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The characteristics of the multi-span suspension bridge 
with double main cables in the vertical plane
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Abstract. The multi-span suspension bridge having double main cables in the vertical plane is
investigated regarding endurance of live load distribution in the case of non-displaced pylon and pylon
displacement. The coefficient formula of live load distribution described as the ratio of live load on the
bottom cable to the top cable is obtained. Based on this formula, some function in respect of this bridge
are derived and used to analyze its characteristics. This analysis targets the cable force, the cable sag and
the horizontal displacement at the pylon top under live load etc. The results clarified that the performance
of the live load distribution and the horizontal force of cables in the case of non-deformed pylon has a
similar tendency to those in the case of deformed pylon, and the increase of pylon rigidity can increase
live load distributed to the bottom cable and slightly raise the cable horizontal force under live load.
However, effect on the vertical rigidity of bridge and the horizontal force increment of cables caused by
live load is different in the case of non-deformed pylon and deformed pylon.
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1. Introduction

At present, the bridge having single main span, both cable-stayed bridge and suspension bridge,

hardly cross a strait with wide width over dozens of kilometers like Messina Strait in Italy and

Qiongzhou Strait in China, however, their bridging capacity have been improved through

innovations of their system (Tan 2009, Zhang 2011a, b, c). A multi-span suspension bridge is one of

the most hopeful and rational ways (Torben 2001, Ge 2006, Choi 2010, Zhang 2010, Ge 2011, Luo

2011, Zhang 2011). This suspended structure, however, is restricted by larger deflection under live

load acting in one span (Nazir 1986, Ito 1996, Kitagawa 2001, Jung 2010). One way that offers

advantages in overcoming this problem is to add two main cables in the vertical plane between

pylons (Giming 1997). Nevertheless, the characteristics of this bridge as a new concept is not well

understood, though it has been studied and discussed by Gimsing (1997) assuming the constant total

horizontal component of the two cables tension.

This paper discusses the rationality of Gimsing’s assumption first, after which a study about this

bridge with double main cables is carried out with two cases of deformed pylon and non-deformed

pylon. The analytical formulas are derived based on the Complete Differential Rule and the
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assumption of non-elongated hangers between the two cables, which include: the live load

distribution coefficient defined as the ratio of live loads on the bottom cable to the top cable; the

deflection of the cable sag; the horizontal displacement at the pylon top and the horizontal

component of the cables tension due to live loads. Moreover, some basic parameters of a general

suspension are introduced for a parametric study focusing on performance of this bridge subjected

to live load by these formulas.

2. Discussion of the Gimsing assumption

Here the Gimsing’s assumption is discussed. Fig. 1 shows the side view of multi-span suspension

bridge with double main cables in the vertical plane.

If the Gimsing’s assumption is correct, there is no horizontal displacement at the pylon top in the

case of live load acting in one span due to the constant horizontal component of the cables tension.

That means the cable sag varies only depending on elastic deformation itself. Besides, the horizontal

force of the top cable and the bottom cable should be decreased and increased due to live load,

respectively. Therefore, a conclusion can be deduced that the cable sag decreased for the top cable

and increased for the bottom cable due to live loads, just as shown in Fig. 2. 

Nevertheless, this phenomenon, the increase of distance between the top cable and the bottom

cable, causes the extension and force increase of the hangers between the top and bottom cables.

That means the loads acting on the top cable are increased. Accordingly from the equation 

 (1)

where H is cable horizontal force, q is loads cable bears, f is cable sag, another conclusion can also

H
ql

2

8f
------=

Fig. 1 Side view of multi-span suspension bridge with double main cables in the vertical plane

Fig. 2 The condition under live load according to Gimsing assumption



The characteristics of the multi-span suspension bridge with double main cables 293

be deduced that the top cable horizontal force increased under live loads. This contradicts to a

decrease of the horizontal force of the top cable under live loads as assumption. Thus, the total

horizontal force of the top cable and the bottom cable should be variable under live loads on this

span.

For this reason, the relative calculation including the live load distribution for two cables, the

variation of the cable sag, the horizontal force and the horizontal displacement at the pylon top

caused by live loads is carried out in the following sections in the case of deformed pylon and non-

deformed pylon.

3. Non-deformed pylon

If the condition of non-deformed pylon called “rigid pylon” stands, meaning the pylon has enough

moments of inertia that the pylon cannot bend no matter how much horizontal force the cable has

on the pylon top. This suspension bridge can be equivalent to the system as shown in Fig. 3. 

In such a case the cable sag varies only depending on the live load-induced elastic deformation.

From the equation of cable elongation due to tensile stress

 (2)

where q is loads on cable, f is cable sag, l is cable span, Ec is cable elastic modulus, Ac is cable

cross section area, the elongation of cable under live load can be expressed as

 (3)

where fg is the cable sag under dead load, g is the dead load, ∆f is the increment of cable sag under

live load, p is the live load.

According to total differentiation theory, the function

 
(4)

should be expressed as

 (5)

where ε1 is function of ∆x, ε2 is function of ∆y, if the partial differential ∂f/x and ∂f/y is continuous

in point (x, y). And if ∆x and ∆y is small enough, the ε1 and ε2 are almost zero. The Eq. (6)

describes it.
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Fig. 3 The bridge with rigid pylon
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(6)

For Eq. (2), the partial differential for q and f is 

 

(7)

of which both are continuous in the point (g, fg), and, the ∆f and p is extremely small against fg and

g. Therefore, the Eq. (3) is equivalent to

(8)

The curvilinear length of the parabola cable can be calculated using the value of the cable sag and

cable span as shown in Eq. (9).

 (9)

Then, another function of the cable elongation under loads is obtained

 (10)

Because the differential for f

 (11)

is also continuous in point (fg, g), the Eq. (9) is converted to

 (12)
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Eq. (12) equal. It is expressed as

 
(13)

After the substitution of the parameters of the bridge into Eq. (13), the increment of the top and

the bottom cable sag is as follows

(14)

where fgb is the bottom cable sag under dead load, fgt is the top cable sag under dead load; ∆ft is the

top cable sag change, ∆fb is the bottom cable sag change; gd is the dead load on the bottom cable, gt

is the dead load on the top cable; Ect is the top cable elastic modulus, Ecb is the bottom cable elastic

modulus; Act is the top cable cross section area, Acb is the bottom cable cross section area. 

Accordingly, the coefficient β of live load distribution described as the ratio of live loads on the

bottom cable to the top cable can be derived based on assuming that the hanger is not elongated,

that is, ∆ft =∆fb. It is expressed as

 (15)

where J(x), F(x) and G(x) respectively is a function of x. these are shown in Eq. (16).
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From Eq. (15) and Eq. (16), the live load acting on the top cable and the bottom cable

respectively can be calculated by introducing β into Eq. (17). 

 (17)

where p is the total of live loads on bridge. These may be used to deduce the increment of cable

sag ∆f by Eq. (14), the increment of cable horizontal force including the top cable ∆Ht, the bottom

cable ∆Hb, and the total cable horizontal force ∆H by Eq. (18). 

(18)

4. Deformed pylon

The pylon of a suspension bridge, in practice, does not usually have such a large moments of

inertia keeping from its deflection when live load is on one side of spans. Thus, the displacement of

pylon top must be taken into consideration in the calculation of suspension bridge. Fig. 4 describes

this condition. 

For a multi-span suspension bridge, the increment of the cable horizontal force caused by live

loads can be described as the combined value of the horizontal displacement at the pylon top and

the horizontal displacement rigidity coefficient, as follows 

(19)

where ∆l is the horizontal displacement at the pylon top; K is the horizontal displacement rigidity

coefficient consisting of the pylon and the cable in the adjacent span, as follows

(20)
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Fig. 4 The bridge with the displacement of pylon top 
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displacement in the horizontal direction in the adjacent span of the loaded span as shown in Fig. 5.

It can be easy to come to the Kp, as follows

 (21)

where Ep is the pylon elastic modulus, Ip is the pylon moments of inertia, hp is the pylon height.

Nevertheless, the calculation of the Kc is complex due to the fact that it includes two parts of the

displacement, that is, the displacement from the cable elastic extension and the displacement from

the cable profile distortion. In order to obtain a highly precise and simple form equation for Kc, the

rigidity coefficient of the cable displacement in the horizontal direction is converted to a combined

system of two springs connected in series. One is the spring with the rigidity coefficient kg resisting

geometry deformation; another is the spring with the rigidity coefficient ke resisting elastic

deformation, just as shown in Fig. 6.

The value of Kc is obtained from Eq. (22).

(22)

where ke is the function with respect to the material properties of the cable, as follows

(23)

where lg is the span of the cable before live load acting on bridge, and the derived process of the kg

is shown in the following contents.

As for the horizontal force increment of the cable in non-loaded span, the factors that concern it

are the increment of the cable sag and the cable span because that this increment of the cable

horizontal force are only caused by the cable profile distortion due to the cable tension pull from

the loaded span, as follows

Kp 3EpIp/hp

3
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Fig. 5 The rigidity of the cable displacement in the horizontal direction 

Fig. 6 The simplified calculation model of Kc
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(24)

where l is the cable span, ∆l is the increment of the cable span; f is the cable sag, ∆f is the

increment of the cable sag. The partial differential of Eq. (1) for l and f is expressed as 

(25)

of which the both are continuous in the point (g, lg, fg), in the same way Eq. (24) also can be

written by performing the Complete Differential Rule as

(26)

where g is the dead load on the cable, fg is the cable sag under dead load. Due to ignoring the

elastic elongation of the cable, the variation of the cable curvilinear length must be zero

(27)

The partial differential of Eq. (9) for l and f, as follows

(28)

are also continuous in the point (g, lg, fg) so that Eq. (26) is converted to Eq. (29).

(29)

From Eq. (29), the (∆f/∆l) can be derived, as follows 
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(31)

Then, the Kc and K can be calculated, as follows

(32)

Based on replacing the parameters in Eq. (32) by the parameters of the double main cables

suspension bridge, the Kc and K of this bridge can be obtained

(33)

where gs is the total dead load, Ecs is the elastic modulus of the cables; Acs is the total section area

of the top and the bottom cable; lgs is the span of the cable in the adjacent span of the loaded span,

fgs is the equivalent sag of the cables under dead load derived from the following.

The total horizontal force of the adjacent span cables can be derived by Eq. (1), as follows
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where l is the cable span, q is the load, f is the cable sag; ∆l, ∆q and ∆f respectively is the

increment of the l, q and f. The partial differential of Eq. (1) for l, q and f is expressed as

(38)

all of which are continuous in the point (gm, lgm, fgm), Eq. (37) can be converted to Eq. (39), as

follows

(39)
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load; ∆lm, ∆fm respectively is the increment of the cable span and cable sag due to live load, p is the
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half of ∆lm. Thus, Eq. (39) is converted to
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(43)

where fgmt is the top cable sag under dead load, fgmb is the bottom cable sag under dead load, gmb is

the dead load on the bottom cable, gmt is the dead load on the top cable. And the live load acting on

the top cable and the bottom cable, the increment of cable horizontal force, the increment of cable

sag ∆fm and the displacement of the pylon are calculated by Eq. (17), Eq. (44), and Eq. (42), Eq.

(19), respectively.

(44)

5. The characteristics of the bridge

5.1 Basic parameters

In order to understand the characteristics of the multi-span suspension bridge with double main

cables in the vertical plane, the following parameters of a general suspension bridge are introduced
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Table 1 Basic parameters 

Parameters Contents Values

Ec Cable elastic modulus 2.06 × 1011 (Pa)

Ep Pylon elastic modulus 2.06 × 1011 (Pa)

Act, Acb Top cable area and bottom cable area 0.669 (m2)

fgt, fgst, fgmt Top cable sag under dead load 50 (m)

fgb, fgsb, fgmb Bottom cable sag under dead load 100 (m)

l, lgs, lgm Bridge span and cable span under dead load 1000 (m)

Ip Pylon inertia moment 13.7944 (m4)

hp Pylon height 125 (m)

g Total dead load of each span 2.65 × 105 (N/m)

γc Cable volume-weight 85 (kN/m3)
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into the formulas derived in this paper, which include the cable elastic modulus, the cable area, the

pylon height, the span, and the dead and live load etc. In addition, the basic parameters per one

span are the same, as shown in Table 1.

5.2 Formula verification

In order to verify the correctness of this formula, a spatial element model is established for

simulation. Spatial beam element is used for the girder and the pylons, and cable element is adopted

for the main cables and suspenders. This model is of five main spans and basic parameters shown

in Table 1. Fig. 7 is the side view of this model. After the simulation, the simulated value will be

compared with the calculated value.

Fig. 8 shows the deflection as load varying calculated by formula and numerical simulation,

respectively. In Fig. 8, red line shows the simulated value and blue line shows the calculated value.

Besides, the error between them is also presented in Fig. 9.

In the region of where live load = 13 kN/m, 19.6 kN/m, 26.1 kN/m, 32.6k N/m and 39.1 kN/m,

the error is 4.07%, 4.12%, 4.28%, 4.42% and 4.52%, respectively. This shows that the error of this

formula increases as increasing of live load. However, the maximum error is still less than 5%,

which means that the accuracy of the formula is acceptable in the region of general live load acting

on bridge.

The error of this formula may be caused by the negligible elastic elongation of suspenders

between two cables and the simplified rigidity coefficient of the cable horizontal displacement

comprised of two springs connected in series.

Fig. 7 The side view of model

Fig. 8 The value of calculation and simulation  Fig. 9 The error
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5.3 The characteristics of the bridge with rigid pylon

The ratio of the dead load on the bottom cable to the total dead load called “αb” is induced as an

index for recognizing the characteristics of the bridge

 (45)

The research targets the coefficient of the live load distribution, the increment of sag, and the

horizontal force and its increment of cables due to live loads. 

Fig. 10 shows the influences of αb on targets. The αb ranges from 0.1 to 0.9.

The coefficient of the live load distribution, from Fig. 10, is increasing with the increase of αb,

which means that the more dead load there is on the bottom cable, the more live load there is on it.

The influence of αb on the increment of cable sag and on the coefficient of the live load distribution

shows a similar tendency. The magnitude above targets, however, changes slightly with an increase

in αb, and this shows that the distribution of live load on cables and the increment of the cable sag

are basically independent of dead load applied at the cable possibly because of the negligible

elongation of cables.

The total horizontal force increment of cables increases with raising the coefficient αb due to the

αb

gb

g
-----=

Fig. 10 The influences of αb
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increased horizontal force increment of the top cable and the constant horizontal force increment of

the bottom cable.

The total horizontal force of two cables after live load acting, however, shows a declining

tendency. That’s because although the bottom cable horizontal force under dead load is increasing,

the total horizontal force under dead load decreases for higher αb as the horizontal force of the top

cable declines faster than of the bottom cable grows. Similarly, the horizontal force of the top cable

after live load acting is decreasing caused by its falling under dead load. By contrast, the horizontal

force of the bottom cable under live load increases with the increase of αb because of its growth

under dead load.

Fig. 11 offers the influence of the bottom cable sag under dead load rising from 75 m to 115 m.

An effect on the live load distribution similar to but more serious than Fig. 10 can be observed. The

increase of the bottom sag under dead load decreases the deflection of the cable due to live load

(the increment of the cable sag), and this means that can raise the stiffness of bridge.

The entire the horizontal force increment of the top cable, the bottom cable and the total cable are

falling with the increasing of the bottom cable sag under dead load. In addition, the increment of

the bottom cable horizontal force declines gently.

Both of the total cable and the bottom cable horizontal force caused by dead load are reduced by

the increase of the bottom cable sag under dead load. Hence their horizontal force under live load

Fig. 11 The influences of the bottom cable sag under dead load
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decreases while its increment also declines. As for the horizontal force of the top cable under live

load, it represents a tendency with constant horizontal force because of its negligible increase under

dead load and the decline of its increment caused by live load with raising the bottom cable sag

under dead load.

Fig. 12 describes the influence of the top cable sag under dead load ranging from 30 m to 70 m.

The coefficient of the live load distribution, in Fig. 12, shows a reverse tendency to Fig. 11. It

declines with the increase of the top cable sag under dead load. Nevertheless, the effect on the

increment of the cable sag is similar to that of the bottom cable sag under dead load.

The increment of the bottom cable horizontal force decreases for greater top cable sag under dead

load, and this tendency is nearly linear. The horizontal force increment of the top cable and the total

cable, however, shows an irregularly growth. In the region of the top cable sag under dead load less

than 40 m, the greater the top cable sag under dead load is the more increment of the total cable

horizontal force is. In the region of the top cable sag under dead load larger than 40 m, it basically

keeps constant. Additionally, the slope of the top cable horizontal force increment shows a tendency

with declining.

The horizontal force of the total cables and the top cable under live load, however, also decreases

because of its decrease under dead load. As for the horizontal force of the bottom cable, it still

decreases with raising the top cable sag under dead load in the case of live load acting due to the

Fig. 12 The influences of the top cable sag under dead load
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decrease of its increment caused by live load, although it increases under dead load but slowly.

5.4 Characteristics of the bridge with pylon flexible

The targets of research concerning, the bridge with flexible pylon, include the coefficient of the

live load distribution, the increment of sag, the live load-induced cable horizontal force and its

increment, and the horizontal displacement at the pylon top.

Fig. 13 shows the influences of αb varying from 0.1 to 0.9.

The curvilinear increment of β, from Fig. 13, can be observed. In the region where αb is less than

0.5, the tendency with increasing β is slight, and it becomes prominent when αb is larger than 0.5.

This means that the magnitude of the dead load on cables has a small effect on the live load

distribution when the dead load applied at the bottom cable is less than that applied at the top cable,

and the tendency of raising live load distributed to the bottom cable caused by an increase of dead

load on itself becomes remarkable when the dead load applied at the bottom cable is larger than that

applied at the top cable 

Due to an increase of the cable sag increment and the horizontal displacement at the pylon top, in

Fig. 13, it is evident that raising dead load on the bottom cable lowers the vertical rigidity of the

bridge, contrary to the case of non-deformed pylon. That is possibly because distributing more dead

load to the bottom cable makes the rigidity coefficient kg of cables in adjacent span smaller.

Fig. 13 The influences of αb
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As for the horizontal force increment of the bottom cable, the top cable and the total cable caused

by live load, these are lowered by increasing αb. But in the region of αb larger than 0.7, the effect

on the horizontal force increment of the bottom cable becomes in the opposite direction.

The effect of αb on the horizontal force of cables shows a similar tendency to the case of non-

deformed pylon in Fig. 10.

Fig. 14 offers the influence diagrams of the bottom cable sag under dead load in the region of

ranging from 75 m to 115.

The live distribution coefficient shows a straight linear upward tendency with the increase of the

bottom cable sag under dead load. That means the lager the bottom cable sag under dead load is,

the larger the live load applied at the bottom cable is.

As for the increment of the cable sag caused by live load, it only represent a slightly variation in

the region of where the bottom cable sag under dead load ranges from 75 m to 85 m, but becomes

a constant value when the bottom cable sag under dead load is larger than 85 m. This clarifies that

the bottom cable sag under dead load hardly affects the cable sag increment and the horizontal

displacement at the pylon top under live load, that is, it is independent of the vertical rigidity of this

bridge.

The horizontal force increment of cables including the total cables, the bottom cable and the top

cable shows a decreased tendency with increasing the bottom cable sag under dead load.

Additionally, the increment of the bottom cable declines more gently than others.

Fig. 14 shows a gentle variation of the cable horizontal force comparing with Fig. 13; this means

Fig. 14 The influences of the bottom cable sag under dead load 
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that the bottom cable sag under dead load has less effect on the cable horizontal force than the dead

load applied at the bottom cable. The horizontal force of the total cable and the bottom cable caused

by live load decreases for larger bottom cable sag under dead load, but the horizontal force of the

top cable due to live load basically keeps a constant because of a slower increase of itself under

dead load and a decrease of its increment caused by live load. 

Fig. 15 shows the influence of the top cable sag under dead load ranging from 30 m to 70 m.

The tendency of β declining with an increase of the top cable sag under dead load is observed,

and this means that the growth of the top cable sag under dead load decreases the live load

distributed to the bottom cable. The increment of cable sag and the horizontal displacement at the

pylon top shows an upward tendency, which is similar to Fig. 13. The slop of the cable sag

increment, however, becomes slow gradually; it clarifies that the effect of the top cable sag under

dead load on the bridge vertical rigidity is gradually weak when the top cable sag under dead load

becomes larger.

As for the horizontal force increment of the bottom cable and the total cables caused by live load,

it decreases with the increase of the top cable sag under dead load. Additionally, the horizontal

force increment of the total cables shows a slower decrease than that of the bottom cable due to a

slowly increase of the top cable horizontal force increment caused by live load.

The horizontal force of the total cables shows a decreased tendency with increasing the top cable

sag under dead load due to its decrease under dead load and a decrease of its increment under live

Fig. 15 The influences of the top cable sag under dead load 
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load. However as described previously, the horizontal force increment of the top cable induced by

live load increases for lager top cable sag under dead load, the horizontal force of the top cable

under live load still decreases because of its decrease under dead load and a slower increase of its

increment under live load. In contrary, the horizontal force of the bottom cable under live load

basically remains level due to its slower growth under dead load and a decline of its increment

under live load.

Fig. 16 shows the influence of the pylon inertia moment when it ranges from 1 to 16 times as the

moments of inertia in Table 1.

A tendency of increasing β with raising pylon inertia moment is observed from Fig. 16. It means

that the increase of pylon rigidity can increase the live load distributed to the bottom cable. A

conclusion of the vertical rigidity of bridge raised by increasing pylon rigidity can be obtained from

Fig. 16 in which both of the cable sag increment and the horizontal displacement at the pylon top

decrease with an increase of pylon inertia moment. And when the inertia moment of the pylon is 16

times as the value shown in Table 1, the increment of the cable sag is approximately the value in

the case of non-deformed pylon, and the horizontal displacement at the pylon top is approximately

zero.

As for the horizontal force of the total cables, the bottom cable and the top cable under dead load,

it basically keeps constant, and this means that the cable force under dead load is independent of

pylon rigidity. Additionally, the horizontal force of cables under live load slightly increases due to a

slower increase of its increment caused by live load in Fig. 16.

Fig. 16 The influences of the pylon inertia moment 
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6. Conclusions

The analytical formulas in respect of multi-span suspension bridge with double main cables in the

vertical plane have been derived in this paper, which include the live load distributed between two

cables, and the horizontal force, its increment, and the sag increment of cables under live load.

Based on these analytical formulas, the characteristics of this bridge have been investigated, and the

major conclusion can be summarized as

1. In the case of rigidity pylon, the distribution of live load between two cables is in respect of the

dead load distributed to cables and the distance between two cables. The larger dead load

distributed to the bottom cable and the larger distance, the larger live load distributed to the

bottom cable becomes. This is similar to the case with deformed pylon. Moreover, higher pylon

rigidity can increase live load distributed to the bottom cable.

2. The bridge vertical stiffness shows a different performance in the case of rigid pylon and

flexible pylon. In the case of rigid pylon, the increase of the bridge vertical stiffness is in

proportion to dead load distributed to the bottom cable and the sag of cable under dead load. But

in the case of flexible pylon, it is inversely proportional to dead load distributed to the bottom

cable and the sag of the top cable, and in proportion to the pylon rigidity.

3. The characteristics of the cable horizontal force increment, in the case of rigid pylon, also differ

from the case of flexible pylon. The horizontal force increment of the top cable and the total

cables, in the case of rigid pylon, is inversely proportional to the dead load distributed to the top

cable and the distance between two cables, and the horizontal force increment of the bottom cable

varied inversely as the dead load on itself and its sag under dead load. Nevertheless in the case of

flexible pylon, the horizontal force increment of the bottom and the total cable is inversely

proportional to the dead load distributed to the bottom cable and the bottom cable sag under dead

load, and the horizontal force increment of the top cable varied inversely as the dead load on the

bottom cable and the distance between two cables. Moreover, the entire horizontal force increment

of cable is raised by increasing pylon rigidity.

4. Regardless of whether pylon is rigid or flexible, the horizontal force of two cables increases

inversely as their sag under dead load and directly as dead load distributed to them, and the

horizontal force of the total cables is inversely proportion to cable sag under dead load and dead

load distributed to the bottom cable. As for the case of deformed pylon, increasing pylon rigidity

hardly affects the horizontal force of cables under dead load but slightly increase the horizontal

force of cables under live load. 
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