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Abstract. Free vibration and dynamic responses of piles semi-rigidly connected with the superstructures
are investigated. Timoshenko beam theory is employed to characterize the pile partially embedded in a
two-parameter elastic foundation. The formulations for the method of reverberation-ray matrix (MRRM)
are then derived to investigate the dynamics of the pile with surface cracks, which are modeled as
massless rotational springs. Comparison with existent numerical and experimental results indicates the
proposed method is very effective and accurate for dynamic analysis, especially in the high frequency
range. Finally, the effects of some physical parameters on the natural frequencies, frequency responses and
transient responses of the piles are studied.
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1. Introduction

Piles are widely used in the fields of civil engineering, ocean engineering and the like when the

strength of soil base is insufficient to support the load from the superstructures. Although many

approaches have been developed for static pile foundation design in past decades, due to various

dynamic loads such as seismic waves, vibration responses of piles should be taken into account in

the design of pile foundation to satisfy the practical requirements (Lu et al. 2006). On the other

hand, many hazardous factors such as a seismic load may generate dramatic damages to pile

foundations (Lu et al. 2006) and thus some robust structural health monitoring techniques (Lee and

Shin 2002), including the impedance-based method (Bamnios 2002), should be implemented to

detect the defects in piles. Consequently, the understanding of dynamic behavior of piles is very

crucial in the field of engineering. 

It is commonly assumed that the upper ends of the piles are simply supported (Catal 2002) or

fully rigidly connected with the superstructures such as offshore platforms, bridge beams etc

(Arboleda-Monsalve et al. 2008). However, due to the cross-section and material properties of the

piles, these connections are neither fully rigid nor completely flexible and a semi-rigid connection
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model denoted by the bending stiffness indices is considered to be more appropriate to depict the

behavior of the joints between the piles and the superstructures (Catal 2006). The dynamic behavior

of the beams or piles with semi-rigid connections has been investigated by many researchers

(Sekulovic et al. 2002, Catal 2006, Arboleda-Monsalve et al. 2008, Faella et al. 2008, Yesilce and

Catal 2008a, b, c) in the past several years. All these researches show that the connection semi-

rigidity plays an important role in the global behavior of structures. Moreover, a crack appearing in

a pile or a beam can be model as a rotational spring, which can also be associated with a semi-rigid

connection (Bamnios 2002, Lin 2004).

The classical dynamic analysis techniques such as finite element method (FEM) (Faella et al.

2008), the method of dynamic stiffness matrix (Sekulovic et al. 2002, Arboleda-Monsalve et al.

2008) and the transfer matrix method (Catal 2006) have been employed to investigate structures

with semi-rigid joints. However, FEM is not only particularly hard and expensive where

extraordinary many elements and nodes need to be included but also yields in doubtful numerical

results, especially at high frequencies (Lee and Shin 2002). The transfer matrix method is very

powerful to analyze a structure consisting of many members because the number of resultant

simultaneous equations can be greatly reduced (Nagem and Williams 1989). However, significant

numerical difficulty at high frequency limits its application if computation is completely executed

on a computer (Pestel and Leckie 1963, Yan et al. 2007a, b). This numerical difficulty appears

simply because, for a large wave number or long length of the structural member contained in the

transfer matrix, the hyperbolic function gives an extremely large number compared to that of the

sine function, and the latter may be completely submerged because of the finite digits retained in

the computation. The method of dynamic stiffness matrix can provide more accurate dynamic

solutions than FEM (Lee and Shin 2002), but it will also suffer from numerical instability in the

high frequency range as TMM does. Although structural analysis in the field of conventional

engineering only addresses low frequency behavior, it is reported that recent advances in fracture

mechanics and crack diagnosis require knowledge of the effect on the high frequency response of a

micro-crack before a catastrophic macro-crack is evolved (Bhalla and Soh 2004, Morikawa et al.

2005, Yan et al. 2008). Note that the method of reverberation-ray matrix (MRRM) (Pao et al. 2007,

Pao and Chen 2009), which is based on the concept of elastic wave propagation, has shown its

great superiority on high-frequency response analysis in our previous works (Yan et al. 2007a,

2007b, Yan et al. 2008) . 

This paper investigates the free vibration, frequency responses and transient responses of a pile

partially embedded in soil (Catal and Catal 2006, Rajasekaran 2008). The pile is semi-rigidly

connected with the superstructure and the single-sided open cracks initiating in the pile are modeled

as rotational springs (Lin 2004). The coupling effects of translational and rotational lumped masses

as well as the applied axial force at the upper end are considered. The pile, which is usually

modeled as a beam (Catal 2002, 2006, Allotey and EI Naggar 2008), is partially embedded in a

two-parameter elastic foundation (Celep et al. 2011) with generalized end conditions. The

formulations for the method of reverberation-ray matrix (MRRM) (Pao et al. 2007, Pao and Chen

2009) are given to investigate the dynamics of the pile with flexible joints. It should be noted that,

the beam model is very simple to simulate the pile, but it serves as a good example to illustrate our

idea of investigating the dynamics for other types of basic structures such as trusses and thin-walled

structures by MRRM. Both the free vibration and frequency responses (using mechanical impedance

data) can directly be evaluated from MRRM to describe the dynamics of the piles. Then, the

transient responses are determined through the application of inverse Fourier transforms. 
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2. Governing equations and general solutions

A pile whose upper end D is semi-rigidly connected against rotation is partially embedded in soil

as shown in Fig. 1. It is assumed that a lumped mass m is attached at the extreme D with rotational

moment of inertia J. A constant force N is loaded axially at the upper end of the pile along its

centroidal axis x. A two-parameter elastic foundation model, in which both the ballast modulus ks
and the transverse modulus kG are taken into account, is adopted in the paper. For a general pile

segment embedded in the soil, we have the following relations based on the Timoshenko beam

theory (Arboleda-Monsalve et al. 2008) 

, , (1)

 

The applied axial force N induces a shear component equal to  according to the

“modified shear approach” (Timoshenko and Gere 1961). Thus, the shear force equation becomes

(2)
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Fig. 1 A partially embedded pile with a semi-rigid connection and local coordinates
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Eq. (3) can be rewritten as

(5)

Substituting Eq. (5) into Eq. (4) yields

(6)

 

where

(7)

The homogeneous solution of Eq. (6) is 

(8)

where

, (9)

 

Similarly, we have

(10)

 

where

(11)

 

The analytical expressions of v and φ for the pile element above the soil can also be derived in a

similar way by simply setting ks = 0 and kG = 0 in Eq. (1).

 

3. Dynamic analysis based on MRRM

Having obtained pile deflection and rotation in Eqs. (8) and (10), the bending moment and shear
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This equation immediately leads to the following relation

(13)

 

where  and  are called the departing wave

vector and the arriving wave vector at joint C of order 4 × 1 (Pao et al. 2007, Pao and Chen 2009),

respectively, and

(14)

 

is called the local scattering matrix at joint C (Pao et al. 2007, Pao and Chen 2009) with rank four,

where 

, (15)

Eq. (13) establishes a scattering relation between various waves (traveling and standing waves) at

node C.

At joint B (crack position), the compatibility conditions enforce continuities of deflection, bending

moment and shear force across the crack. Meanwhile, beam slope discontinuity exists across the

crack. The following relations (Lin 2004) can then be obtained

, , , ,
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For single-sided open cracks, we have (Lin 2004)
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in which , , and SB is the local scattering matrix

of order 4 × 4 at joint B and can be derived from Eq. (16).

At two ends of the pile, the boundary conditions instead of continuity conditions must be

imposed. The scattering matrices at the two ends, SA and SD, thus have different forms and the order

is reduced to 2 × 2. For illustration, we consider the free end (Catal 2006) at x = 0 (end A). To

satisfy , the following relation can be obtained from Eqs. (1) and (2)

(19)

 

or . The derivation of other boundary conditions is also straightforward. 

The upper end D of the pile with a lumped mass is assumed to be semi-rigidly connected and the

horizontal displacement is not restricted. Thus, we have
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On the other hand, DE element means the semi-rigid connection. So we can obtain the following

relations
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If a harmonic horizontal force  or a harmonic moment  is applied on the
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follows
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Eq. (25) gives relations connecting the arriving waves in one local coordinates to the departing

waves in another local coordinates, and are called phase relations (Pao et al. 2007, Pao and Chen

2009). Introducing a new local vector  at joint B yields

(26)

 

Hence, a new global vector  for the departing waves is constructed as

(27)

where  and . The global vectors  and d contain the same

elements but are sequenced in different orders. The two vectors thus can be related through a

permutation matrix U of order 12 × 12 as
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where I2×2 is unit matrix of order 2. Notice that Eq. (25) is valid for all pile segments. Thus, these

relations can be combined in a matrix form as follows
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encountered in the conventional transfer matrix method (TMM) (Pestel and Leckie 1963) can be

avoided. This is a crucial point for the proper application of MRRM in high-frequency dynamic

analysis of structures (Yan et al. 2007a, 2007b). From Eqs. (23), (28) and (30), we obtain
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4. Numerical analysis

4.1 Comparison study

To validate the present analysis, the free vibration of a series of reinforced-concrete cantilever

walls depicted in Fig. 2 is investigated. The material constants and geometric parameters for each

specimen are listed in Table 1, as well as Poisson ratio µ = 0.15; length of the wall L = 4.57 m; and

a lump mass at the upper end with m = 1404.51 kg and J = 657.93 kgm2 are assumed (Arboleda-

Monsalve et al. 2008). The fundamental natural frequencies for all eight walls are calculated by the

frequency Eq. (34) and are listed in Table 2. We can see that the numerical results obtained by the

present method agree well with both the measured (Aristizabal-Ochoa 1983) and calculated ones

(Arboleda-Monsalve et al. 2008) except for R2 (the denotation of the specimen), for which however

the two analytical solutions match perfectly with each other. 

In order to investigate the effect of rotational inertia along the members on free vibration of the

walls (or piles), which is usually ignored in some related works (Catal 2002, 2006), the variation of

the rotational angle φ with the frequency f subjected to the applied moment  (M0 = 1 kNm) at

the upper end is shown in Fig. 3. The first three natural frequencies can be extracted directly from

the curve of rotational angle in the frequency domain. It can be shown that the values of the natural

frequencies obtained by the model excluding rotational inertia along the wall are larger than those

M0e
iω t

Fig. 2 Reinforced-concrete cantilever wall 

Table 1 The properties of cantilever walls (Arboleda-Monsalve et al. 2008)

 Specimen  I (m4)  A (m2)  (kg/m) κ  E (MPa)

 F1  0.193  0.359  861.6  0.52  25424.1

 B1  0.139  0.317  760.8  0.58  28111.2

 B2  0.139  0.317  760.8  0.58  28938

 B3  0.139  0.317  760.8  0.58  27284.4

 B4  0.139  0.317  760.8  0.58  28249

 B5  0.139  0.317  760.8  0.58  27353.3

 R1  0.058  0.193  463.2  0.83  27766.7

 R2  0.058  0.193  463.2  0.83  26802.1

m
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calculated by the present method including rotational inertia along the member. The similar

observations were also reported by Arboleda-Monsalve et al. (2008).

As mentioned before, the transfer matrix method (TMM) and the method of the dynamic stiffness

matrix may encounter numerical instability in the high frequency range. To illustrate this issue, the

mechanical impedance Zs defined by Bamnios (2002) at the upper end under harmonic mechanical

force is employed to reflect the dynamics of a cantilever beam. In this case, the material constants

and geometric parameters are assumed to be (Guo and Chen 2007): Young’s modulus E = 3.25 ×

1010 N/m2, mass density ρ = 2500 kg/m3, shear modulus G = 13.54 × 109 N/m2, shear coefficient

κ = 0.8434, beam length 40 m, and area of cross section A = 13.6 m2. A thick beam with moment of

inertia I = 8.1592 m4 and a slender beam with moment of inertia I = 4.1592 m4 are also assumed in

this case. A comparison between MRRM and TMM for thick beam is conducted, as shown in

Fig. 4(a). It can be seen that the two methods agree with each other very well. However, for the

slender beam, when the frequency becomes higher, numerical instability appears in TMM while

MRRM still behaves quite well, as depicted in Fig. 4(b). According to Pestel and Leckie (1963), the

numerical instability appearing in TMM is caused mainly by the subtracting of two nearly equal

Table 2 The first natural frequency of cantilever walls (Hz)

Experimental results 
(Aristizabal-Ochoa 1983)

Numerical results
 (Arboleda-Monsalve et al. 2008) 

Present method

F1 33.80 33.78 33.779

B1 30.00 32.19 32.193

B2 29.40 32.66 32.663

B3 29.70 31.72 31.718

B4 29.20 32.27 32.272

B5 30.10 31.76 31.755

R1 21.80 23.86 23.857

R2 17.80 23.44 23.440

Fig. 3 Variation of rotational angle at the upper end subjected to an applied harmonic force (a)  including
rotational inertia along the wall, (b) excluding rotational inertia along the wall
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large numbers or by a factor that grows exponentially with a parameter. For this case of

Timoshenko beam, the wave number β2 in Eq. (9) may be real when the beam becomes more

slender, and the transfer matrix will contain the factor , which exponentially grows with the

product of wave number β2 and beam length l of the structure. However, in MRRM, the phase

matrices Pij only contain exponential functions with negative indices as shown in Eq. (31) and

hence the numerical instability usually encountered in TMM can be avoided. This is the specific

merit of MRRM for dynamic analysis of a structure, especially at high frequencies.

4.2 Free vibration analysis

Then, a partially embedded pile with a semi-rigid connection at the upper end is studied. The

physical parameters of the reinforced-concrete pile are listed in Table 3 and meanwhile the length of

e+β
2
l

Fig. 4 Comparison study with TMM

Table 3 The parameters of the reinforced-concrete pile (Arboleda-Monsalve et al. 2008)

Cross section (m2) ks (N/m2)  (N)   (kg/m) κ G (MPa) E (MPa)

0.50 × 0.50 2068400 3200000 600 0.83 11307.40 25998.75

kG

0
m

Fig. 5 Effect of α on the natural frequencies of the pile (fR = 0.6, Nr = 0.6, c = 0)



Dynamic analysis of semi-rigidly connected and partially embedded piles 279

pile 30 m, and the lumped mass at the upper end with m = 2000 kg and J = 800 kgm2 are assumed.

We define the following quantity in this paper 

(35)

 

where the transverse modulus  is listed in Table 3, β always equals to 1 unless otherwise stated.

Fig. 5 shows the effect of the ratio of the embedded length to the total length of the pile α on the

first three natural frequencies in the case of , , and c = 0. It can be seen that all
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-----, Nr

NL
2

π
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EI
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Fig. 6 Effect of β on the natural frequencies of the pile (fR = 0.6, Nr = 0.6, c = 0, α = 0.8)
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three mode frequencies, especially the fundamental natural frequency, increase significantly with α

from 0.4 to 1. When β approaches zero, i.e., the transverse modulus kG = 0, the proposed two-

parameter elastic foundation model (Arboleda-Monsalve et al. 2008, Celep et al. 2011) will

degenerate to the Winkler model, in which the effect of shear foundation modulus through the pile

length is neglected (Catal 2006). We can observe from Fig. 6 that the transverse modulus kG
influences the first three mode frequencies slightly and the difference between the calculated results

by both the elastic foundation models is less than 2.5 percent. From Fig. 7, we can see that all three

mode frequencies decrease clearly with Nr from 0 to 1. Fig. 8 shows that the fixity factor has an

Fig. 7 Effect of axial force on the natural frequencies of the pile (α = 1, fR = 0, c = 0)
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evident effect on the free vibration characteristic of the pile. However, a crack appearing in the

middle of the pile can hardly change the first three frequencies, even for a deep crack with

c = 0.30 m, as shown in Fig. 9. 

 

4.3 Frequency response analysis
 

In this paper, the frequency response function (FRF) data is defined as the ratio of the applied

force to the transverse velocity of the applied point, i.e., the mechanical impedance Zs (Bamnios

2002). Since the expression for complex frequency response such as  contains departing and

arriving wave amplitudes determined from Eq. (33), for undamped structures, it has an infinite

number of poles along the real ω axis which corresponds to the natural frequencies predicted by Eq.

v ω( )

Fig. 8 Effect of fixity factor fR on the natural frequencies of the pile (α = 1, Nr = 0.6, c = 0)
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(34) based on the direct inverse of  and thus inaccurate results near these poles will be

obtained due to the singular behavior (Guo and Chen 2007, Guo et al. 2008, Jiang and Chen 2009).

In order to avoid the singularities encountered in the numerical computations, the Neumann series

expansion technique (Pao et al. 2007, Pao and Chen 2009, Jiang and Chen 2009) is usually

employed and  in Eq. (33) can be expanded as follows

(36)

 

I R–( )

I R–( ) 1–

I R–( ) 1–
I R R

2 … R
N …+ + + + +=

Fig. 9 Effect of crack depth on the natural frequencies of the pile (α = 1, fR = 0.6, Nr = 0.6)
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However, using different terms N in the Neumann series usually gives quite different results,

further indicating that the Neumann series expansion technique is inapplicable to the frequency

response analysis (Guo and Chen 2007). To overcome this difficulty, the artificial damping

technique (Guo and Chen 2007, Guo et al. 2008) by adding appropriate small damping into the

structural system is employed here. It is actually more physically realistic, because damping always

exists in a real structure. Thus, in the following computation, the damping ratio is always taken to

be 0.02.

We can observe from Figs. 10-12 that the ratio of the embedded length to the total length of the

pile α, the ratio of the applied axial load to the Euler buckling load Nr, and the fixity factor fR have

evident effect on the dynamic properties of the pile and hence significantly alter the steady-state

response of the structural system. For example, a decrease in the connection fixity factor reduces the

Fig. 10 Effect of α on the frequency response of the
pile (fR = 0.6, Nr = 0.6, c = 0)

Fig. 11 Effect of axial forces on the frequency
response of the pile (α = 1, fR = 0.6, c = 0)

Fig. 12 Effect of fixity factor fR on the frequency response of the pile (α = 1, Nr = 0.6, c = 0)
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pile stiffness, and thus the peaks of mechanical impedance Zs shift leftwards clearly as predicted by

MRRM (see Fig. 12). This indicates that the resonant frequencies decrease for a pile with increasing

connection flexibility. This observation agrees well with the numerical results for free vibration

depicted in Fig. 8. The similar observations for the influence of parameters α and Nr on frequency

responses are also obtained as shown in Figs. 10-11.

A frequency-domain method is considered to be an effective structural damage identification

technique (Lee and Shin 2002), in which only the frequency response function (FRF) data are

required. Although a crack appearing in the pile can hardly change the first three frequencies as

depicted in Fig. 9, we can see from Fig. 13 that it can yield significant deviation of decades of Hz

in the high frequency range by the mechanical impedance-based method (Bamnios 2002). This

indicates that the high-frequency signatures are more sensitive to incipient cracks in piles. The effect

of crack positions on steady-state response of the piles is further illustrated in Fig. 14, in which S

denotes the distance between the crack position and the bottom end of the pile.

Fig. 13 Effect of crack depth on the frequency response of the pile (α = 1, fR = 0.6, Nr = 0.6)

Fig. 14 Effect of crack location on the frequency response of the pile (α = 1, fR = 0.6, Nr = 0.6, c = 0.2 m)
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4.4 Transient response analysis
 

The transient response, such as the transverse displacement  at the upper end of the pile,

can be obtained by the inverse Fourier transform (IFT) of the frequency response as

(37)

In Fast Fourier Transform algorithm, a longer time period should be used to reduce the aliasing

error due to the dispersive flexural waves and meanwhile the time interval should be kept small to

meet the requirement of cut-off frequency. Thus, the Neumann series expansion technique is also

unsuitable for the calculation of medium and long time transient responses due to its low calculation

efficiency (Guo and Chen 2007) and the artificial damping technique is sequentially employed in

the transient response analysis.

Now consider that a dynamic load of a rectangular pulse is applied on the point of ground

surface, i.e., node C, as shown in Fig. 1. 

(38)

 

The transverse displacements v at the upper end of the pile calculated in the time domain are

presented in Figs. 15-19 for period of duration 1.2 s with a time step 0.004 s. It should be noted

that because the fundamental natural frequency of the pile with small parameter α is very low (see

Fig. 5), a larger period of duration is necessary for investigating the influence of the physical

parameter α on transient response.

It can be seen from Fig. 15 that the motion periods of the piles becomes shorter evidently with

increasing parameter α. This observation agrees well with those plotted in Figs. 5 and 10 for free

vibration and steady-state responses, respectively. The time histories of the transverse displacements

at the upper end of the pile with various axial forces, fixity factors, crack depths and locations are

plotted in Figs. 16-19, respectively. A visible increase of the displacement amplitudes and a slight

v x t,( )

v x t,( ) 1

2π
------ v x ω,( )eiω t

ωd
∞–

∞

∫=

F t( ) 10
5

N  0 t 0.3 s≤ ≤

0 N      t 0.3 s>⎩
⎨
⎧

=

Fig. 15 Effect of α on the transient response of the
pile (fR = 0.6, Nr = 0.6, c = 0)

Fig. 16 Effect of axial forces on the transient response
of the pile (α = 1, fR = 0.6, c = 0)
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increase of motion periods can be observed from Fig. 16 with the increasing axial forces. Contrarily,

with the increasing fixity factors, the displacement amplitudes and motion periods have evident

decreases as shown in Fig. 17. Cracks appearing in the piles seem to have little influence on the

motion period even for a deep crack with c = 0.3 m (see Fig. 18). However, various crack locations

may result in the obvious change of transient responses especially for a closer crack to the upper

end of the pile, as shown in Fig. 19.

 

5. Conclusions

Piles partially embedded in two-parameter elastic foundations and flexibly connected with the

substructures are investigated by the method of reverberation-ray matrix. The model employs

Timoshenko beam theory with the cracks in the piles treated as massless rotational springs.

Fig. 17 Effect of fixity factor fR on the transient
response of the pile (α = 1, Nr = 0.6, c = 0)

Fig. 18 Effect of crack depth on the transient response
of the pile (α = 1, fR = 0.6, Nr = 0.6)

Fig. 19 Effect of crack location on the transient response of the pile (α = 1, fR = 0.6, Nr = 0.6, c = 0.2 m)
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Comparison with existent numerical and experimental results indicates that the proposed technique

is very effective and accurate for dynamic analysis even in the high frequency range.

Numerical results show that the dynamic properties of the piles are highly sensitive to some

physical parameters such as the ratio of the embedded length to the total length of the piles and the

fixity factor of the semi-rigid joints. This indicates that the connections between the piles and the

superstructures play very important roles for the behavior and safety of the structures subjected to

strong dynamic loads. The applied axial force at the upper end also has a clear effect on the free

vibration, frequency response and transient response of the piles. The dynamic properties of the

piles seems insensitive to the transverse modulus kG. This indicates that a Winkler model adopted in

some works (Catal 2002, 2006) is accurate enough to simulate the behavior of elastic soil in the

field of engineering. A single crack initiating in a pile, even with a profound depth, can hardly

change the global stiffness of the pile and consequently it has little effect on the free vibration of

the piles in the low frequency range. Contrarily, the high-frequency mechanical impedance data is

very sensitive to the crack. This indicates that a high frequency domain method is more appropriate

to detect minor cracks in the piles or beams. 
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Notations

a : global vector associated with arriving waves
c : the depth of the crack
d : global vector associated with departing waves
f : frequency 
fR : fixity factor
h : thickness of the pile
i :
ks, kG : the ballast modulus and the transverse modulus for the two-parameter elastic foundation

model, respectively
m : a lumped mass attached at the extreme D
v : displacement component in the y direction
x, y : Cartesian coordinates
A : cross sectional area of the pile
E : Young’s modulus of the pile
G : shear rigidity of the pile
I : moment of inertia of the pile
J : rotational moment of inertia of the pile
L : length of the pile
M, Q : bending moment and shear force, respectively
Q : global force vector
N : constant force along the centroidal axis
Nr : ratio of the applied axial load to the Euler buckling load
P : total phase shift matrix
R : reverberation-ray matrix
R : bending stiffness index of the flexural connections
S : global scattering matrix
U : permutation matrix
Zs : mechanical impedance
α : ratio of the embedded length to the total length of the pile
φ : rotation
γ : non-dimensional crack-depth ratio
η : mechanical loss factors
κ : shear correction factor (  (Lin 2004)
µ : Poisson’s ratio of the pile
ρ : mass density of the pile
ω : circular frequency

1–

κ 10 1 µ+( )/ 12 11µ+( )=




