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Abstract. This paper presents an alternative way to derive the exact element stiffness matrix for a
beam on Winkler foundation and the fixed-end force vector due to a linearly distributed load. The element
flexibility matrix is derived first and forms the core of the exact element stiffness matrix. The governing
differential compatibility of the problem is derived using the virtual force principle and solved to obtain
the exact moment interpolation functions. The matrix virtual force equation is employed to obtain the
exact element flexibility matrix using the exact moment interpolation functions. The so-called “natural”
element stiffness matrix is obtained by inverting the exact element flexibility matrix. Two numerical
examples are used to verify the accuracy and the efficiency of the natural beam element on Winkler
foundation. 
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1. Introduction

Several problems in structural, geotechnical, highway, railroad, and mechanical engineering can be

formulated and solved using the concept of a beam on elastic foundation. Numerous analytical

methods have been proposed in the research community to study the problems of beams on elastic

foundation. These models range from comparatively simple approaches in which the foundation is

represented by a set of continuous springs to rigorous continuum approaches in which the

foundation is considered as a homogeneous semi-infinite elastic body (Selvadurai 1979). Due to the

complexity of the elastic continuum foundation model (Mindlin 1936), the continuous-spring model

has been used extensively by several researchers and practicing engineers as a compromising

approach to represent the foundation (e.g., Hetenyi 1946, Yankelevsky et al. 1988, Gendy and

Saleeb 1999, Morfidis and Avramidis 2002, Maheshwari et al. 2004, Celep and Demir 2007,

Allotey and El Naggar 2008, Zhang et al. 2009, Civalek and Ozturk 2010). The famous continuous-
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spring foundation model is attributed to Winkler (1867). Therefore, this foundation model is called

“Winkler foundation”. In the Winkler foundation model, the foundation medium is replaced by a set

of continuously distributed non-interconnected springs. Hetenyi (1946) comprehensively studied the

problems of beams on Winkler foundation and provided closed-form solutions to the problems

under a variety of loading conditions. In addition to the analytical studies by Hetenyi (1946), several

numerical techniques have been used to solve the problems. The finite difference method was used

by several researchers (Matlock and Reese 1960, Bowles 1968, Beaufait and Hoadley 1980) to

solve for the numerical solutions of the problems. However, this numerical technique had been

diminished some decades ago due to the emergence of the finite element method. 

The stiffness-based finite element method has been widely used as a numerical tool to solve the

problems of beams on Winkler foundation. Bowles (1974) formulated the beam-foundation model

by combining the conventional beam element with discrete foundation springs attached at the beam

ends. However, the model accuracy was hampered by the replacement of continuous foundation

springs with discrete ones. To overcome this drawback, the continuous nature of foundation springs

had been preserved by considering the beam and the foundation as a whole system. Tong and

Rossettos (1977) used the principle of minimum potential energy to formulate the beam-foundation

element using Hermite displacement interpolation functions. This model was adapted by

Limkatanyu and Spacone (2006) and Limkatanyu et al. (2009) to study the nonlinear behaviors of

soil-pile systems. Due to the assumed nature of displacement interpolation functions, the model

accuracy was still limited. Alternatively, the “exact” displacement interpolation functions can be

obtained by solving the governing differential equilibrium equation of the problem. Following this

approach, the “exact” stiffness matrix for the beam-foundation element was derived by several

researchers (e.g., Avramidis and Avramidou 1979, Avramidis and Golm 1980, Zhaohua and Cook

1983, Ting and Mockry 1984, Eisenberger and Yankelevsky 1985, etc.). It was shown by Zhaohua

and Cook (1983) that in some case, eighty beam-foundation elements derived based on the assumed

Hermite displacement interpolation functions were needed to obtain results as accurate as those

obtained with one beam-foundation element derived based on the exact displacement interpolation

functions. Besides the conventional stiffness-based finite element formulation, mixed and flexibility-

based finite element formulations have been used in recent years to develop the beam-foundation

elements (Mullapudi and Ayoub 2010, Erguven and Gediki 2003, and Limkatanyu and Spacone

2006). Even though the element accuracies are greatly enhanced by these unconventional finite

element formulations, only approximate element stiffness matrices are obtained due to the assumed

nature of displacement and force interpolation functions. 

The main objective of this paper is to alternatively derive the exact beam-Winkler foundation

stiffness matrix based on the exact beam-Winkler foundation flexibility matrix. The governing

differential equilibrium equations and constitutive relations of the beam on Winkler foundation are

first presented. Next, the governing differential compatibility equation and the associated end-

boundary compatibility conditions are derived based on the virtual force principle and solved

analytically to obtain the exact moment interpolation functions. The matrix virtual force equation is

employed to obtain the exact element flexibility matrix using the exact moment interpolation

functions. It is noted that the element flexibility matrix presented in this paper is different from that

presented in Limkatanyu and Spacone (2006) in that the foundation force distribution in

Limkatanyu and Spacone (2006) has to be assumed, thus resulting in the approximate moment

interpolation functions and the approximate element flexibility matrix. The so-called “natural”

element stiffness matrix is obtained by inverting the exact element flexibility matrix. Two numerical



Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation 41

examples are used to verify the accuracy and the efficiency of the natural beam element on Winkler

foundation. All symbolic calculations throughout this paper are performed using the computer

software Mathematica (Wolfram 1992) and the resulting beam-foundation model is implemented in

the general-purpose finite element platform FEAP (Taylor 2000).

 

2. Governing equations of beams on winkler foundation

2.1 Differential equilibrium equations: direct approach

The governing differential equilibrium equations of a beam on Winkler foundation shown in

Fig. 1(a) are derived in a direct manner. A differential element dx taken from the beam on Winkler

foundation is shown in Fig. 1(b). Following the small-displacement hypothesis, all of the

equilibrium equations are considered in the undeformed configuration. Considering vertical

equilibrium of the infinitesimal segment dx leads to

(1)
V x( )d

xd
-------------- py x( )– Ds x( )+ 0=

Fig. 1 (a) A beam on Winkler foundation, (b) a differential segment cut from the beam 



42 Suchart Limkatanyu, Kittisak Kuntiyawichai, Enrico Spacone and Minho Kwon

where V(x) is the beam-section shear force;  is the transverse distributed load; and  is

the foundation-force at the bottom face of the beam. Moment equilibrium results in 

(2)

where M(x) is the beam-section bending moment. Based on the Euler-Bernoulli beam theory, only

flexural responses are considered in the paper. The shear force V(x) is eliminated by substituting

Eqs. (1) into (2), leading to

(3)

It is worthwhile to note that at any beam section there are 2 internal force unknowns, M(x) and

 while only one equilibrium equation is available. Consequently, this system is internally

statically indeterminate and the internal forces cannot be determined merely by equilibrium

conditions. 

2.2 Force-deformation relations

The system sectional forces are related to their conjugate-work deformations as follows

(4)

where  is the beam-section curvature;  is the foundation deformation; IE is the flexural

rigidity; and ks is the foundation modulus known as subgrade-reaction coefficient (Terzaghi 1955). 

2.3 Differential compatibility equations: the virtual force principle

As an alternative way to express the system compatibility equations, the virtual force equation is

written in the general form as

(5)

where  is the system total complementary virtual work;  is the system internal

complementary virtual work; and  is the system external complementary virtual work. 

In the case of th beam on Winkler foundation,  and  can be expressed as 

(6)

(7)

where the vector  contains shear forces and moments acting at beam ends

and the vector  contains their conjugate-work displacements and rotations.

At the moment, external force quantities,  is arbitrarily chosen to be zero. Thus, Eq. (5)

becomes
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(8)

Using the deformation-force relations, Eq. (8) becomes

(9)

The foundation forces  and  can be eliminated through the differential equilibrium

condition of Eq. (3). Thus, Eq. (9) becomes

(10)

In order to move all differential operators to the bending moment , integration by parts is

applied twice to the second term of Eq. (10), hence leading to the following expression

(11)

Considering the shear-force definition of Eq. (2) and following the Cartesian sign convention,

Eq. (11) can be written as

 (12)

Due to the arbitrariness of , the governing differential compatibility equation is obtained as

for (13)

where . Additionally, the end-boundary compatibility conditions are obtained due to

the arbitrariness of  as

;

; (14) 
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3. “NATURAL” element stiffness matrix via element flexibility matrix

The “exact” moment interpolation functions are obtained by solving the governing differential

compatibility equation of Eq. (13). For the sake of simplicity, the applied distributed load  is

assumed to be a linear function and to act along the whole length of the beam. It is imperative to

mention that the applied distributed load  in Eq. (13) does not influence the exact moment

interpolation functions as long as it varies linearly along the whole length of the beam. This finding

renders the proposed flexibility-based model attractive since the analytical solution to the governing

differential compatibility equation of Eq. (13) requires only the homogeneous part. Unfortunately,

this beneficial effect is not available in the exact stiffness-based models published in the literature

(e.g., Zhaohua and Cook 1983, Ting and Mockry 1984, Eisenberger and Yankelevsky 1985, etc.)

since the analytical solution to governing differential equilibrium equation requires both

homogeneous and particular parts with the presence of the applied distributed load .

Therefore, the derivation of the exact displacement interpolation functions becomes more involved. 

The homogeneous solution to Eq. (13) is

(15)

where  and  are constants of integration to be determined by imposing force boundary

conditions. These force boundary conditions are

(16)

By imposing force boundary conditions of Eq. (16), the moment interpolation relation can be

expressed as

(17)

where  is an array containing the moment interpolation

functions. The expression of each moment interpolation function is given in Appendix A. Imposing

the differential equilibrium equation of Eq. (3), the foundation force  can be written in terms

of P as

(18)

where  is an array containing the foundation-force

interpolation functions. The expression of each foundation-force interpolation function is given in

Appendix A.

Applying the virtual force expression of Eq. (9), substituting Eqs. (17) and (18), and accounting

for the arbitrariness of δP yield the following element flexibility equation

(19)

where F is the element flexibility matrix defined as

(20)

where FBB and Fss are beam and foundation contributions to the element flexibility matrix,

respectively.
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(21)

The explicit expressions of FBB and Fss are given in Appendix B. It is noted that element end

displacements  due to the applied load  is supplemented into Eq. (19). In the case of linear

variation of ,  can be written in a simple expression as given in Appendix A. 

Due to the supporting foundation, the beam does not experience any rigid- body motion (neither

rigid-body translation nor rigid-body rotation). Therefore, the complete element stiffness equation

can be obtained simply by inverting the element flexibility equation as

(22)

where the complete element stiffness matrix KN is F−1 and the fixed-end force vector due to 

is simply computed as . It is observed that the effect of the applied load  can be easily

accounted for in the proposed flexibility-based model unlike the stiffness-based models available in

the literature. The fixed-end force vectors due to other loading types can be derived in similar

manner. The element stiffness matrix obtained in this manner is known as the “natural” element

stiffness matrix (Argyris and Kelsey 1960). The configuration of the natural beam element on

Winkler foundation is shown in Fig. 2.

As opposed to the stiffness-based formulation, there is no displacement interpolation function to

describe the vertical displacement and rotational fields. However, the following compatibilities can

be used to retrieve the vertical displacement and rotational fields once the internal force

distributions are obtained.

(22)

(23)

4. Numerical examples

Two numerical examples are used to verify the accuracy and show the efficiency of the natural

beam element on Winkler foundation. The first numerical example is a cantilever beam-foundation
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Fig. 2 Natural beam element on winkler foundation 
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system subjected to a triangular distributed load along the whole length. The second numerical

example is a free-free beam on Winkler foundation subjected to concentrated loads along its length.

4.1 Example I

The cantilever beam on Winkler foundation subjected to the triangular distributed load along its

whole length is shown in Fig. 3. To verify the accuracy and efficiency of the proposed beam

element, only one element is used to discretize the entire cantilever beam-foundation system. Given

data are: beam length L = 5 m; flexural rigidity ; foundation stiffness

; and distributed load parameter . The vertical displacement,

rotation, shear force, and bending moment diagrams obtained with one natural beam-foundation

element are shown in Fig. 4 and Fig. 5. On the same diagrams, the exact responses given by

Hetenyi (1946) are also presented for comparison. All responses obtained from the two solutions

match exactly, thus confirming the accuracy and efficiency of the proposed beam-foundation

element. It is worth mentioning that only one “exact” stiffness-based beam-foundation element

proposed by Eisenberger and Yankelevsky (1985) could also be used to accurately represent this

cantilever beam-foundation system. 

IE 45 10
3

kN-m
2×=

ks 10
3

kN/m
2

= p0 100 kN/m=

Fig. 3 Example I: cantilever beam subjected to triangular distributed loading along its whole span

Fig. 4 Diagrams for vertical displacement and rotation for Example I 
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4.2 Example II 

The free-free beam on Winkler foundation subjected to concentrated loads along its length is

shown in Fig. 6. This beam-foundation system is employed to demonstrate the application of the

derived beam-foundation element to study the structure-foundation interaction problem. Given data

are: beam length L = 20 m; flexural rigidity ; and foundation stiffness

. Four natural beam-foundation elements (elements AB, BC, CD, and DE) are

used to discretize the system, thus resulting in eight nodal unknowns. The obtained vertical

displacement, rotation, shear force, and bending moment diagrams are shown in Fig. 7 and Fig. 8.

On the same diagrams, the exact responses given by Hetenyi (1946) are also shown for comparison.

Clearly, the natural beam-foundation model is capable of representing exact displacement and force

responses using only one element for each free span. In fact, only one natural element is sufficient

to model the whole beam-foundation system if the end displacements and rotations due to

intermediate concentrated loads are consistently derived. It is worth mentioning that this beam-

foundation example is also analyzed by Pilkey (2007) using the stiffness-based beam-foundation

model with cubic displacement interpolation functions proposed by Tong and Rossettos (1977). To

obtain satisfactory nodal-displacement values, ten stiffness-based elements are required, thus

resulting in twenty two nodal unknowns. Furthermore, twenty one stiffness-based elements (forty

four nodal unknowns) are needed to satisfactorily represent the shear and bending moment

variations along the beam length. 

IE 200 10
3

kN-m
2×=

ks 30 10
3

kN/m
2×=

Fig. 5 Diagrams for shear force and bending moment for Example I 

Fig. 6 Example II: free-free beam on Winkler foundation subjected to concentrated loads along its length 
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5. Conclusions

The “natural” element stiffness matrix and fixed-end force vector for a beam on Winkler

foundation subjected to a linearly distributed load are derived in this paper. The element flexibility

matrix forms the core of the natural element stiffness matrix and is derived based on the virtual

force principle using the “exact” moment interpolation functions. The exact moment interpolation

functions are obtained by solving analytically the governing differential compatibility equation.

Compared to the stiffness-based models published in the literature, the effect of the applied element

load can readily be included in the proposed model. Two numerical examples are employed to

verify the accuracy and efficiency of the natural beam-foundation model. These two numerical

examples demonstrate that the natural beam-foundation element is capable of giving exact solutions

for vertical displacements, rotations, shear forces, and bending moments. Therefore, the exactness of

the proposed element obviates the requirement for discretizing the beam into several elements

between loading points. The number of elements needed in analysis of a beam-foundation system is

largely governed by the proper way of representing loadings (concentrated or linearly distributed

loads). The next steps in this research direction are the inclusion of the nonlinearities into both

beam and foundation and applying the extended model to represent several engineering systems

Fig. 7 Diagrams for vertical displacement and rotation for Example II 

Fig. 8 Diagrams for shear force and bending moment for Example II 
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(e.g., shallow foundation-structure system, pavement-soil system, carbon nanotube-Van der Waals

system, etc.).
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Appendix A: Moment interpolation functions, foundation- force interpolation func-
tions, and nodal displacements due to py(x)

The moment interpolation functions may be written as

The foundation-force interpolation functions may be written as

where

The nodal displacements due to the linearly distributed load  may be written as 
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Appendix B: Beam on winkler foundation flexibility matrix 

The beam contribution to the element flexibility matrix may be written as 
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The foundation contribution to the element flexibility matrix may be written as 

 




