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Abstract. Bridge vibration displacements have been directly measured by LVDTs (Linear Variable
Differential Transformers) or laser equipment and have also been indirectly estimated by an algorithm of
integrating measured acceleration. However, LVDT measurement cannot be applied for a bridge crossing
over a river or channel and the laser technique cannot be applied when the weather condition is poor.
Also, double integration of accelerations may cause serious numerical deviation if the initial condition or
a regression process is not carefully controlled. This paper presents an algorithm of estimating bridge
vibration displacements using vibration strains measured by FBG (Fiber Bragg Grating) sensors and
theoretical mode shapes of a simply supported beam. Since theoretically defined mode shapes are applied,
even high modes can be used regardless of the quality of the measured data. In the proposed algorithm,
the number of theoretical modes is limited by the number of sensors used for a field test to prevent a
mathematical rank deficiency from occurring in computing vibration displacements.89The proposed
algorithm has been applied to various types of bridges and its efficacy has been verified. The closeness of
the estimated vibration displacements to measured ones has been evaluated by computing the correlation
coefficient and by comparing FRFs (Frequency Response Functions) and the maximum displacements.
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1. Introduction

Bridge vibration displacements provide useful information for bridge assessment and health

monitoring if they can be measured or estimated (Bhagwat et al. 2011, Brownjohn et al. 2004,

Chan et al. 2009, Inaudi et al. 1998, Liu et al. 2011). Vibration displacements are usually less

influenced by high mode vibrations than by accelerations and strains. The impact factor for a bridge

structure is more reliably computed by the ratio of maximum vibration displacement to static

displacement than by comparing maximum vibration strains to static strains (AASHTO 2008).

Conventionally, displacements have been directly measured by LVDTs (Linear Variable

Differential Transformers) which usually require temporary supporting structures (Park et al. 2005).

Since it is almost impossible to apply this method for tall bridges and bridges crossing over a river

or channel (Whiteman et al. 2002), laser techniques have been applied instead in some cases by

measuring the movement of a target attached to a bridge (Lee et al. 2006, Lassif et al. 2005). The
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accuracy of the laser method is usually within a tolerable range but the equipment is expensive and

inconvenient to use in the field (Chan et al. 2009). The laser technique cannot measure a target

displacement correctly when the weather condition is poor due to fog or rain. Also, the laser

technique cannot measure displacements of multiple locations concurrently. Methods using GPS

(Global Positioning System) systems and digital cameras have also been developed and applied in

recent years but these approaches still lack relative accuracy (Meng et al. 2007).

Indirect methods of estimating dynamic displacements can be classified into two categories

depending on the type of measurement sources; accelerations (Gindy et al. 2008) and strains (Foss

et al. 1995, Kang et al. 2007, Kirby et al. 1997, Todd et al. 1999). When acceleration data is used

to estimate displacements, double integration of acceleration is required to compute displacement

with two initial conditions (Jiang et al. 2002). However, in reality, the vibration response derived

from the measured acceleration may be always biased. Since the bias error is serious in actual

applications, the estimation error is highly dependent on the appropriateness of the bias correction

and the error in the initial conditions (Park et al. 2005). To escape from this indispensible bias error

related to the integration of state response, Jung and Kim (2006) proposed a transformation method

of computing displacements from measured acceleration in the post-process. The method has been

successfully applied to field data but the results were still highly dependent on the selection of the

starting and ending time points in the measured acceleration data. Some methods of computing

displacements using measured strains have been also introduced based on the Euler-Bernoulli beam

theory but their applications were limited to simulation or laboratory studies on simple span beams

(Shin et al. 2007, Kang et al. 2007). Chang et al. (2009) also proposed a mode decomposition

method of using measured dynamic strain signals but the algorithm is relatively complicated and

highly dependent on the accuracy of the modal data identified from the measured response. Many

previous researchers (Davis et al. 1994, Todd et al. 2000, Vohra et al. 2000, Vurpillot et al. 1996)

have also carried out the applications of fiber optic Bragg-grating (FBG) sensors to estimate the

structural responses indirectly.

This current paper presents an algorithm of estimating bridge vibration displacements using

vibration strains measured by FBG sensors and theoretical mode shapes of a simply supported

beam. Since theoretically defined mode shapes are applied, even theoretical high modes can be used

regardless of the quality of measured field data. In applying the proposed algorithm, the number of

theoretical modes is limited by the number of sensors used for the field measurements to prevent

the mathematical rank deficiency from occurring in computing vibration displacements.

To verify the efficiency of the proposed algorithm, the algorithm has been applied in field tests on

various types of bridges including a bridge for Maglev trains, a self-anchored suspension bridge

with three continuous spans, and a multi-girder simple span bridge. The effects of the number of

sensors and thus the number of theoretical modes on the accuracy of the estimated results have been

investigated with a field test data from the self-anchored suspension bridge. The closeness of the

estimated results to the actual displacements has been evaluated by computing the correlation

coefficient and by comparing FRFs (Frequency Response Functions) and the maximum

displacements.

2. Algorithm for estimating vibration displacement from measured strains

The vibration displacement yi at location xi in the longitudinal direction of a structure can be
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expressed by the modal superposition of separated variables as Eq. (1).

(1)

where , and  = the modal displacement at location xi and the generalized coordinate of the

jth mode at time t, respectively, while m and n = the number of measuring points and the number of

modes, respectively. The number of measuring points m has the same meaning as the number of

sensors used for the measurements herein.

From the Euler-Bernoulli beam theoy, strain  at location xi in the longitudinal direction and at

distance yc from the neutral axis can be related to the curvature y'' by Eq. (2).

(2)

where  = curvature of modal displacement .

Since the curvature matrix  is not symmetric, a least squared solution can be obtained for

 by Eq. (3).

(3)

By inserting  of Eq. (3) into Eq. (1), the relationship between vibration displacements

and strains can be finally derived as Eq. (4).

(4)

The vibration displacements of Eq. (4) are estimated by Eq. (1) after evaluating the general

coordinates of  for each mode by Eq. (3). Since the proposed algorithm applies

theoretical mode shapes, the mode shape matrix  can be extensively obtained depending on the

required locations for estimating vibration displacements which may not be simply limited to the

locations of measuring strains. In that case, the size of mode shape matrix  should be also

changed according to the number of required locations. However, the current research limits the

locations of estimating vibration displacements only to the same locations of measuring strains. The

estimation of vibration displacements at arbitrary locations is out of the current research scope.

In order to obtain a proper solution for  from the system of equations of Eq. (2), the

following criterion of Eq. (5) should be satisfied.

(5)

Eq. (5) indicates that the number of sensors used for the measurements must be larger or at least

equal to the number of modes applied. In other words, the number of theoretical modes used for the

estimation must be smaller or at most equal to the number of sensors used for the experiment. If

this criterion of Eq. (5) is not met, the system of equations of Eq. (2) will be under-determined with

rank deficiency so that multiple solutions may be obtained. Because using more sensors and thus

more modes may result in a better estimation, it may be preferable to set the number of modes

equal to the number of sensors by n = m. In this case, the vibration displacements can be computed

directly by Eq. (6) at the locations of measured strains.
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(6)

Since the Euler-Bernoulli beam theory cannot be exactly satisfied in actual bridge sections, it is

suggested in the current study to obtain the geometric constant yc from a field test data instead of

using a theoretical value. Therefore, it is required to carry out a controlled field test to determine the

value of yc as a scale factor before the proposed algorithm is applied to estimate vibration

displacements. 

Since the proposed algorithm adopts the theoretical mode shape  and its corresponding

curvature  from the Euler-Bernoulli beam theory, the following equations of Eq. (7) can be

directly applied to Eq. (4) or Eq. (6) for the case of a simply supported beam.

(7)

where L = length of the beam.

The process of computing vibration displacements suggested in the paper is schematically

summarized in Fig. 1.

3. Experimental verification

3.1 Application to a single span Maglev bridge

The proposed algorithm has been examined with field test data obtained from a bridge for Maglev

trains as shown in Fig. 2. FBG sensors were placed at the bottom of the girder bridge. Two LVDTs

were also located at the bottom of the middle span as illustrated in the figure. Average response
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Fig. 1 Flow of computing vibration displacements from measured strains and theoretical mode shapes
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from two LVDTs was used as the vertical vibration displacement of the girder bridge. The train ran

at various speeds from 10 km/hr to 50 km/hr over the girder bridge for the tests.

The geometric constant yc in Eq. (4) was determined as 52.68 cm from the case of the vehicle

speed of 10 km/hr. By using yc determined from the reference case of 10 km/hr speed, the vibration

displacements were computed and compared with those measured from LVDTs at the speeds of

30 km/hr and 50 km/hr respectively in Fig. 3. With the exception of some minor discrepancies when

the train passed over the midspan, the estimated displacements are in relatively good agreement

with the measured data.

Fig. 2 Field test on a bridge for Maglev train
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Table 1 confirms the good match between estimated and measured vibration displacements at the

midspan by the correlation coefficients and the difference in maximum displacements. Fig. 4

compares FRFs computed from the estimated and the measured vibration displacements and shows

good agreement even in the frequency domain with the same peak frequencies.

Fig. 3 Comparison of displacements at the midspan of a bridge for Maglev train

Table 1 Comparison of estimated and measured displacements of a bridge for Maglev train at different speeds

Velocity
(km/hr)

Correlation 
coefficient

Maximum displacement @ midspan

uest (mm) umeas 

(mm) Difference (%)

10 0.9997 45.025 44.505 1.17

20 0.9997 45.759 44.790 2.16

30 0.9997 45.929 44.980 2.11

40 0.9994 43.731 44.970 2.76

50 0.9995 44.744 46.125 2.99

Fig. 4 Comparison of FRFs of estimated and measured displacements of a bridge for Maglev train at different
speeds 
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3.2 Application to a self-anchored suspension bridge

The algorithm has also been applied to a self-anchored three-continuous span suspension bridge in

Korea. Fifteen FBG strain sensors were equally spaced only in the main span as shown in Fig. 5.

Vibration at the center of the main span of the suspension bridge has been estimated by the modal

superposition of vibration modes of a simply supported beam representing only the main span of the

bridge.

The geometric constant  was determined from Fig. 6 when a truck ran at the speed

of 5 km/hr. The determined value of yc has been used for all the other tested cases in the current

study. As demonstrated in Fig. 6, the geometric constant yr could be determined with the values in

the non-fluctuating region where a truck passed over the middle span. Based on the experiences

yr π/L( )2yc=

Fig. 5 View of Sorok suspension bridge and the locations of sensors
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from series of field tests, it is recommended to determine the geometric constant by a pseudo-static

test with a truck running at a low speed. However, after the geometric constant is determined once

from a controlled field test, the determined value can be kept using afterwards.

To validate the estimated displacements, the vibration displacements at the center of the main span

were measured directly by the laser displacement meter and also by the differential GPS system and

these results are compared in Fig. 7 for the speeds of 5 km/hr and 60 km/hr, respectively.

The figures in Fig. 7 were drawn for the period from when a truck entered to when it exited the

bridge. Overall, the estimated vibration displacements are closer to the vibration displacements

measured by the laser displacement meter than to those measured by the differential GPS system.

However, the relatively large gap between the estimated and the measured vibration displacements

measured by the laser displacement meter can be observed when the trucks were on the approaching

side of the suspension bridge. It is assumed that this phenomenon might be due to the rotation of

the laser displacement meter itself while the truck was on the approaching side. The laser

displacement meter was located at the top of a crossbeam of the left pylon as shown in Fig. 5(c).

Table 2 summarizes the computed correlation coefficients between the estimated vibration

displacements and the vibration displacements measured by the laser displacement meter at various

Fig. 6 Determination of yr from the field test (5 km/hr)

Fig. 7 Comparison of estimated and measured displacements at the center of the main span at different truck
speeds
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truck speeds. The correlation coefficients were computed with the displacement data in the whole

range and also with the data only when the truck was in the main span where all the FBG sensors

were placed. When vibration displacements are compared within the main span, the correlation

between the estimated and measured vibration displacements is improved. Table 2 also compares

the maximum displacements at the midspan at various truck speeds and confirms good agreements.

The maximum displacements by the differential GPS method are also compared in the same table

and show relatively reliable results with the exception of the case of the speed of 50 km/hr. In Table 2,

uest, ulaser and uGPS represent maximum values of estimated vibration displacement, measured

displacement by the laser displacement meter, and measured displacement by the GPS system,

respectively.

FRFs of the estimated vibration displacements and the vibration displacements measured by the

laser displacement meter obtained at the center of the main span are compared in Figs. 8 and 9. Fig. 8

is drawn with the displacement data of the whole range while Fig. 9 is drawn with the

displacements only when trucks were on the main span. FRFs for the speed of 60 km/h match each

other well in the frequency domain in both figures. However, for the low speed of 5 km/h, some

gaps in the magnitude of FRFs are observed.

The effect of the number of sensors and thus the number of theoretical modes used for the

estimation of the estimation accuracy has been investigated in Fig. 10. As the number of FBG strain

Table 2 Comparison of estimated and measured displacements of Sorok bridge at various truck speeds

Velocity
(km/hr)

Correlation coefficient
(uest − ulaser)

Max. Displacement @ midspan

Whole Mid only uest (mm) ulaser (mm) Diff. (%) uGPS (mm) Diff. (%)

5 0.9840 0.9946 30.666 29.879 2.63 29.915 2.51

10 0.9865 0.9930 30.642 29.249 4.77 32.020 4.30

20 0.9864 0.9949 29.669 29.751 0.28 32.412 8.46

50 0.9870 0.9942 31.909 30.503 4.61 25.049 27.38

60 0.9850 0.9846 31.890 30.454 4.72 32.137 0.77

70 0.9879 0.9943 31.524 30.021 5.01 32.365 2.60

Fig. 8 Comparison of FRFs of estimated and measured displacements at the center of a bridge at different
speeds (with data of the whole range)
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Fig. 9 Comparison of FRFs of estimated and measured displacements at the center of a bridge at different
speeds (with data only when trucks were in the main span)

Fig. 10 Effects of the number of FBG sensors on the estimation of vibration displacements
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sensors increases, the estimated vibration displacements approach closer to the measured vibration

displacements. Table 3 also verifies the same trend in the estimation results by comparing the

correlation coefficients between them. The comparisons indicate that it is necessary to check the

proper number of sensors and theoretical mode shapes at the preliminary stage of the measurement

plan for a reliable estimation of vibration displacements.

3.3 Application to a multi-girder simple span bridge

The algorithm has also been applied to a five-girder simple span plate-girder bridge. Fifteen FBG

sensors were used in total, but only three sensors were placed on each girder as shown in Fig. 11.

Five LVDTs were placed at the center of each girder to validate the estimation of vibration

displacements. After an initial field test was carried out, it was found that measured data from two

Table 3 Effects of the number of FBG sensors on the estimation results

Number of 
sensors

Correlation coefficient Max. Displacement @ midspan

Whole Mid only uest (mm) ulaser (mm) Difference (%)

m = n = 5 0.9262 0.8819 38.867

29.879

23.13

m = n = 10 0.9622 0.9600 31.719 5.80

m = n = 15 0.9715 0.9946 31.424 4.92

Fig. 11 Field test on a simple span plate-girder bridge
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Fig. 12 Comparison of displacements at the center
of each girder (load case 3)

Fig. 13 Comparison of displacements at the center
of each girder (load case 6)
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FBG sensors of No. 6 and No. 12 fluctuated out of the bound so that the vibration strains at the two

locations were replaced by the strains averaged from the adjacent FBG sensors of No. 1, No. 7, and

No. 7, No. 13, respectively.

To apply the proposed algorithm, each girder of the bridge was considered as a simply supported

beam. The geometric constant yc was computed as an overall averaged value of yc from all of the

girders. Figs. 12 and 13 compare the measured vibration displacements with the estimated vibration

displacements at the midspan of each girder at the speeds of 40 km/hr and 60 km/hr, respectively.

Table 4 summarizes the correlation coefficients of each girder for various load cases and Table 5

compares the estimated and measured maximum displacements at the midspan of each girder for the

tested load cases.

Table 4 Comparison of correlation coefficients of estimated and measured displacements at the center of each
girder for various load cases

Load 
case

Velocity 
(km/hr)

Lanes
Correlation coefficient

Average
G1 G2 G3 G4 G5

1 5 lane 1 0.984 0.981 0.976 0.976 0.917 0.967

2 5 parallel 0.989 0.978 0.956 0.976 0.990 0.978

3 40 lane 1 0.984 0.970 0.934 0.952 0.950 0.958

4 40 parallel 0.982 0.970 0.952 0.971 0.981 0.971

5 40 10 m serial 0.985 0.892 0.745 0.915 0.988 0.905

6 60 parallel 0.977 0.961 0.932 0.955 0.972 0.959

7 80 10 m serial 0.978 0.896 0.573 0.918 0.977 0.868

Average 0.983 0.950 0.867 0.952 0.968 (0.944)

Table 5 Comparison of maximum displacements at the center of each girder for various load cases

Load case 1 2 3 4 5 6 7

G1

uest (mm) 1.307 0.942 3.528 4.135 1.651 4.337 1.834 

umeas (mm) 1.362 1.175 3.277 4.115 1.420 4.253 1.716 

Difference (%) 4.02 19.86 7.68 0.49 16.24 1.96 6.85

G2

uest (mm) 1.260 0.911 3.018 3.600 1.823 3.623 1.660 

umeas (mm) 1.109 0.899 2.955 3.735 1.925 3.863 2.192 

Difference (%) 13.58 1.30 2.13 3.62 5.32 6.21 24.29

G3

uest (mm) 1.253 0.880 2.508 3.068 2.301 2.911 1.903 

umeas (mm) 0.796 0.741 2.182 2.985 2.498 3.075 2.751 

Difference (%) 57.36 18.75 14.95 2.77 7.89 5.36 30.82

G4

uest (mm) 0.834 0.669 1.537 2.109 2.466 2.003 2.144 

umeas (mm) 0.606 0.660 1.500 2.292 2.687 2.357 2.942 

Difference (%) 37.52 1.39 2.43 8.01 8.25 15.03 27.11

G5

uest (mm) 0.436 0.471 0.628 1.349 2.844 1.196 2.990 

umeas (mm) 0.255 0.450 0.676 1.398 2.686 1.405 2.897 

Difference (%) 71.00 4.54 7.13 3.47 5.86 14.91 3.20
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In Table 5, the largest percentage difference between the estimated and the measured

displacements can be found in load case 1. However, the actual magnitude difference is less than

0.5mm. Vertical displacements of the plate-girder bridge in all the cases were very small under the

applied load cases as observed in the table. Among the load cases tested, load cases 5 and 7 of two

Fig. 14 Comparison of FRFs of displacements at the
center of each girder (load case 3)

Fig. 15 Comparison of FRFs of displacements at the
center of each girder (load case 6) 
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serial trucks running with a 10 m distance between them provide the worst correlations because the

required condition of a 10 m distance with a constant speed was difficult to maintain during the

field test. However, most of the displacements of all other cases were reliably estimated.

FRFs of displacements at the center of each girder are compared in Figs. 14 and 15 for different

load cases. In all the cases, the peaks in the low frequency range generally match each other well.

However, in the slightly higher frequency range, it is observed that all the FRFs of the estimated

vibration displacements still have relatively large magnitudes with some peaks. It is believed that

this mismatch in the high frequency range can be also improved by using more FBG sensors and

thus more theoretical modes. Judging from the application studies of sections 3.1 and 3.2, using

more than 5 FBG sensors in each girder could result in better and more reliable estimation of

vibration displacements.

4. Conclusions

An algorithm of estimating bridge vibration displacements using measured FBG strain sensors and

theoretical beam mode shapes is proposed and has been verified through field tests on various types

of bridges. The estimated vibration displacements have been compared by the correlation

coefficients, maximum displacements, and also by FRFs. These values and figures proved their

usefulness and effectiveness in comparing vibration displacements. In the current approach, the

number of theoretical modes for estimating vibration displacements has been selected to be the

same as the number of FBG sensors used for a field test.

To apply the proposed algorithm for an actual bridge, a geometric constant needs to be selected.

Theoretically, the geometric constant can be computed from the given sectional information of a

bridge. However, since the beam theory cannot be exactly satisfied in an actual structure, it is

proposed in the current approach that the geometric constant is rather determined as a scale factor

from a controlled field test with a truck running at a low speed. However, after the geometric

constant is determined once, it can be used afterwards without revising it.

For all the tested cases with different types of bridges, the estimated vibration displacements from

the proposed algorithm have agreed relatively well with the directly measured vibration

displacements. The application to a plate-girder bridge with multi girders showed relatively worse

results compared with the other cases but this demonstrates that a proper number of FBG sensors

should be used for each girder to estimate vibration displacements accurately. Therefore, it is

recommended that a proper number of FBG sensors should be determined at the preliminary stage

of the measurement plan.

The proposed method can be also applied to any other type of structures whose theoretical mode

shapes can be obtained and strains are reliably measured at sufficient locations.
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