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Abstract. In-plane free vibrations of circular beams with stepped cross-sections are investigated by
using the exact analytical solution. The axial extension, transverse shear deformation and rotatory inertia
effects are taken into account. The stepped arch is divided into a number of arches with constant cross-
sections. The exact solution of the governing equations is obtained by the initial value method. Several
examples of arches with different step ratios, different locations of the steps, boundary conditions, opening
angles and slenderness ratios for the first few modes are presented to illustrate the validity and accuracy
of the method. The effects of the geometric parameters on the natural frequencies are investigated in
details. Several examples in the literature are solved and the results are given in tables. The agreement of
the results is good for all examples considered. The mode transition phenomenon is also observed for the
stepped arches. Some examples are solved also numerically by using the commercial finite element
program ANSYS.
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1. Introduction

Engineering structures often consist of a number of components that can be modelled as beams,

curved beams and rings. Curved beams are one of the most predominant components in engineering

structures. Curved structural members are widely seen our surroundings, such as railway supports in

a playgrounds resembling a C-ring structure, vehicle chassis and frame structures. It has been

recorded that the free vibration of curved beams has been the subject of much work due to their

many practical applications. More than 600 articles have been summarized in review articles

(Markus and Nanasi 1981, Laura and Maurizi 1987, Chidamparam and Leissa 1993, Auciello and

De Rosa 1994). The first studies on this argument date back to the end of 19th century and

frequently still appeared in the scientific literature. Considerable amount of attention has been

devoted to the analysis of such elements in recent years. The arch bridges are widely used structures

in civil engineering and theoretical analysis and experiments are still conducted (Lu et al. 2010, Ren

et al. 2010). The magnet positioner with the C-arm which is intended to be part of a clinical setup

whose other major mechanical components include a fluoroscopy system and a motorized patient
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table. In medical imaging systems as well as many other branches of engineering, similar structures

consisting of straight and curved beam components are common (Tunay et al. 2009). Most of

cardiovascular stents has the curved section with uniform cross-section. But some of stents has

varying cross-section (Jang et al. 2010).

The gravity-type fish cage is extensively applied with the increasing demand for fishery products.

The flotation ring of a gravity-type fish cage is the main load-bearing component providing the

necessary strength of the entire cage in water and supports the whole cage. So it is essential to

study the hydro elasticity of the flotation ring for the safety of a fish cage (Dong et al. 2010a, b).

Micro-devices such as micro-actuators, micro-switches, micro-mirrors and micro-resonators are

widely used in micro-electro-mechanical systems (MEMS) and movable electrode can be modeled

as a micro-beam (Hu et al. 2010). Micromachined shallow arches have been under increasing focus

in recent years in the MEMS community because of their unique attractive features (Younis et al.

2010). Vibrations of spiral beams are studied recently as a prelude to sensing and energy harvesting

using the piezoelectric effect in MEMS devices. Vibrational energy harvesters convert vibrations

available in the environment to electrical energy. The energy generated can be used to power sensor

nodes (Karami et al. 2010, Zhou et al. 2010).

Since their identification in 1991, carbon nanotubes have drawn much attention. A large number

of theoretical and experimental studies have been directed toward understanding the static and

dynamical behaviors of curved carbon nanotubes due to their enormous applications (Xia and Wang

2010, Ouakad and Younis 2011).

Lin (2008) determined the exact solutions of natural frequencies and mode shapes of a multi-step

beam carrying a number of various concentrated mass elements. Then, the same author (Lin 2010)

investigated a multi-step beam carrying multiple rigid bars supported elastically.

It must be noted that curved beams are more efficient in the transfer of loads than the straight

beams because the transfer is affected by bending, shear and membrane action. The study of the

free in-plane vibration of a curved beam using the beam theory is more complex than the analogous

problem in a straight beam, since the structural deformations in a curved beam depends not only on

the rotation and radial displacements but also on the coupled tangential displacement caused by the

curvature of the structure. Many theories have been evolved to derive, simplify and solve the

equations of motion for the free in-plane vibration of the curved beams. Generally speaking, all

researches relative to this topic can be classified to two categories. One is based on three

dimensional elasticity theory, which and the final governing equations involve three or two at least

spatial coordinates. The second approach is to transform a three-dimensional elasticity problem to a

one-dimensional elasticity problem based on crucial and reasonable hypotheses and neglecting some

secondary factors. In this field, the Euler-Bernoulli and Timoshenko theories of beams are two

widely used models. The former theory completely neglects shear deformation of the cross-section

of beams, while the latter needs to introduce a shear correction factor, which cannot be determined

by the theory itself, although shear deformation has been taken into account in this theory.

The curved beam finite elements are the most common tool to analyze the curved beam problems.

They are conventionally formulated based upon the displacement fields. Such formulation often

leads to excessively stiff behavior in the thin beams. In such analyses, the shear-locking

phenomenon occurs when lower order elements are used in modeling. This is because in such

models, only flexural deformations are considered and shear deformations are neglected. Another

phenomenon is called membrane-locking. It occurs when other classical curved finite elements are

used for modeling thin curved beams, because they exhibit excessive membrane stiffness as
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compared with the bending stiffness in approximating the extensional bending response, and also

the lower order element cannot bend without being stretched. It means that such elements are

unable to represent the condition of zero radial shear strains. Therefore, these two phenomena are

associated with highly undesirable situations and numerical deficiencies. Thus, much attention has

been focused on rectifying the locking phenomena.

The common geometry of the curved member consists of a segment of a circular ring with

uniform cross-section. However, some curved beams have continuously or discontinuously varying

cross-sections. Vibrations of stepped curved beams have been the subject of many papers. The

authors examined the vibrations of stepped curved beams with different boundary conditions by

using several methods. Verniere De Irassar and Laura (1987) investigated the first symmetric mode

of vibration of circular arches. The fundamental frequency coefficients are determined for arches of

discontinuously varying cross-sections carrying concentrated masses by means of Rayleigh-Ritz

method. Laura et al. (1988) presented free vibrations of curved beams having non-uniform thickness

by means of the Rayleigh-Ritz method. Two different kinds of stepped curved beams examined for

three types of boundary conditions. The effect of concentrated mass was also considered. Gutierrez

et al. (1989) used polynomial functions and Ritz method to solve in-plane vibrations of curved

beams of non-uniform cross-sections. Two types of cross-sectional variations for both symmetrical

and unsymmetrical structures were considered, continuous and discontinuous variations for circular

and non-circular beams such as parabola, centenary, spiral and cycloid. Balasubramanian and

Prathaph (1989) developed a curved beam element for static and dynamic analysis of stepped

circular beams by considering the axial extension and shear deformation effects. Rossi et al. (1989)

studied in-plane vibrations of cantilevered non-circular curved beams of non-uniform cross-sections

taking into account a concentrated mass at the free end. The polynomial co-ordinate function was

used to calculate the fundamental mode. Ritz method with Rayleigh’s optimization criteria was

applied to solve the governing equations and finite element method was used to compare the results.

Rossi and Laura (1995) introduced the dynamic stiffening effect of hinged and clamped curved

beams with discontinuous variations of the cross-sections that was measured by means of the

dynamic stiffness efficiency parameter. Tong et al. (1998) investigated in-plane free and forced

vibrations of circular arches with variable cross-sections under the Kirchhoff’s assumptions that take

the neutral axis inextensible and neglect the shear deformation and rotatory inertia effects. The

circular curved beams having both one step and two steps and also curved beams with continuously

varying cross-sections were examined. Liu and Wu (2001) applied the generalized differential

quadrature rule based on Kirchhoff assumptions to solve in-plane free vibrations of circular curved

beams. Karami and Malekzadeh (2004) applied the differential quadrature method to solve free

vibrations of circular curved beams with variable cross-sections by taking into account the effects of

axial extension and rotatory inertia. Viola et al. (2007) investigated the in-plane linear dynamic

behavior of multi-stepped and multi-damaged circular arches under different boundary conditions.

Analytical and numerical solutions in undamaged as well as in damaged configurations were

obtained. Euler characteristic exponent procedure for analytical solution and generalized differential

quadrature element technique for the numerical method were used.

Several examples of arches with uniform, continuously varying and stepped cross-sections are

presented by means of a number of approaches such as Ritz, Galerkin, cell discretization,

differential quadrature and finite element methods by most of the researchers. Different boundary

conditions are examined and comparison of results of different solution methods is performed by

neglecting the axial extension, transverse shear deformation and rotatory inertia effects. It can be
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possible to obtain reasonable results for a thin and deep arch by neglecting axial extension effect as

well as shear deformation and rotatory inertia effects, even in higher modes. But for a thick and

shallow arch, all the effects have to be taken into account for obtaining acceptable results, even in

lower modes. For the free vibration of a shallow arch, the axial extension effect is the most

important effect among them. A phenomenon of transformation of modes from extensional into

inextensional, which occurs with increase in beam curvature, has been observed by several authors

(Tarnopolskaya et al. 1996, Tarnopolskaya et al. 1999, Tufekci 2001). The transformation

phenomenon is characterized by the sharp increase in frequencies of modes that occurs at certain

combinations of curvature and length of the beam. This increase in mode frequencies is

accompanied by a significant change in the mode shapes. There is still no comprehensive analysis

of the transformation phenomenon and there are no proper explanations and methods for prediction

the frequencies of an arch. This is possibly due to the fact that numerical simulations, commonly

employed for the analyses, provide little analytical insight into the vibrational problem.

This study focuses on the free vibrations of two-stepped curved beams. The aim of this study is to

extend the analysis given by Tufekci and Ozdemirci (2006) for a two-stepped circular beam (Fig.

1). The effects of geometric parameters on the free vibration of a two-stepped circular beam are

investigated in details.

The stepped circular beam is divided into a number of arches with constant cross-sections. The

governing differential equations are solved exactly for each portion. The differential equations of

motion have been solved exactly by Tufekci and Arpaci (1998), taking into account the effects of

shear, rotatory inertia and extensibility of the arch axis. The overall solution of the governing

equations of free vibration of the stepped arch can be obtained by satisfying boundary conditions at

the ends and kinetic and kinematic continuity conditions at the boundaries of each curved portions.

The effects of boundary conditions, opening angles, slenderness ratios, position of the stepped

portion, step ratios and the opening angle ratios on the natural frequencies for several modes are

given in diagrams. The analysis of the mode transition phenomenon in vibrational behavior of a

stepped beam is presented.

2. Analysis

The governing equations of free in-plane vibrations of a circular arch with constant cross-section

are given by Tufekci and Arpaci (1998).

Fig. 1 The different positions of step for η = h2/h1 >1 and η = h2/h1 < 1
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(1)

where u, w are normal and tangential displacements; Ωb is the rotation angle about the binormal

axis; φ is the angular co-ordinate; R is the radius of curvature of undeformed beam axis; Fn, Ft are

normal and tangential components of internal force; Mb is the internal moment about the binormal

axis; E, G are Young’s and shearing moduli; A is the cross-sectional area; Ib is the moment of

inertia about the binormal axis; µ is the mass per unit length, kn is the factor of shear distribution

along the normal axis and kn = 6/5 for rectangular cross-section.

The configuration of a circular stepped beam considered in this study is given in Fig. 2. In order

to use the exact solution of Eq. (1) given by Tufekci and Arpaci (1998), this curved beam is divided

into three sub-domains with constant cross-sections. For each sub-domain, the Eq. (1) can be

written by using the following boundaries

For the first sub-domain:

For the second sub-domain:

For the third sub-domain: (2)

According to the procedure by Tufekci and Arpaci (1998), the exact solution of Eq. (2) can be

obtained as

(3)
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Fig. 2 Geometry of the stepped arch
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provided that the initial values vectors  at the reference coordinates

, ,  are known. The terms  and  can be expressed exactly.

The initial values vectors must be obtained in order to specify the solution vectors 

and . Eighteen elements of these vectors can be found by using 18 equations obtained from

the boundary conditions at the ends A, B and the kinetic and kinematic continuity conditions at

points C  and D ( ).

2.1 Boundary conditions

For end A in Fig. 2

Hinged end:

Clamped end:

Free end: (4)

Similar expressions are specified for the end B in Fig. 2. These conditions yield six simultaneous

linear equations in terms of the initial values at the reference coordinates  and .

2.2 Kinematic and kinetic continuity conditions 

At the boundaries of the sub-domains, the continuity conditions between the adjacent portions

have to be expressed. The continuity and equilibrium conditions at the boundaries of the portions at

point C and D require that all quantities at these boundaries of the portions must be equal to each

other 

(5)

This also yields twelve simultaneous linear equations in terms of the initial values at the reference

coordinates  and .

Thus, the eighteen equations associated with the boundary and continuity conditions can be

written in matrix form

(6)
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by finding the roots of the frequency equation. It is also possible to apply this solution procedure to

other cases in which some effects are neglected.

3. Numerical evaluations and comparisons

The proposed method is applied to obtain the natural frequencies of the stepped arch with various

boundary conditions (clamped-clamped, hinged-hinged, free-free, hinged-clamped and clamped-free)

and geometry parameters. The geometry parameters considered here are the opening angle of the

arch φT, the position parameter of the step ψ1/φT which is illustrated in Fig. 2, the opening angles

ratio ψT/φT which is denoted by ξ, the slenderness ratio λ = R/i, where i is the radius of gyration and

the step ratio h2/h1 which is denoted by η. It is assumed that h3 = h1, unless otherwise specified. The

numerical examples are evaluated to show the effects of the variation of all these geometry

parameters on the frequency coefficient. The frequency coefficient is given as c = ωR
2φT

2(µ1/EIb1)
1/2

and calculated for five different cases.

Case 1: No effect is considered (the Euler-Bernoulli beam theory in which the effects of axial

extension, shear deformation and rotatory inertia are not considered).

Case 2: All effects are considered.

Case 3: Only shear deformation effect is considered.

Case 4: Only rotatory inertia effect is considered.

Case 5: Only axial extension effect is considered.

The numerical results are obtained for φT = 10o, 20o, 30o, 60o, 90o, 135o, 180o; η = h2/h1 = 0.4, 0.6,

0.8, 1, 1.2, 1.4, 1.6, 1.8, 2; ξ = ψT/φT = 0.2, 0.4, 0.6; ψ1/φT = −0.4, −0.3, −0.2, −0.1, 0.0, 0.1, 0.2;

λ = R/i = 50, 100, 150.

Fig. 3 presents the non-dimensional frequencies for different opening angles, φT, with the different

cases considering axial extension, transverse shear deformation and rotatory inertia effects

individually. It can be seen that the axial extension is the major effect. It is not possible to model

the realistic beam behavior by neglecting the axial extension effect. As it is expected, the rotatory

inertia has little effect for the first mode. The frequency coefficient increases sharply for small

opening angle and then decreases slowly for larger opening angles. Similar characteristics can be

Fig. 3 The first frequency coefficient for a clamped-
clamped arch with λ = 50, ψΤ /φT = 0.2, ψ1 /φT =
−0.4, η = 0.8

Fig. 4 The first frequency coefficient for a clamped-
free arch with λ = 50, ψΤ /φT = 0.2, ψ1 /φT =
−0.4, η = 0.8 
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seen for the other symmetric boundary conditions such as hinged-hinged and free-free. The

unsymmetrical type of boundary conditions such as hinged-clamped and clamped-free are also

investigated. The figures for other boundary conditions are very similar to those given in the present

paper and they are not presented here for the brevity.

The mode transition phenomenon for this arch is observed around the angle of 60o in Fig. 3. The

mode shape changes significantly from extensional into inextensional. As the slenderness ratio

increases, the mode transition occurs in smaller angles.

The results of clamped-free boundary condition for different cases are illustrated in Fig. 4. The

slenderness ratio is 50 and the subtended angle of the arch changes from 10o to 180o. The effects of

the cases on the first frequency are shown in this figure. The results of the cases are considerably

close to each other for all opening angles. While the axial extension effect does not change the

frequency, the major effect is the shear deformation effect in this boundary condition, as it is

expected. The frequency coefficient increases with increasing opening angle. This is significantly

different from those of other boundary conditions. This different characteristic of frequency curve is

not observed in higher modes.

Fig. 5 gives a comparison for the first frequency coefficients of all boundary conditions. The

frequency coefficients increase sharply for small opening angles and then decrease slowly for

clamped-clamped (C-C), hinged-clamped (H-C), hinged-hinged (H-H) and also free-free (F-F)

boundary conditions. But the first frequency coefficient of a clamped-free (C-F) beam increases

when the opening angle increases. This different characteristic is not observed for the higher modes.

Fig. 6 shows the first frequency coefficient of a clamped-free beam for different values of the

position parameter ψ1/φT. As it can be seen in the figure, the frequency coefficient is affected

slightly by the position parameter. The frequency coefficient increases for all opening angles, as the

step position parameter increases.

The Figs. 7 and 8 give the variation of frequency coefficients with the position parameter for

hinged-hinged and clamped-free beams having different step ratios. As it can be seen in Fig. 7, the

frequency coefficient will be minimum for h2/h1 = 1.2 and maximum for h2/h1 = 0.8 at the position

parameter of step ψ1/φT = −0.1, where the stepped portion is at the crown of the beam. In Fig. 8, for

the step ratio h2/h1 = 0.8, the first frequency of a clamped-free beam increases, as the position

parameter, ψ1/φT, increases. But, for the step ratio h2/h1 = 0.8, the frequency decreases when the step

Fig. 5 The frequency coefficients of arches with
different boundary conditions λ = 50, ψΤ /φT =
0.2, ψ1 /φT = −0.2, η = 0.8

Fig. 6 The effect of step position parameter on the
first frequency coefficients for a clamped-free
arch with λ = 50, ψΤ /φT = 0.2, η = 0.8
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subdomain moves from the clamped end to the free end.

Fig. 9 shows the effect of position parameter on the first frequency of a clamped-clamped beam.

The frequency coefficients have the maximum values around ψ1/φT = −0.3 for h2/h1 = 0.4, 1.2, 1.6

and 2.0, and the minimum values when the stepped subdomain is in the middle of the beam. The

frequency coefficients have the minimum values around ψ1/φT = −0.3 and the maximum values

around ψ1/φT = −0.1 for h2/h1 = 0.6 and 0.8. The similar characteristics for other symmetric

boundary conditions can be observed. 

The effect of the position parameter on the first frequency of a hinged-clamped beam is given in

Fig. 10. The frequency curves have the maximum values between ψ1/φT = 0 and 0.1 for the step

ratio of h2/h1 < 1, and the minimum values between ψ1/φT = 0 and 0.1, for h2/h1 > 1.

Fig. 11 presents the effect of the position parameter on the frequency coefficient of a clamped-free

beam. The frequency coefficient increases for h2/h1 < 1 and decreases for h2/h1 > 1, as position

parameter increases. When the stepped portion moves from the clamped end to the free end, for the

step ratio h2/h1 < 1, the frequency increases, and for h2/h1 > 1, the frequency decreases.

Fig. 7 The effect of step position parameter on the
frequency coefficient for a hinged- hinged arch
with λ = 50, φΤ= 60o, ψΤ /φT = 0.2

Fig. 8 The effect of step position parameter and step
ratio on the first frequency coefficients for a
clamped-free arch with λ = 50, φT = 60o, ψΤ /
φT = 0.2 

Fig. 9 The effect of position parameter on the
frequency coefficients for a clamped-clamped
arch with λ = 50, ψΤ /φT  = 0.2 and φT = 90o

Fig. 10 The effect of position parameter on the
frequency coefficients of a hinged-clamped
arch with λ = 50, ψΤ /φT = 0.2 and φT = 30o 
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In Fig. 12, the effects of the opening angles ratio, ψT/φT, on the frequency coefficients of a

clamped-clamped arch are given for different opening angles. As it can be seen in the figure, the

frequency coefficient is affected slightly by the position parameter. There is a continuous decrease

for φT = 90o, 135o, and 180o while there is a continuous increase for φT = 10o, 20o, 30o and 60o.

The effect of the step ratio on the first frequency for a hinged-clamped beam is presented in

Fig. 13. For the step position parameter of ψ1/φT = −0.1 and −0.2, the frequency increases sharply

until the step ratio of h2/h1 = 1.0, and then decreases slightly. For the step position parameter of ψ1/

φT = −0.4 and −0.3, the frequency reaches the maximum value around h2/h1 = 1.2. For the step

position parameter of ψ1/φT = 0.0, 0.1 and 0.2, the maximum of the frequency can be found around

h2/h1 = 1.4. The similar diagrams are obtained for other boundary conditions. The frequency

coefficients are a strong function of the position parameter for all step ratios.

The first ten frequency coefficients of a clamped-clamped arch are given in Fig. 14. The

examinations are performed for the case in which all effects are taken into consideration. The other

boundary conditions, step ratios and position parameters do not change the characteristic of these

curves. The mode transition phenomenon occurs in the opening angles in which the curves approach

each other. The mode shapes change from one configuration to another. For example, in Fig. 14, for

Fig. 11 The effect of position parameter on the
frequency coefficients for a clamped-free
arch with λ = 50, ψΤ /φT = 0.2 and φT = 30o 

Fig. 12 The effect of step ratio on the frequency
coefficients for a clamped-clamped arch with
λ = 50, ψ1 /φT = −0.4, η = 0.8

Fig. 13 The effect of step ratio on the frequency
coefficients for a hinged-clamped arch with λ
= 50, ψT/φT = 0.2 and φT = 60o

Fig. 14 The first ten frequency coefficients of a
clamped-clamped arch with λ = 50, ψT/φT =
0.4, ψ1 /φT = −0.3, η = 0.8 
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the beam with φT = 100o, the third mode shape is the same as the fourth mode shape for the beam

with φT = 120o. Fig. 15 gives the third and fourth mode shapes of circular beams with opening

angles of 100o and 120o. As it can be seen from the figure, the third mode shape of the beam with

φT = 100o is the same as the fourth mode shape of the beam with φT = 120o.

Numerical calculations for the same problem were performed also using commercial finite

Fig. 15 The third and fourth mode shapes of clamped-clamped arches, λ = 50, h2/h1 = 0.8, ψ1/φT = −0.3, ψT/
φT = 0.4 
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element analysis software ANSYS (version 13) and converged solutions based on the 2-node beam

element Beam188 are given in Fig. 16. The frequencies are in very good agreement with the

analytical results. The mode shapes are exactly same as those obtained by the analytical method.

The third mode shape of the beam with φT = 100o is the same as the fourth mode shape of the beam

with φT = 120o. It can be seen from the Figs. 14-16 that the mode transition is observed in the third

and fourth modes around the opening angle of φT = 110o.

The comparisons of the results of different solution methods in literature and this study are given

in tables. The classical approximate Ritz and Galerkin approaches have been extensively applied in

a large number of investigations, both in their classical version and in the modified Rayleigh-

Schmidt version. Clamped-clamped, hinged-hinged and hinged-clamped boundary conditions are

examined and comparisons of the results of the Rayleigh-Ritz (R-R), finite element method (FEM)

and the cells discretization method (CDM) in the references are performed. 

The first non-dimensional natural frequencies for stepped arches are obtained for different

parameters: Opening angle of the arch φT, the position parameter of the step ψ1/φT, opening angles

ratio (ξ = ψT/φT), the slenderness ratio (λ = R/i), the step ratio (η = h2/h1). The discontinuity of arch

Fig. 16 The third and fourth mode shapes of clamped-clamped arches (ANSYS results), λ = 50, h2/h1 = 0.8,
ψ1/φT = −0.3, ψT/φT = 0.4 
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is considered at the crown of the arch and the different position of stepped subdomain and the

opening angles ratios have not been included in almost all of the studies in the literature. In the

following tables, the slenderness ratio is taken as λ = R/i = 50 for Case 2.

In Tables 1 and 2, the first non-dimensional frequencies from the Rayleigh-Ritz, the cells

discretization (CDM) and the finite element (FEM) methods (the commercial program SAP IV was

used) (Auciello and De Rosa 1994) for different step ratios and opening angles are compared with

those obtained in this study. In these tables, two sets of exact solutions, Case 1 (no effect) and Case

2 (all effects), are given. These two sets give close results for large opening angles, while the

differences are considerable for smaller angles. As it can be seen from Tables 1 and 2, the results of

Auciello and De Rosa (1994) are very close to the exact solutions of Case 1, since this reference

neglects the effects of axial extension, shear deformation and rotatory inertia. All effects have to be

considered in order to obtain the correct natural ferquencies for the beams with smaller opening

angles. Tong et al. (1998) also solved the same problem and their results are given in Table 2. It

can be seen that their results are in well agreement with those of this study.

Verniere De Irassar and Laura (1987) studied the natural frequencies of clamped-clamped and

Table 1 The first non-dimensional frequency ( ) for clamped-clamped stepped arch (ψT/φT =
0.5, ψ1/φT = −0.375, λ = R/i = 50 for Case 2) 

η = 0.8 η = 1.2

φT

Auciello and De Rosa 
(1994)

This Study
Auciello and De Rosa 

(1994)
This Study

R-R CDM Case 1 Case 2 R-R CDM Case 1 Case 2

5 7656.8 7216.57 7524.508 995.785 8519.54 8639.3 8563.159 927.356

10 1913.9 1802.62 1879.500 423.746 2129.23 2157.5 2138.546 409.841

20 478.06 449.142 468.255 151.225 531.73 537.08 532.404 154.026

30 198.508 206.925 82.189 237.01 234.988 84.608

40 119.1 110.798 115.472 58.568 132.297 132.01 130.914 59.592

45 93.997 87.1349 90.800 52.890 104.336 103.69 102.839 53.404

50 70.2129 73.156 49.134 83.439 82.764 49.297

60 48.1797 50.183 44.143 57.076 56.631 44.355

70 34.907 36.345 34.613 41.204 40.895 38.286

80 26.306 27.378 26.398 30.925 30.705 29.224

90 23.089 20.421 21.243 20.636 25.46 23.9 23.739 22.813

100 16.2238 16.868 16.472 18.897 18.776 18.169

110 13.1297 13.643 13.375 15.215 15.122 14.710

120 10.7872 11.202 11.014 12.433 12.361 12.073

130 8.9744 9.313 9.179 10.285 10.228 10.023

140 7.5456 7.825 7.726 8.5962 8.551 8.401

150 6.40186 6.634 6.560 7.2483 7.212 7.101

160 5.4741 5.668 5.612 6.1582 6.129 6.045

170 4.71299 4.875 4.832 5.2667 5.242 5.179

180 4.0823 4.219 4.186 4.5305 4.510 4.461

c ωR
2

µ1/EI1=
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hinged-hinged stepped arches by using Rayleigh-Ritz method. The effects of axial extension, shear

deformation and rotatory inertia are neglected in the calculations. Table 3 gives the second non-

dimensional frequencies of both clamped-clamped and hinged-hinged stepped curved beams for

several opening angles and step ratios. The results of Verniere De Irassar and Laura (1987) and this

study are compared in Table 3. The results are close to those obtained by neglecting all effects

(Case 1).

Laura et al. (1988) considered the free vibrations of stepped beams with clamped-clamped and

hinged-hinged ends by using the optimized Ritz procedure. The calculations were performed for

several opening angles and step ratios by neglecting the effects of axial extension, shear

deformation and rotatory inertia. The FEM results were also obtained by using finite element

analysis program SAP IV. The finite element analyses were performed for hinged-hinged arch with

opening angle of φT = 20o and several step ratios. The results are given in Table 4. As it can be

seen, the results are in well agreement with those of this study for Case 1. The FEM results are

much closer to the exact results of Case 1 than those of the Ritz method. The results of Case 2 are

obtained for beams with λ = 50. 

Rossi and Laura (1995) studied the dynamic stiffening of simply supported and clamped arches.

The effects of axial extension, shear deformation and rotatory inertia are included in the analyses.

Table 2 The first non-dimensional frequency ( ) for clamped-clamped stepped arch (η = 0.8,
ψT/φT = 0.5, ψ1/φT = −0.35, λ = R/i = 50 for Case 2)

φT

Auciello and De Rosa (1994) Tong et al. 
(1998)

This Study

R-R FEM CDM Case 1 Case 2

5 7836.7 7368.8 7451.01 1002.88

10 1958.9 1840.9 1844.84 1861.16 426.98

20 489.3 456.31 458.68 459.662 463.701 152.415

30 202.72 203.157 204.923 82.818

40 121.87 113.195 113.15 113.392 114.363 58.991

45 96.166 88.987 89.175 89.932 53.263

50 71.705 71.856 72.4604 49.477

60 49.2 49.306 49.7121 44.374

70 35.647 35.722 36.009 34.354

80 26.86 26.918 27.1291 26.184

90 23.599 20.851 20.895 21.054 20.468

100 16.564 16.721 16.338

110 13.403 13.527 13.268

120 11.009 11.1097 10.928

130 9.1565 9.2389 9.1086

140 7.6961 7.7646 7.6692

150 6.5269 6.5845 6.5135

160 5.5784 5.6275 5.5738

170 4.8001 4.8423 4.8013

180 4.155 4.1919 4.1601

c ωR
2

µ1/EI1=
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Finite element algorithmic procedure was used. The slenderness ratio was described as i/(RφT) and

taken as 0.05. The results of the first six frequency coefficients are compared with those of this

study in Table 5. The authors think that the third frequency coefficient, in the reference paper, of

clamped-clamped arch with opening angle of 180o and the step ratio of 0.8 was given as 43.843 by

mistake instead of 73.843, which is given as bold characters in Table 5. The results of Rossi and

Laura (1995) are extremely close to the exact results of this study. As it can be seen, some

frequencies of successive modes are very close to each other and the mode transition phenomenon

can be observed around this opening angle. For example, the third and fourth mode frequencies of

the clamped-clamped arch with opening angle of 60o and the step ratio of 0.6 are very close to each

other and the mode shapes, around this opening angle, are changes from one configuration to

another. Similar case can be observed for the first and second frequencies of hinged-hinged arch

with opening angle of 90o and the step ratio of 0.8.

Tables 6-8 give the first frequency coefficient for several opening angles ratios of ψT/φT = 1/4, 1/3

and 1/2, and step position parametes ψ1/φT = −1/8, −1/6, and −1/4. For the brevity, the first six

Table 3 The second non-dimensional frequency ( ) of Verniere De Irassar and Laura (1987),
RR: Rayleigh-Ritz method (ψT/φT = 0.4, ψ1/φT = −0.2, and λ = 50 for Case 2) 

Clamped-clamped Hinged-hinged

φT η RR
This Study

RR
This Study

Case 1 Case 2 Case 1 Case 2

5

1 114.436 110.979 13.54926 85.282 84.2868 10.77567

1.2 116.849 115.413 12.53338 88.423 88.5597 9.724393

1.4 121.304 120.487 11.03094 93.322 93.4875 8.580487

10

1 114.419 110.939 25.3753 85.26 84.2453 23.28559

1.2 116.829 115.369 24.69023 88.399 88.5146 23.45347

1.4 121.28 120.438 23.51548 93.294 93.4384 22.85385

20

1 114.36 110.777 40.93305 85.175 84.0795 31.90491

1.2 116.748 115.19 41.14845 88.303 88.3343 32.6872

1.4 121.184 120.242 40.6088 93.184 93.2424 32.70176

30

1 114.238 110.507 48.71901 85.033 83.8041 34.9088

1.2 116.613 114.894 49.67656 88.142 88.0349 35.98568

1.4 121.025 119.917 49.62477 93.001 92.9166 36.2154

40

1 114.079 110.131 52.50476 84.835 83.4203 35.91803

1.2 116.425 114.481 53.93591 87.917 87.6176 37.11917

1.4 120.802 119.463 54.1942 92.744 92.4627 37.44048

45

1 113.983 109.904 53.56997 84.714 83.1883 36.06533

1.2 116.311 114.231 55.15398 87.78 87.3654 37.29084

1.4 120.666 119.189 55.51266 92.596 92.1883 37.63073

60

1 113.628 109.068 54.96573 84.267 82.3351 48.46284

1.2 115.889 113.312 56.78264 87.432 86.4377 47.51779

1.4 120.166 118.18 57.29274 92.013 91.179 46.68427

c ωR
2

φT

2

µ1/EI1=
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frequencies are not compared in the tables. The results of Rossi and Laura (1995) are in well

agreement with the results of this study.

Viola et al. (2007) investigated the in-plane free vibration problem of multi-stepped and multi-

damaged arches with different boundary conditions. The analyses were performed by using both

analytical method based on the Euler characteristic exponent procedure and the numerical method,

generalized differential quadrature element (GDQE) technique. The first ten frequencies of arches

Table 4 The first non-dimensional frequency ( ) of Laura et al. (1988), (ψT/φT = 0.5, ψ1/φT =
−0.25; and λ = 50 for Case 2)

Clamped-clamped Hinged-hinged

φT η Ritz
This Study

Ritz FEM
This Study

Case 1 Case 2 Case 1 Case 2

5

0.8 58.31 55.1665 7.7465

1 60.91 61.6529 7.3193 38.26 39.4594 5.86404

1.2 64.88 66.3636 6.9685 41.45 42.471 6.00704

1.4 70.1 69.283 6.6648 45.34 44.0381 5.97385

10

0.8 58.3 55.1199 13.191

1 60.9 61.5933 12.737 38.24 39.4024 8.16437

1.2 64.86 66.2926 12.384 41.43 42.4052 8.824

1.4 70.67 69.2025 12.059 45.31 43.9655 9.16221

20

0.8 58.25 54.9344 18.838

1 60.84 61.356 18.706 38.15 39.02 39.1756 10.7217

1.2 64.79 66.0099 18.748 41.33 41.98 42.1435 11.666

1.4 69.98 68.8826 18.792 45.21 43.49 43.6772 12.3175

30

0.8

1 38 38.8021 15.5057

1.2 41.16 41.7133 16.1103

1.4 45.02 43.2038 16.5612

40

0.8 58.05 54.2048 29.181

1 60.59 60.4246 28.929 37.08 38.26 38.2882 23.7372

1.2 64.48 64.9029 28.964 40.94 41.08 41.1228 23.8333

1.4 69.6 67.6325 29.11 44.77 42.51 42.5556 23.8907

45

0.8 57.97 53.9511 33.366

1 60.5 60.1014 32.928 37.67 37.9813 29.0307

1.2 64.36 64.5197 32.792 40.81 40.7708 28.8678

1.4 69.46 67.2007 32.801 44.62 42.1699 28.7144

90

0.8 56.97 50.571 49.275

1 59.24 55.8252 53.967 35.9 33.9605 33.4635

1.2 62.82 59.4907 57.075 38.83 36.2113 35.5832

1.4 67.58 61.5811 58.698 42.43 37.2249 36.5014

c ωR
2

φT

2

µ1/EI1=
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Table 5 The non-dimensional frequencies ( ) for different step ratio (RL: Rossi and Laura
1995) (ψT/φT = 0.2, ψ1/φT = −0.1, and i/(RφT) = 0.05 )

φT

(o)
Mode
 No.

Clamped-clamped Hinged-hinged

η = 0.6 η = 0.8 η = 0.6 η = 0.8

RL Case 2 RL Case 2 RL Case 2 RL Case 2

20

1 18.678 18.63896 19.315 19.2898 9.282 9.241534 10.535 10.51651

2 41.763 41.68504 43.523 43.42459 31.213 31.17326 32.749 32.33543

3 68.372 68.30448 65.685 65.65409 61.298 61.08867 63.424 63.19179

4 70.437 70.13246 72.755 72.41738 68.368 68.30207 65.660 66.01205

5 99.760 99.01473 106.32 105.3800 93.077 92.46856 99.353 98.57928

6 116.13 115.8252 121.84 121.4582 116.11 115.817 121.79 121.4384

40

1 21.336 21.2047 21.792 21.7093 14.36 14.24645 15.123 15.06232

2 41.056 40.92896 42.646 42.46763 30.518 30.43807 31.953 31.84299

3 68.990 68.95757 66.532 66.60929 60.911 60.60486 63.077 62.73704

4 70.173 69.76209 72.226 72.08725 68.982 68.95305 66.456 66.52973

5 99.810 99.04241 106.27 105.2528 93.082 92.45327 99.256 98.37627

6 116.20 116.2006 121.62 121.5921 116.15 116.1637 121.73 121.6863

60

1 25.101 24.83377 25.330 25.15404 20.125 20.43896 20.565 19.91771

2 39.964 39.77252 41.330 41.05197 29.423 29.28799 30.715 30.52681

3 69.757 69.1901 67.783 67.9962 60.287 59.83821 62.526 62.02554

4 69.914 69.91001 72.226 71.29299 69.909 69.90904 67.671 67.88755

5 99.914 99.1211 106.27 105.0703 93.124 92.4813 99.116 98.07729

6 116.20 116.7879 121.62 122.2525 116.20 116.6878 121.62 122.0271

90

1 31.79 31.2273 31.635 31.23432 27.193 26.97354 28.246 27.94254

2 37.817 37.52512 38.832 38.41455 29.060 28.63469 29.118 28.8126

3 68.943 68.11426 70.067 70.4469 58.986 58.30738 61.439 60.65877

4 71.598 71.55319 71.656 70.6869 71.595 71.53171 69.980 70.38489

5 100.24 99.44341 106.28 104.7968 93.379 92.79715 98.916 97.59926

6 116.60 117.9454 121.95 123.1286 116.31 117.626 121.35 122.4751

120

1 35.312 34.94199 36.014 35.49954 24.478 24.19527 25.305 24.92147

2 38.767 37.74511 38.149 37.3749 37.783 36.9338 37.348 36.67865

3 68.149 67.14357 71.279 70.00516 57.522 56.74935 60.438 59.45451

4 73.255 72.97766 72.421 72.80879 73.155 72.76459 72.411 72.80868

5 100.89 100.2036 106.49 104.7345 94.121 93.80656 98.929 97.43129

6 116.99 119.2224 122.04 123.9272 116.52 118.4048 120.95 122.4627

150

1 32.664 32.24842 33.104 32.53913 21.475 21.16366 22.111 21.69371

2 45.055 43.32378 43.874 42.52436 45.054 43.30029 43.870 42.50367

3 67.967 66.99707 71.710 70.00628 57.056 56.63866 60.798 59.86512

4 74.508 73.75364 74.453 74.57403 74.058 73.03464 74.404 74.40135

5 102.03 101.5928 107.05 105.1732 95.676 95.85077 99.505 98.11029

6 117.49 120.3647 122.16 124.3562 116.52 118.6321 120.39 121.294

180

1 30.026 29.59329 30.244 29.66875 18.323 18.01936 18.804 18.39869

2 49.331 46.73283 47.720 45.65463 47.344 44.82968 46.303 44.19681

3 69.509 68.70979 73.843 72.23303 61.077 60.85611 64.876 63.95779

4 75.096 73.66324 75.844 75.36939 73.986 72.17245 75.438 74.58999

5 103.77 103.6494 108.18 106.3506 98.205 98.913 101.03 100.0607

6 118.13 121.1933 122.34 124.2889 116.59 118.1492 119.68 120.2682

c ωR
2

φT

2

µ1/EI1=
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Table 6 The first non-dimensional frequency ( ) for stepped arch (ψT/φT = 0.25, ψ1/φT = −
0.125, i/(RφT) = 0.05), RL: Rossi and Laura (1995)

Clamped-clamped Hinged-hinged

η = 0.6 η = 0.8 η = 0.6 η = 0.8

φT (
o) RL Case 2 RL Case 2 RL Case 2 RL Case 2

20 18.938 18.89324 19.353 19.323 9.1326 9.087014 10.427 10.40495

40 21.632 21.48744 21.856 21.76279 14.338 14.21247 15.082 15.013

60 25.457 25.1643 25.432 25.23637 20.206 19.97951 20.582 20.4408

90 32.276 31.66855 31.808 31.37221 26.276 26.09361 28.003 27.71101

120 34.699 34.38216 35.894 35.39468 23.693 23.46151 25.103 24.73787

150 32.205 31.84912 33.028 32.48193 20.816 20.56212 21.945 21.54983

180 29.713 29.33669 30.208 29.65168 17.78 17.53348 18.672 18.28699

Table 7 First non-dimensional frequency ( ) for stepped arch (ξ = 1/3 i/(RφT) = 0.05), RL:
Rossi and Laura (1995)

Clamped-clamped Hinged-hinged

η = 0.6 η = 0.8 η = 0.6 η = 0.8

φT RL Case 2 RL Case 2 RL Case 2 RL Case 2

20 19.467 19.42227 19.471 19.44183 8.9823 8.928887 10.285 10.26013

40 22.188 22.03443 21.998 21.90131 14.357 14.21507 15.034 14.95669

60 26.063 25.75236 25.608 25.40497 20.361 20.11288 20.611 20.4571

90 33.004 32.36908 32.05 31.60249 24.462 24.34808 27.4 27.14862

120 33.699 33.47839 35.561 35.12205 22.1 21.95332 24.586 24.26521

150 31.455 31.1932 32.787 32.29554 19.444 19.28401 21.509 21.15718

180 29.209 28.91519 30.055 29.54269 16.623 16.47071 18.309 17.96479

Table 8 First non-dimensional frequency ( ) for stepped arch (ξ = 0.5 i/(RφT) = 0.05), RL:
Rossi and Laura (1995)

Clamped-clamped Hinged-hinged

η = 0.6 η = 0.8 η = 0.6 η = 0.8

φT RL Case 2 RL Case 2 RL Case 2 RL Case 2

20 20.1 20.19345 19.773 19.72876 8.8576 8.793438 10.106 10.07702

40 22.708 22.74091 22.268 22.17216 14.436 14.27071 14.981 14.88815

60 26.418 26.38005 25.831 25.65795 20.6 20.31963 20.651 20.4761

90 32.892 32.83958 32.157 31.82394 21.259 21.21294 25.918 25.71976

120 33.76 33.28304 35.088 34.71309 19.186 19.1322 23.254 23.002

150 31.728 31.2076 32.464 32.01369 16.853 16.80294 20.332 20.05912

180 29.703 29.15443 29.88 29.38889 14.379 14.34284 17.291 17.02894

c ωR
2

φT

2

µ1/EI1=
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2
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2
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with clamped-clamped, hinged-hinged and clamped-free ends are given in Table 9 with the results

of this study. The dimensions of clamped-clamped and hinged-hinged arches are given as: The

radius of arch R = 1 m, the width b = 0.045 m, the thicknesses h1 = 0.02 m, h2 = 0.015 m, h3 =

0.02 m, the opening angle φT = 120o, the opening angles ratio ψT/φT = −0.25, the step position

parameter ψ1/φT = 0.5. The dimensions of clamped-free arch are given as: The radius of arch R = 1

m, the width b = 0.045 m, the thicknesses h1 = 0.03 m, h2 = 0.025 m, h3 = 0.015 m, the opening

angle φT = 70o, the opening angles of the subdomains φ1 = 20o, φ2 = 20o, φ3 = 30o. The results of

Viola et al. (2007) and this study are in exteremely good agreement.

4. Conclusions

In this paper, an exact analytical solution for free in-plane vibrations of two-stepped arches is

presented. The solution is obtained by using the initial values method. The exact solution developed

for a uniform arch is adapted to the stepped arches. The stepped arch is divided into a number of

arches with constant cross-sections. The exact solution of free vibrations of the stepped arches can

be obtained in terms of the initial parameters; deformation, rotation, bending moment, normal force

and shear force at one coordinate of the arch. The effects of axial extension, shear deformation and

rotatory inertia are included in the analysis. The solutions are obtained also by considering each

effect individually. No numerical difficulty was found in the proposed solution.

Detailed numerical results have been presented showing variations of non-dimensional frequency

parameter with clamped-clamped, hinged-hinged, free-free, hinged-clamped, and clamped-free

boundary conditions and with five geometric parameters for stepped arches; opening angle φT,

slenderness ratio λ = R/i, step ratio h = h2/h1, position parameter ψ1/φT and the opening angles ratio

ψT/φT.

The numerical data reveal that increasing the value of step ratio results in smaller frequency

coefficients for the first six modes. As slenderness ratio, λ, increases from 50 to 200, the frequency

Table 9 The results of Viola et al. (2007) and this study for the first ten frequencies (Hz) of two-stepped
arches with different boundary conditions

Mode No.

Clamped-Clamped Hinged-Hinged Clamped-Free

Viola et al. (2007) This 
Study

Viola et al. (2007) This 
Study

Viola et al. (2007) This 
StudyAnalytical GDQE Analytical GDQE Analytical GDQE

1 49.535 49.535 49.5345 27.564 27.564 27.5638 20.433 20.433 20.43337

2 99.224 99.224 99.2244 74.838 74.838 74.8381 67.978 67.978 67.9778

3 178.742 178.742 178.7424 140.321 140.321 140.3207 195.761 195.761 195.7612

4 261.989 261.989 261.9886 215.215 215.215 215.2151 372.498 372.498 372.498

5 366.855 366.855 366.8553 313.167 313.167 313.1669 643.913 643.913 643.9125

6 485.004 485.004 485.0036 432.367 432.367 432.3673 928.625 928.625 928.6255

7 646.009 646.009 646.0085 576.539 576.539 576.5389 1312.164 1312.164 1312.164

8 732.315 732.321 732.3207 698.877 698.877 698.8793 1478.623 1478.623 1478.623

9 865.512 865.512 865.5124 823.817 823.817 823.8152 1740.342 1740.342 1740.342

10 969.683 969.694 969.694 882.598 882.603 882.6028 2262.455 2262.455 2262.455
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coefficients also increase due to the fact that the frequency coefficient contains λ.

The frequency coefficient increases sharply until some opening angle, then decreases slowly when

the opening angle increases. This characteristic is almost the same for all boundary conditions

except for the clamped-free arch. The significantly different characteristic is observed in the first

mode; the frequency coefficient increases, as the opening angle increases, which is not observed in

higher modes.

The effect of axial extension is dominant for clamped-clamped, hinged-hinged, and hinged-

clamped arches while the rotatory inertia has little effect for the first mode. The shear deformation

effect is the dominant for a clamped-free arch and rotatory inertia is dominant for a free-free arch.

The step position parameter affects the frequency coefficients slightly. For the symmetric

boundary conditions and all opening angles, the frequency coefficient has a maximum value at the

crown of the arch for h2/h1 < 1, and a minimum value for h2/h1 > 1. For a clamped-free arch, when

the position parameter increases, the frequency coefficient increases slightly for step ratio h2/h1 > 1,

and decreases slightly for h2/h1 < 1.

For a clamped-clamped arch with a known opening angle and opening angles ratio, the frequency

coefficient has a maximum value around ψ1/φT = −0.3, and a minimum value when the stepped

subdomain is in the middle of the beam for h2/h1 = 0.4, 1.2, 1.6 and 2.0. The frequency coefficient

has the minimum value around ψ1/φT = −0.3 and the maximum value around ψ1/φT = −0.1 for h2/

h1 = 0.6 and 0.8. The similar characteristics can be observed for other symmetric boundary

conditions.

The frequency coefficient of a clamped-clamped arch with a given opening angle is affected

slightly by the opening angles ratio, ψT/φT. The frequency coefficient decreases slightly for φT = 90o,

135o and 180o, and increases for φT = 10o, 20o, 30o and 60o.

For a hinged-clamped arch, the frequency coefficients have the maximum value between ψ1/φT =

0 and 0.1 for the step ratio of h2/h1 < 1, and the minimum value between ψ1/φT = 0 and 0.1, for h2/

h1 > 1.

For a hinged-clamped arch with the step position parameter of ψ1/φT = −0.1 and −0.2, the

frequency coefficient increases sharply until the step ratio of h2/h1 = 1.0, and then decreases slightly.

For the step position parameter of ψ1/φT = −0.4 and −0.3, the frequency coefficient reaches the

maximum value around h2/h1 = 1.2. For the step position parameter of ψ1/φT = 0.0, 0.1 and 0.2, the

maximum of the frequency can be found around h2/h1 = 1.4. The frequency coefficients are a strong

function of the position parameter for all step ratios.

For a clamped-free beam, the frequency coefficient increases for h2/h1 < 1 and decreases for h2/

h1 > 1, as position parameter increases. When the stepped portion moves from the clamped end to

the free end, for the step ratio h2/h1 < 1, the frequency increases, and for h2/h1 > 1 the frequency

decreases.

When the first few frequency coefficients of an arch are considered, some of the successive

frequency coefficients get closer to each other for some opening angles. The mode transition

phenomenon occurs in the opening angles in which the curves approach each other. The mode

shapes change from one configuration to another form. For example, for a clamped-clamped arch

with λ = 50, ψT/φT = 0.4, ψ1/φT = −0.3, h2/h1 = 0.8 and φT = 100o, the third mode shape is the same

as the fourth mode shape for the beam with φT = 120o. When the third and fourth mode shapes of

circular beams with opening angles of 100o and 120o are obtained analytically and/or numerically

(Figs. 15 and 16), it can be seen that the third mode shape of the beam with φT = 100o is the same

as the fourth mode shape of the beam with φT = 120o.



Effects of geometric parameters on in-plane vibrations of two-stepped circular beams 151

As a result of this study, it is possible to achieve dynamic stiffening of a circular arch executing

in-plane vibrations by introducing appropriate discontinuities in the cross-section. The dynamic

stiffening effect is measured by means of the “dynamic stiffening efficiency parameter” which can

be defined as the ratio of the frequencies of the uniform arch and stepped arch.

The results presented in the paper fill an apparent void in the vibration literature by providing the

first known theoretical results for circular arches with a certain practical type of variable cross-

section. Because of the high accuracy of the presented results, they can be used to compare with

data obtained using modern experimental and alternative analytical methods. For other types of

arches, one can directly apply the present formulation to find accurate results. Furthermore, with a

simple modification, the solution given in the paper can be straightforwardly applied to analyse the

free vibrations of arch with continuously varying cross-section and curvature.
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