eq. (1), c1 and c2 are constants called acceleration coefficients. Usually r1 and r2 are two

independent random numbers uniformly distributed in the range [0, 1] and c1 = c2. Large

coefficients increase velocity updates and make the algorithm globally explore the design space. On

the other hand small inertia values concentrate the velocity updates to nearby regions of the design

space. w is called the inertial weight factor which is often in the range of [0.1, 0.9]. The value of w

may be prescribed to change along the solution. As the iteration starts, the velocity of particles is

updated then it is used to update the position of particles. The new position is prescribed by Eq. (2).

vi j, t 1+( ) wvi j, t( ) c1r1 pi j, xi j, t( )–[ ] c2r2 gj xi j, t( )–[ ]++= j 1 2 … d, , ,=
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General description of PSO based algorithms can be summarized in Fig. 1. 

(2)

2.2 Repulsive Particle Swarm Optimization algorithm (RPSO)

PSO can stop evolution and rather fall into premature convergence especially for complex

problems with many optimization parameters and local optima in their design spaces (Ozcan and

Mohan 1999). Therefore, various different models of PSO have been developed recently to improve

its performance, and increase the diversity of particles of the original PSO (James et al. 2001).

xi j, t 1+( ) xi j, t( ) vi j, t 1+( )+=

Fig. 1  Schematic flow chart of PSO
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RPSO is a particle swarm optimization method in which there is repulsion between particles. This

repulsion enhances optimization procedure by preventing particles to be concentrated at one point.

By scattering articles through search space the risk of falling into local optima traps will be

considerably reduced. The main difference of RPSO with BPSO is the velocity assignment

mechanism. A random repulsion term has been considered in RPSO velocity equation. The velocity

assignment mechanism is presented in Eq. (3)

, (3)

The main parameters in Eq. (3) are as described for Eq. (2). The fourth term on left side generates

a noise in the velocity of a particle to enhance the exploration to new areas in the search space. r3

and w2 are random and repulsion inertia factors respectively. Consequently, RPSO can prevent the

swarm from being trapped in local minimum, which would cause a premature convergence and lead

to failure in finding the global optimum. Moreover, it can find global optima in more complex

search spaces. 

2.3 The Modified Particle Swarm Optimization algorithm (MPSO) 

As mentioned earlier, BPSO has an excellent performance in search for the optimum value but it

may be trapped into local optima points. Particles in RPSO have a repulsion fields that prevents

their premature concentration into local optima points. But this repulsion reduces the robustness of

algorithms and slows its evolution towards the global best. In this paper a new modified PSO based

algorithm is introduced for maintaining the robustness of BPSO and dynamics of RPSO at the same

time. This algorithm also benefits from dynamic acceleration coefficients as well as variable inertia

factors. The velocity assignment equation for MPSO is identical to Eq. (3) The Velocity inertial

factor is considered to linearly decrease during iterations. This variation can be summarized as

Eq. (4)

(4)

In this equation the inertial factor is restricted between its prescribed minimum and maximum

values which are presented as  and  and iter and  stand for number of current

iteration and total number of iterations respectively. Acceleration coefficients are also considered to

linearly vary in MPSO; c1 which represents the influence of best personal history is linearly

decreasing while the global best influence c2 is increased. These parameters vary in a manner that in

each iteration their summation is constant and equal to 4. This summation value is proposed by

Clerc (2002) for convergence insurance of PSO. The equations for variation of acceleration

coefficients are presented in Eqs. (5) and (6). At first iteration personal best history has the major

influence on velocity equation this makes the MPSO particles to look around their neighborhood

before traveling to the region of best global optima. After searching particles neighborhoods

increasing c2 attracts attention of particles towards the global best results and they start traveling to

that region. 

(5)

vi j, t 1+( ) w1vi j, t( ) c1r1 pi j, xi j, t( )–[ ] c2r2 gj xi j, t( )–[ ] c3r3w2+ ++= j 1 2 … d, , ,=

w1 w1

max w1

max
w1

min
–( )

itermax

------------------------------– iter×=

w1

max
w1

min
itermax

c1 c1

max c1

max
c1

min
–( )

itermax

---------------------------– iter×=
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(6)

As it is observed in Eq. (3) like RPSO, the MPSO velocity equation also has a repulsive factor

but instead of a constant w2 the repulsion coefficient is also taken as a variable. A multi-equation

scheme is chosen for this variation. The repulsion coefficient is confined between two prescribed

maximum and minimum values. This scheme can be summarized as follows

(7)

In first one fourth of iterations, the MPSO acts with variable inertial and acceleration factors, the

repulsion term is inactive in these iterations. After one fourth of iterationsin the time when the

particles are closing together the repulsion term is activated and linearly increased. This dynamics

helps the algorithm to prevent being trapped into local optimal points. 

3. Optimization procedure

3.1 Structural analysis

Numerical case studies in this paper mainly involve tensile and torsional cross-sectional stiffness

optimization of thin walled laminated cylindrical shells. Fan (1983) and Lin (2001) have proposed

methods for evolution of cross-sectional stiffness of laminated cylinders. They have suggested a

modified ABD matrix for these types of structures. They have added some additional stiffness terms

due to the curvature of the shell that has significant effects on the local stiffness in thick shells.

Since in this paper only thin shell structures are considered, these additional terms could be

neglected due to their minor contribution to overall cross-sectional stiffness. The usual approach for

calculating the cross-sectional stiffness properties in thin shells isto calculate the module of the

curved shell as if it were a flat laminate, and then simply apply this data in conjunction with the

shell geometry to obtain the overall shell stiffness values (Lemanski and Weaver 2006). In this

paper asimilar approach is considered for evaluation of ABD matrix in finite elements calculation of

cross-sectional stiffness. Displacement field in first order shear deformation theory (FSDT) is

described as Eq. (8) where  and v0 are midplane displacements,  and .

The displacement-strain relations, taking Eq. (8) intoaccount are presented in Eq. (9). 

(8)

c2 c2
min

c2

max
c2

min
–( )

itermax

---------------------------+ iter×=

w2

0                  iter
itermax

4
---------------<

w2

max iter w2

max
w2

min
–( )

itermax

---------------------------------------  iter
itermax

4
---------------≥–

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

u0 w0, ϕx ∂u/∂z= ϕy ∂v/∂z=

u x y z t, , ,( ) u0 x y t, ,( ) zϕx x y t, ,( )+=

v x y z t, , ,( ) v0 x y t, ,( ) zϕy x y t, ,( )+=

w x y z t, , ,( ) w0 x y t, ,( )=
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(9)

The equilibrium equations for FSDT are given by Reddy (2004). In this theory constitutive

equations are

(10)

In Eq. (10),  represents the transformed stiffness matrix (Reddy 2004). Resultant forces,

moments and shear forces are defined in Eqs. (11) to (13). Elements of A, B and D matrices in

these equations are defined in Eqs. (14) and (15). K in Eq. (13) is the shear correction factor which

for a general laminate depends on lamina properties and lamination scheme (Reddy 2004). 
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(12)
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(15)

3.2 Finite elements implementation

Cross-sectional stiffness for such structures is evaluated in a Finite Elements (FE) approach using

first order shear deformation theory (FSDT) (Reddy 2004). These elements have 8 nodes with 5

degrees of freedoms in each node. All degrees of freedoms are estimated by Lagrange interpolation

functions as presented in Eqs. (16) to (20). 

(16)

(17)

(18)

(19)

(20)

For each element a linear system of equations as Eq. (21) is obtained which should be assembled

with respect to loadings and boundary conditions. Final response of the composite structures to

proposed loading is obtained from solution of the assembled system of linear equations. 

(21)

3.3 Optimization computer code implementation

Specialized computer codes are developed in current study for optimization of composite

structures with the PSO-based algorithms. In these codes, FEM is used to find the response of the

system to different loadings and boundary conditions. The results are then reported to PSO for

fitness function evaluation. Later PSO assigns new velocities for each particle. New particles

positions are introduced to FEM solver again. Mechanical APDL is used for FEM analysis on the

basis of theories described in Sec. Finite Elements Implementation. Design parameters such as

geometry, laminations and loads are given to the software to evaluate the deformation of composite

structures under the prescribed loadings. This data is sent back to PSO to evaluate the FIT function.
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This cycle continues for a certain number of iterations. As chematic flow chart of optimization

computer implemented code is demonstrated in Fig. 2. 

4. Optimal design of laminated composite shell for maximum tensile stiffness and

minimum weight

4.1 Problem description

In this section a numerical example of the optimal design of laminated composite structures is

presented and the performances of different PSO algorithms introduced in this paper are compared

to each other. A cylindrical shell of four laminated layers with the mean radius of 0.4 m and length

of 2.0 m is considered to be optimally designed for maximum tensile stiffness and lightest structural

weight. One end of the shell is clamped and the other is left free. A concentrated tensile force of

F = 1000 N is exerted to the center of the rigid cap at the end of the cylindrical shell (Fig. 3). 

The maximum longitudinal deformation is taken as the shell’s response to loading. The optimal

design is recognized to have minimum longitudinal deformation and lightest structural weight. The

fiber direction angles, the layers thickness and the stacking sequence were considered as design

Fig. 2 Optimization computer implemented code 

Fig. 3 Schematics of the geometry and loading for design optimization under tensile loading (the drawing is
not scaled) 
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variables. The shell is made up of 4 fiber reinforced laminates of Graphite-Epoxy T300/5208 with

mechanical properties as stated in Table 1. These data are taken from Tsai (1987). Also in Table 1,

E1 and E2 are young modulus in directions 1 and 2. E12 is shear modulus and v12 is the Poisson’s

ratio. ρ is the specific weight of graphite epoxy laminates. Composite’s strength parameters in

tension and compression for longitudinal and transversal directions are represented as Xt, Xc, Yt and

Yc, respectively. S is shear strength of the laminate. 

The allowable thickness for the laminates is confined between 0.25 to 2.0 mm in 0.25 mm

intervals and the allowable angle for the direction of fibers in the laminates is also between −75 to

90 degrees in 5 degrees intervals. Any other values beyond these definitions are considered to be

unacceptable. Eq. (22) represents the fitness evaluation function defined for this multi-objective

optimization problem. This function is used to reduce weight and deflection simultaneously. The

primary optimization parameters (i.e., structural deformation and weight) have conflicting natures;

the heavier structures would have smaller deflections. This would make the process a multi-

objective optimization. α is introduced as the weight factor of each objective. When α = 0.0, only

the displacement is reduced and the result of optimization is a design that has the smallest

displacement. When α = 1.0, PSO algorithms try to obtain the lightest structure, which may have a

large displacement. To investigate the integrity of MPSO with the suggested parameters, multiple

runs in a range of α starting from 0.0 to 1.0 are performed (Almeida and Awruch 2009). In order to

equalize the effect of maximum deformation of the structure and its weight, these parameters are

normalized using their maximum and minimum possible values. The equations used for

normalization of the variables are given by Eq. (23). In this equations the maximum and minimum

values for weight of structure i.e., Wmax and Wmin are evaluated by assuming maximum and

minimum layer thicknesses respectively. As it can be concluded the heaviest structures with the best

fiber orientations would have the least deformations (Dmin) under applied loading. The largest

deformations (Dmax) also will be seen in the lightest structures with the least appropriate fiber

orientations. The PSO algorithms are used to minimize FIT in different values of α. In each case

the smallest possible FIT is sought. It should be noted that each α defines a new optimization

problem. By changing the value of α, the FIT function will change. This makes it possible to study

the performance of MPSO in multiple cases for each problem. 

(22)

; (23)

β is referred as the violation of the limits in contiguous plies thickness with the same fiber

orientation. This parameter is equal to the exceeding value violating the limit fixed to the thickness

of contiguous plies with the same fiber orientation. As an example, if the thickness of each one of

two contiguous plies with the same fiber orientation is equal to 1.5 mm, the exceeding value

FIT αW* 1 α–( )D*+( ) 1 β+( )×=

W*
W Wmin–

Wmax Wmin–
---------------------------= D*

D Dmin–

Dmax Dmin–
--------------------------=

Table 1 Mechanical properties of Graphite-Epoxy laminates

E1 E2 E12 Xt Xc Yt Yc S ρ

181.00 
Gpa

10.34 
Gpa

7.17 
Gpa

1500.00 
Mpa

1500.00 
Mpa

40.00 
Mpa

68.00 
Mpa

246.00 
Mpa

15.70 
kN/m3
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violating the limit (i.e., β) is 1.0, since this work adopts a limit of 2.0 mm. When β = 0 the value

FIT in Eq. (22) may become zero thus regardless of the lamination FIT would behave its minimum

value; to avoid this unwanted situation 1 is added to β. This optimization problem can be

summarized into the problem of maximizing the fitness function in the design space by suggesting

the primary variables of fiber orientation angles and thickness of laminates. Three algorithms of

BPSO, RPSO and the new MPSO where applied to minimize the FIT function. Details of optimal

solutions were reported for α starting from 0.0 to 1.0. The algorithm parameters were chosen for

best chances of convergancy according to Ref. and (Clerc and Kennedy 2002) presented in Table 2. 

4.2 Numerical results and discussion

In separate approaches PSO codes linked to Mechanical APDL FEM solver were developed. In

order to clearly compare the optimization performance of BPSO, RPSO and MPSO, similar finite

element approaches were chosen for evaluation of structural response to the proposed loading.

Number of particles and iterations were also maintained constant in each approach. In independent

efforts, all three algorithms were employed in search for the minimum value of the FIT function. To

experiment the performance of the proposed algorithm multiple cases of optimization would be

required. Numerical results for optimization for α starting from 0.0 to 1.0 are reported in Table 3.

All of the applied algorithms could find acceptable results for optimum stacking sequence of

laminated cylindrical shell within the defined constrains and boundary conditions. Each algorithm

was used to find the minimum value for FIT in constrained design space. In Fig. 4, the minimum

values for FIT retrieved by each algorithm are presented. It can be observed that BPSO has shown

an appropriate robustness and efficiency to find the optimum FIT value. Despite the good dynamics

of RPSO, the noisy term in its velocity assignment mechanism has made a little obstruction for

Table 2 Comparison of the parameter configurations for BPSO, RPSO and MPSO algorithms

PSO Parameters

Algorithm Iterations Particles

BPSO 0.5 0.5 - - 2.0 2.0 2.0 2.0 150 20

RPSO 0.5 0.5 0.1 0.01 2.0 2.0 2.0 2.0 150 20

MPSO 0.5 0.1 0.1 0.00 1.5 0.5 2.5 3.5 150 20

w1

max
w1

min
w2

max
w2

min
c1

max
c1

min
c2

max
c2

min

Table 3 Optimum stacking sequences obtained for tensile loading of cylindrical laminated shell

Weighting 
factor (α)

BPSO RPSO MPSO

0 [901.75, -752.0, -851.0, -751.75] [851.5, 01.75, -901.75, -851.5] [751.0, 802.0, 902.0, -851.75]

0.2 [801.0, -150.25, 200.25, 800.25] [901.0, 851.0, 901.0, 851.0] [-800.5, 901.0, 200.25, 00.75]

0.4 [-500.5, 850.25, 900.25, 50.5] [-850.5, 850.5, 350.5, -850.5] [901.75, 401.75, -451.0, 151.0]

0.6 [-850.5, 400.75, -850.25, -50.25] [-800.5, -850.75, -900.25, 750.25] [-550.25, 600.25, -150.25, -650.25]

0.8 [-800.5, 550.5, 550.25, -600.5] [-550.25, 350.5, 300.25, 800.75] [550.25, -850.5, 800.25, 200.25]

1 [250.5, 00.25, -650.25, -50.25] [200.25, -350.25, -750.75, -50.25] [900.25, 00.25, 750.25, 850.25]
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obtaining better solutions this unwanted effect can be seen for α = 0.2, 0.4 and 1 in Fig. 4. In all

six cases, the MPSO has demonstrated excellent robustness and dynamics in pursue of the optimum

value. In primitive iterations, this method has focused on local neighborhoods and later it has led

the particles to the globally optimum region. These modifications in MPPSO resulted in better

performance compared with BPSO and RPSO. Weights and deflections of the optimum designs

retrieved from each method are presented in Table 4. As shown in this table, for α = 0 and α = 1

where only stiffness and weight of the structure is considered as the design objectives, MPSO has

suggested the best designs. Even in other cases where both weight and deflection are considered in

multi-objective approach, MPSO has suggested the best results. For example for α = 0.8 the result

retrieved by MPSO has a deflection as the same as BPSO but 19.7 N lighter. Convergancy curves

of the three algorithms for α = 0 to 1 are presented in Fig. 5. It is seen that MPSO has converged

faster than the other proposed methods. For cases α = 0 and α = 0.8 where BPSO and RPSO are

trapped in a local optima, the MPSO has managed to escape this traps and has converged to better

results. Performance of MPSO can be clearly observed in Fig. 5. 

Table 4 Comparison of weights and deflections of the optimum results retrieved by each algorithm 

Weighting
factor α

BPSO RPSO MPSO

Weight
(N)

Deflection
(mm)

Weight
(N)

Deflection
(mm)

Weight
(N)

Deflection
(mm)

0.0 266.34 1.82E-03 256.48 1.82E-03 266.34 1.39E-03

0.2 69.05 8.97E-03 157.837 2.27E+00 98.65 4.38E-03

0.4 59.19 1.37E-02 78.92 9.54E+00 69.05 7.94E-03

0.6 69.05 1.02E-02 59.19 6.16E-03 39.46 2.27E-02

0.8 69.05 -1.06E-02 69.05 1.32E-02 49.32 -1.07E-02

1.0 49.32 -4.99E-02 59.19 1.63E-02 39.46 -2.02E-02

Fig. 4 Minimum values for FIT function 
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5. Optimal design of laminated composite shell for maximum torsional stiffness

and minimum weight

5.1 Problem description

For better investigation of the MPSO’s performance compared with the other two methods,

another multi-objective problem of design optimization of laminated composites is studied. Here a

cylindrical shell with geometry and boundary conditions similar to the structure mentioned in

section 3 is considered to be optimally designed for maximum torsional stiffness and lightest

possible structural weight. In this case a torque of T = 1000 N.m is exerted at the free end of

cylinder. Maximum rotational angle is evaluated as the structural response to the proposed loading

condition. This rotation and the total structural weight arethe two independent variables that are

considered to be minimized. The material properties and the mechanical data for this problem are

given in Table 1. The allowable thickness for laminates is taken between 0.25 to 2.0 mm in 0.25

Fig. 5 Comparison of convergancy of MPSO, BSPO and RPSO for tensile loading of the laminated
cylindrical shell 
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mm intervals and the allowable angle for direction of fibers in the laminates is also between −75 to

90 degrees in 15 degrees intervals. Any other values beyond these definitions are considered to be

unacceptable. Eq. (24) represents the fitness evaluation function defined for this multi-objective

optimization problem. This function is used to reduce weight and deflection simultaneously.

Minimum value for this function is sought during optimization process. A weighting factor αsimilar

to previous problem is introduced as the weight factor of each objective. When α is equal to 0.0,

only the rotation is reduced and optimization process gives a design with smallest rotation. The PSO

algorithms tries to obtain the lightest structure when α is equal to 1.0, which may have a large

rotation. This value is used as the maximum value in the normalization. The normalization of the

variables is given by Eq. (24). The PSO-based algorithms are applied to minimize FIT for different

values of α. In each case the smallest possible FIT is sought. In Eq. (24), θ and W represent for

axial rotation and total structural weight of cylindrical shell. These variables are normalized in a

manner described in previous section. 

(24)

; (25)

As stated in previous section, β is referred to the violation of the limit of contiguous plies

thickness with the same fiber orientation. 

5.2 Numerical results 

For design optimization of the cylindrical shell under torsional loading, three PSO based

optimization codes (i.e., BPSO, RPSO and MPSO) linked to the Mechanical APDL FEM solver

were developed. In order to compare the optimization performance of BPSO, RPSO and MPSO,

similar finite elements approaches were chosen for evaluation of structural response under the

proposed loadings and boundary conditions. In independent efforts all of the algorithms were

employed to minimize the FIT function. The acceleration and weight parameters were chosen

according to Table 2. Optimum stacking sequences for six optimization cases with different values

of α are reported in Table 5 and optimum weights and rotations retrieved by each method are given

in Table 6. As shown for α = 0 and α = 1, the structures introduced by MPSO are respectively

stiffer and lighter than the other structures obtained by the other methods. For α = 0.2, MPSO has

FIT β 1+( ) αW* 1 α–( )θ*+( )=

W*
W Wmin–

Wmax Wmin–
---------------------------= θ*

θ θmin–

θmax θmin–
------------------------=

Fig. 6 Schematics of the geometry and loading for design optimization under torsional loading
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introduced a lighter structure with higher stiffness than the structure introduced by BPSO. Minimum

FIT values reported by each of three methods are presented in Fig. 7. It can be seen that satisfactory

results were obtained by all three algorithms and in all cases, MPSO managed to retrieve the best

results. It is also seen that the proposed particle dynamics in MPSO has found more preferable

solutions in all cases. This fact can also be observed in the convergancy curves given in Fig. 8 in

which the convergence history for each case is presented. For example, MPSO shows excellent

convergence for α = 0 while the other methods were trapped in local optima and experienced

Table 5 Optimum stacking sequences obtained from different methods for torsional loading condition

Weighting
factor (α)

Laminate

BPSO RPSO MPSO

0. 0 [501.75, 650.15, -452.0, -651.75] [351.75, -401.5, -452.0, -651.75] [-401.75, 501.75, 452.0, -451.5]

0.2 [501.0, 401.0, -501.75, -501.0] [350.75, 452.0, -451.0, -401.25] [450.75, 451.25, -450.75, -451.75]

0.4 [400.25, -501.5, -401.5, 100.25] [350.5, 450.75, 500.25, -451.25] [400.25, -500.75, -450.75, 451.25]

0.6 [-350.5, -550.5, 501.0, -50.25] [350.75, -401.25, 450.25, -250.5] [400.75, -500.5, -500.75, 650.25]

0.8 [-550.25, 450.5, 850.25, -200.5] [300.75, -350.5, 250.5, 700.5] [250.25, 550.5, -500.75, 250.25]

1.0 [-300.5, 200.25, 350.25, -700.25] [500.5, -901.0, -450.25, -50.25] [500.25, 450.25, 50.25, 300.25]

Table 6 Comparison of weights and deflections of the optimum results retrieved by each algorithm 

Weighting 
factor (α)

BPSO RPSO MPSO

Weight
(N)

Rotation
(Rad)

Weight
(N)

Rotation
(Rad)

Weight
(N)

Rotation
(Rad)

0.0 276.21 1.49E-04 276.21 1.49E-04 276.21 1.24E-04

0.2 187.43 1.99E-04 197.29 1.76E-04 177.56 1.92E-04

0.4 138.10 2.65E-04 108.51 2.86E-04 118.38 2.88E-04

0.6 88.78 4.45E-04 108.51 2.83E-04 88.78 4.05E-04

0.8 59.19 1.06E-05 88.78 3.19E-04 69.05 5.90E-04

1.0 49.32 1.33E-03 78.92 4.89E-04 39.45 1.50E-04

Fig. 7 Minimum reported values for FIT function in torsional loading condition
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premature convergence. Fig. 8 also shows that the new variation scheme suggested in this paper has

made it possible for the algorithm to search the design space more effectively and find more

appropriate results. It can be concluded that the MPSO method has performed satisfactory

performance in torsional stiffness optimization of cylindrical shell. 

6. Conclusions

In the present study, convenient versions of particle swarm optimization algorithms were

successfully applied to optimize the design of laminated composite cylindrical shells. The results

obtained from these methods were compared with a suggested modified version of PSO algorithm

called MPSO. The suggested modifications include a new variation scheme for acceleration and

inertial weight parameters defined in the basic and repulsive PSO algorithms. As it was reported

from the literature, BPSO has major drawbacks like smooth particle dynamics which may put the

Fig. 8 Comparison of convergancy of MPSO, BSPO and RPSO for torsional loading of the laminated
cylindrical shell 
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optimization procedure in danger of being trapped by local optimal points. In order to escape from

these traps, some researchers have employed RPSO instead. Although RPSO can effectively survive

local optima traps and perform search in more complex design spaces, but it also has the risk of

losingthe focus on global and local best results. The noise in RPSO may divert it from moving to

optimal solution. Thismay lead the problem to inappropriate solutions. Based on current needs for

robust and dynamic optimization algorithms, in this paper a novel dynamic pattern for particle

variationsis suggested. The modified PSO algorithm introduced in this paper has the appropriate

dynamics to survive the local optima in discreet and complex design spaces. MPSO also has

maintained the robustness of BPSO. To compare the performance of MPSO with two otherpopular

PSO based methods, it was experimented in two numerical optimization problems of cylindrical

laminated composite shells. All three algorithms of BPSO, RPSO and MPSO were employed to

search for optimal solutions in the design space. Numerical results and convergence datawere

reported for each case. MPSO showed excellent performance in searching the design space and

better convergence to theoptimal solution. This new algorithm has the ability to successfully search

for the optimum designsfor problems with similar natures. In addition, the comparisons revealed

that application of this method wouldmake it possible to obtain more preferable results in

optimization. Finally, based on the presented results the application of MPSO can be advised for

design optimization of similar laminated structures. 
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